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Abstract. Error Correcting Output Coding (ECOC) is a multiclass
classi�cation technique, in which multiple base classi�ers (dichotomiz-
ers) are trained using subsets of the training data, determined by a preset
code matrix. While it is one of the best solutions to multiclass problems,
ECOC is suboptimal, as the code matrix and the base classi�ers are not
learned simultaneously. In this paper, we show an iterative update al-
gorithm that reduces this decoupling. We compare the algorithm with
the standard ECOC approach, using Neural Networks (NNs) as the base
classi�ers, and show that it improves the accuracy for some well-known
data sets under di�erent settings.

1 Introduction

In multiclass classi�cation, ensembles of suboptimal classi�ers are preferred over
single classi�ers due to the advantages they o�er in terms of accuracy, complexity
and �exibility. The Error Correcting Output Coding (ECOC) is one such tech-
nique [3] , where multiple base classi�ers are trained according to a preset code

matrix. Consider an ECOC matrix C, where a particular element Cijε (+1,−1)
indicates the desired label for class i, to be used in training the base classi-
�er j. The base classi�ers are the dichotomizers which carry out the two-class
classi�cation tasks per each column of the ECOC matrix, according to the input
labelling. Each row, called a codeword, indicates the desired output for the whole
set of base classi�ers for the class it is indicating.

During decoding, a given test sample is classi�ed by computing the similarity
between the output (hard or soft decisions) of each base classi�er and the code-
word for each class by using a distance metric, such as the Hamming (L1 Norm)
or the Euclidean (L2 norm) distance. The class with the minimum distance is
then chosen as the estimated class label. The method can handle incorrect base
classi�cation results up to a certain degree. Speci�cally, if the minimum Ham-
ming distance (HD) between any pair of codewords is d, then up to b(d− 1)/2c
single bit errors can be corrected. A good practice in code matrix design is to
ensure large HD between codewords of di�erent classes in order to have large



error correction capacity and large HD between pairs of columns, in order to end
up with uncorrelated outputs of deterministic classi�ers [3].

Although the tasks of the base classi�ers are signi�cantly simpli�ed com-
pared to the overall classi�cation problem, the sub-problems are still non-trivial
generally. While the individual base errors may be corrected by using the ECOC
approach, the encoding and the decoding of ECOC matrix are open problems.
Our aim in this paper is to optimize the original matrix so as to better match
the trained base classi�ers. This is done by considering the performances of base
classi�ers over the individual classes, and changing the ECOC matrix whenever
it is deemed bene�cial, while taking the HD information into account.

2 Previous Work

ECOC is a powerful ensemble method for multiclass classi�cation. For encoding
the ECOC matrix, there are some commonly used data-independent techniques
such as one-versus-all, one-versus-one, dense random and sparse random [4] in
addition to the computationally expensive exhaustive codes, which do not guar-
antee the best performance. By using data dependent ECOC designs to create
subproblems which can better �t the decision boundaries of the main problem,
the aim is to increase the overall accuracy and overcome expensive parameter op-
timizations [2]. Although problem dependent coding approaches are successful,
it has been theoretically and experimentally proven that the randomly gener-
ated long or deterministic equidistant code matrices are also close to optimum
performance when used with strong base classi�ers [9,10].

As for the decoding of the ECOC matrix, apart from the usual L1 decod-
ing with the HD, weighted decoding approaches, �Centroid of Classes�, �Least
Squares� and �Inverse Hamming Distance� methods[11] can be used. Many static
and dynamic pruning methods are also applied to the ECOC so as to increase
the e�ciency and accuracy.

Other than the research on encoding, there has been little work to update
the ECOC matrix, or to analyze the performance of the base classi�ers. In [8]
Alpaydin et al train a multilayer perceptron to learn the new ECOC code matrix,
allowing small modi�cations from the original. In [7], the update of the one-
versus-one coding matrix has been carried out in a problem-dependent way and
the generalization capability of the system is shown to increase.

Our approach is applicable to any ECOC matrix design. The experiments
are carried out on random ECOC matrices of varying column sizes for systems
having NNs as base classi�ers. When the number of nodes and epochs used
in NNs is small, increases up to 16% in the overall classi�cation accuracy are
obtained through 10-fold cross validation (CV). Since long random matrices
used with strong base classi�ers are proven to perform close to ideal, there is no
remarkable change under this setting.



3 Proposed Method

Consider the ECOC matrix C, Cij as the entry of the matrix on row i and
column j, and Aij as the accuracy of the base classi�er j, with regard to class
i. Aij , measured on a validation set, is the proportion of the samples in class ci
that are correctly classi�ed by j according to the target value speci�ed by Cij .

We propose to �ip Cij entries that have corresponding Aij values lower than
0.5 so as to better match what is learned by the base classi�ers; i.e. if the
decision of the base classi�er does not match the target, we consider changing
the target. However, to keep the decisions of the individual base classi�ers as
uncorrelated from each other as possible and avoid deterioration of the row-
wise and column-wise HDs, we have a certain criterion on the �ipping process.
Without any stopping criterion, �ipping can yield a decrease in the HD between
classes; which can adversely a�ect the small accuracy gain obtained on a single
class by �ipping the decision of a single base classi�er.

In our method, we �rst list the Cij entries in ascending order according to
their corresponding Aij values until 0.5. By using a hill climbing method, which
results in a suboptimal solution due to the greedy decisions it takes in each
iteration, the Cij entries are sequentially proposed for �ipping. In each iteration,
a �ip and therefore an ECOC update is accepted if the validation set accuracy
does not decrease when the updated ECOC matrix is used in the decoding
process instead of the current one. By considering the validation accuracy in
this stage, we expect the method to take care of the row and column-wise HD
information together with the error correction capacity, and therefore carry out
updates without causing any degradation. In Algorithm 1, pseudo-code for the
method can be found.

Algorithm 1 FLIP-ECOC

1: calculate A and C matrices
2: list Cij s.t Aij < 0.5 is in ascending order
3: noElements←number of elements in the list
4: current state←original ECOC matrix, C
5: for t = 1 : noElements do . start hill climbing
6: nextState←�ip tth element of C
7: ∆gain←valAccuracy[nextState]−valAccuracy[currentState]
8: if ∆gain ≥ 0 then

9: currentState←nextState . currentECOC←updatedECOC
10: end if

11: end for

We have also studied a ternary ECOC [4] extension of the proposed method,
in which the elements Cij are �ipped if their corresponding Aij values are below
a threshold (e.g. 0.4) as in the Flip-ECOC method, whereas the elements be-
tween that lower and a proposed upper threshold (e.g. 0.6) are set to zero. The
use of a third label, namely zero, allows us to handle the cases where the classi�er



Table 1. Summary of the 5 UCI MLR datasets

# Training Samples # Test Samples # Attributes # Classes

Glass Identi�cation 214 - 10 6

Dermatology 358 - 33 6

Segmentation 4435 2000 36 6

Landsat Satellite Image 210 2100 19 7

Yeast 1484 - 8 10

decisions are not strong enough to justify a labelling to either class. However,
our results with the extension have not shown remarkable improvement over
Flip-ECOC and we only present Flip-ECOC outcomes in the experiments ses-
sion. We believe that this is due to the problematic decoding of ternary ECOC
matrices [6] and aim to address this problem as a future work. Finally, we also
applied simulated annealing as a greedy search technique. As the results are
not signi�cantly di�erent than those of the hill climbing, hill-climbing has been
selected as the search procedure for the sake of decreased test complexity.

4 Experimental Results

Experiments have been carried out on 5 UCI MLR [5] datasets. NNs (using the
Levenberg-Marquart algorithm) are used as the base classi�ers, random coding
as the coding strategy and the HD as the metric in the decoding stage (i.e. the
standard approach). In the experiments, the number of columns of the ECOC
matrix varies between 10 and 150 (namely 10,15,25,75 and 150), that of NN
nodes between 2 and 16, and the level of training between 2 and 15 epochs.

Table 2 shows the summary of the 5 datasets. For the datasets having sepa-
rate test sets, the input training samples have been randomly split into a training
and a validation set. The average results are recorded for 10 independent runs.
For the rest, 10-fold CV has been applied together with a random split of the
training samples into two as above. The size of the validation set has been se-
lected to be equal to that of the training, as it plays an important role both as
a �ipping and a stopping criterion in the Flip-ECOC algorithm.

In Figure 1, the relative accuracy gain of Flip-ECOC against the standard
approach is presented. The trend in the graphs show that the power of the
method increases when simpler ensembles with fewer number of nodes and/or
epochs and/or columns are used. Figure 2 presents the actual and the updated
accuracies for some datasets. When the ECOC setup is close to optimum (i.e.
when large number of columns are used with strong base classi�ers under random
coding scheme), the method starts to lose its capacity to increase the overall
accuracy as expected; however there is no signi�cant decrease either.
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Fig. 1. Relative accucary di�erence between the Flip-ECOC and standard ECOC ap-
proaches vs. number of epochs. First Row: for 2 Nodes and 10 (left), 75(right) Columns
Second Row: for 16 Nodes and 10 (left), 75 (right) Columns

5 Discussion

The proposed method improves the default ECOC accuracy in almost all prob-
lems and settings. The extent of the improvement varies up to 16% in certain
cases. Signi�cant improvements are observed when the base classi�ers and the
corresponding decision boundaries are simpler; either when fewer number of
nodes are used, resulting in a less complex classi�er, or when the networks are
trained using fewer epochs, resulting in a less tuned decision boundary.

The improvements are larger when the number of columns is small (e.g. <
75). When the number of columns is large, more �ips are necessary to change
the overall accuracy, due to the large HD already helping with the decoding.
However, when there are too many �ips the HD between certain class pairs
may decrease and counter-balance the improvements to be gained from updated
individual base classi�er accuracies. Therefore, we may end up with smaller
accuracy gains compared to the ones obtained by using fewer columns.

Finally, the proposed method is less applicable when highly accurate base
classi�ers and long random ECOC matrices are employed, where it is already
proven to yield results close to optimal. While theoretically interesting, the use
of ECOC approach with large number of accurate base classi�ers is not practical,
due to prohibitive training time. Therefore, we believe that the reliable improve-
ments gained with very small e�ort in simpler ECOC ensembles are signi�cant.

Techniques on updating the matrix can be further examined by concentrating
on the settings in which improvements were small. Future work is also aimed at
using ECOC matrices other than random ones together with di�erent types of
base classi�ers and di�erent decoding techniques.
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Fig. 2. Accuracies of the Flip-ECOC and standard ECOC approaches vs. number of
epochs. First Row: for 2 Nodes and 10 (left), 75(right) Columns Second Row: for 16
Nodes and 10 (left), 75(right) Columns
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