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a b s t r a c t 

Offline signature verification is a task that benefits from matching both the global shape and local details; 

as such, it is particularly suitable to a fusion approach. We present a system that uses a score-level fusion 

of complementary classifiers that use different local features (histogram of oriented gradients, local bi- 

nary patterns and scale invariant feature transform descriptors), where each classifier uses a feature-level 

fusion to represent local features at coarse-to-fine levels. For classifiers, two different approaches are in- 

vestigated, namely global and user-dependent classifiers. User-dependent classifiers are trained separately 

for each user, to learn to differentiate that user’s genuine signatures from other signatures; while a sin- 

gle global classifier is trained with difference vectors of query and reference signatures of all users in the 

training set, to learn the importance of different types of dissimilarities. 

The fusion of all classifiers achieves a state-of-the-art performance with 6.97% equal error rate in skilled 

forgery tests using the public GPDS-160 signature database. The proposed system does not require skilled 

forgeries of the enrolling user, which is essential for real life applications. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Signature verification is used in verifying the claimed identity

f a person through his/her chosen and previously registered sig-

ature. The signature’s widespread acceptance by the public and

iche applications (validating paper documents and use in banking

pplications) makes it a desirable biometric. 

Signature is considered to be a behavioral biometric that en-

odes the ballistic movements of the signer and as such is difficult

o imitate. On the other hand, compared to physical traits such as

ngerprint, iris or face, a signature typically shows higher intra-

lass and time variability. Furthermore, as with passwords, a user

ay choose a simple signature that is easy to forge. 

Depending on the signature acquisition method used, automatic

ignature verification systems can be classified into two groups:

nline (dynamic) and offline (static). A static signature image is the

nly input to offline systems, while signature trajectory as a func-

ion of time is also available in online signatures. Main difficulties

n both tasks are simple (easy to forge) signatures and variations

mong a user’s signatures, but the dynamic information available

n online signatures make the signature more unique and more dif-

cult to forge. 
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Research databases define two types of forgeries: a skilled

orgery refers to a forgery which is signed by a person who has had

ccess to some number of genuine signatures and practiced them

or some time. In contrast, a random forgery is typically collected

rom other people’s real signatures, simulating the case where the

mpostor does not even know the name or shape of the target sig-

ature and hence uses his/her own for forgery. Random forgery

etection is a much easier task compared to skilled forgery detec-

ion. In this work, as in the literature, when the term “forgery” is

sed without further qualifications, it may refer to either a skilled

orgery or random forgery. 

Systems’ evaluation is often done in terms of the Equal Error

ate (EER) which is the point where the False Accept Rate (FAR)

nd False Reject Rate (FRR) are equal and occasionally in terms of

he Distinguishing Error Rate (DER), which is the average of FAR

nd FRR. 

While the use of the public signature databases has become the

orm in the last years, the databases do not always have strictly

pecified protocols. As a result, many reported accuracies cannot be

irectly compared with if they use a different (sometimes random)

ubset of the users; or a different number of reference signatures

using more helps the system as it provides more information); or

 different number of skilled forgeries. 

In this work, we present a state-of-the-art offline signature ver-

fication system that uses a fusion of complementary features, clas-

ifiers and preprocessing techniques, with the aim to explore the

imits in signature verification accuracy. 

http://dx.doi.org/10.1016/j.inffus.2016.02.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/inffus
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2016.02.003&domain=pdf
mailto:berkayyilmaz@sabanciuniv.edu
mailto:berrin@sabanciuniv.edu
http://dx.doi.org/10.1016/j.inffus.2016.02.003
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Our main contribution is the comprehensive study and treat-

ment of different aspects of offline signature verification, which are

fused at the end to form a state-of-the-art verification system, with

novel aspects including the following: 

• We propose an alignment algorithm that improves overall ac-

curacy by more than 2% on average. While alignment of test

images degrades overall performance, we have found that au-

tomatic alignment of references is when used with the global

classifiers. 
• We improve on the use of the well-known features and ap-

proaches by novel adaptations. (i) We use coarse-to-fine grids

for capturing a spectrum of global to local features when using

the histogram of oriented gradients (HOG) and local binary pat-

terns (LBP). (ii) We select the best LBP templates according to

term frequencies and combine similar LBP template histogram

bins to obtain a dense histogram. (iii) We use a novel scale in-

variant feature transform (SIFT) descriptor matching algorithm

that seeks more than one global transformation in order to al-

low different transformations in different parts of a signature. 
• We incorporate user-dependent and user-independent verifi-

cation concurrently. We apply a score level fusion to com-

bine classifiers with complementary feature types, where the

weights are learnt from a separate validation set. 

2. Literature review 

Offline signature verification is a well-researched topic where

many different approaches have been studied. A series of surveys

covering advances in the field are available [1–10] . Here, we review

some of the recent works, grouped according to focus areas. 

Note that while we give some performance figures for com-

pleteness, many of the reported numbers are not directly compa-

rable as they are obtained under different conditions (number of

reference signatures, use of skilled signatures etc.). We discuss this

issue in Section 6.6 . 

Feature extraction 

Several different features are used in offline signature verifica-

tion, especially local features such as SIFT descriptors, wavelet fea-

tures and LBP, among others. Solar et al. use SIFT descriptors in

conjunction with the Bayes classifier [11] . The performance is as-

sessed using the GPDS-160 signature dataset, with a 15.3% DER.

However, only a small subset of all skilled forgeries, and not the

full test set, is used for testing. 

Vargas et al. use complex features based on LBP to perform sta-

tistical texture analysis [12] . To extract second order statistical tex-

ture features from the image, another feature called the gray level

co-occurrence matrix method is utilized. The best combination of

features is reported to achieve an EER of 9.02% on the gray-level

GPDS-100 database, using 10 reference signatures. 

Different base classifiers 

Ferrer et al. [13] have evaluated the effectiveness of hidden

Markov models (HMMs), support vector machines (SVMs) and the

Euclidean distance classifier on the publicly available GPDS-160

database. When 12 genuine signatures and 3 skilled forgeries are

used in training the classifiers, the DER rates are found as 13.35%,

14.27% and 15.94% for the HMMs, SVM (radial basis function ker-

nel) and the Euclidean distance classifier, respectively. 

A comparison of probabilistic neural networks (PNN) and K-

nearest neighbor (KNN) is done by Vargas et al. [14] . Genuine

and skilled forgery signatures of each subject are divided into two

equal parts, resulting in 12 genuine and 12 skilled forgeries in train

set and the same amount in the test set. The results on the gray-

level GPDS-160 database are found to be close: the best results are
ound to be 12.62% DER with the KNN ( k = 3 ) and 12.33% DER with

he PNN. 

se of classifier combination 

There are quite a lot of studies on the effect of classifier combi-

ation in offline signature verification. In one of the earlier works,

ierrez-Aguilar et al. consider the sum rule for combining global

nd local image features [15] . One of the experts in this work is

ased on a global image analysis and a statistical distance measure,

hile the second one is based on local image analysis with HMMs.

t is shown that local information outperforms the global analysis

n all reported cases. The two proposed systems are also shown to

ive complementary recognition information, which is desired in

usion schemes. 

Receiver operating characteristic (ROC) curves are used for clas-

ifier combination by Oliveira et al. [16] . Different fusion strate-

ies to combine the partial decisions yielded by SVM classifiers

re analyzed and the ROC curves produced by different classi-

ers are combined using the maximum likelihood analysis. Authors

emonstrate that the combined classifier based on the writer-

ndependent approach reduces the FRR, while keeping FAR at ac-

eptable levels. 

An ensemble of classifiers based on graphometric features is

sed to improve the reliability of the classification by Bertolini

t al. [17] . A pool of base classifiers is first trained using only gen-

ine signatures and random forgeries; then an ensemble is built

sing genetic algorithms with two different scenarios. In one, it

s assumed that only genuine signatures and random forgeries are

vailable to guide the search; while simple and simulated forgeries

lso are assumed to be available in the second one. Different ob-

ective functions are derived from the ROC curves, for ensemble

uning. A private database of 100 writers is utilized for evaluation,

onsidering 5 genuine references for training and only skilled forg-

ries for testing. The best result is found as 11.14% DER using the

rea under curve optimization. 

Score level combination is examined for offline signature verifi-

ation by Prakash and Guru [18] . Classifiers of distance and orien-

ation features are used individually and in combination. Distance

eatures and orientation features individually provide 21.61% and

9.88% DER on the MCYT-75 corpus. The max fusion rule decreases

he DER to 18.26%, while the average rule decreases the DER to

7.33% when the weights are fixed empirically. 

Hybrid generative discriminative ensemble of classifiers is

roposed by Batista et al. to design an offline signature verification

ystem from few references, where the classifier selection process

s performed dynamically [19] . To design the generative stage,

ultiple discrete left-to-right HMMs are trained using a different

umber of states and codebook sizes, allowing the system to learn

ignatures at different levels of perception. To design the discrim-

native stage, HMM likelihoods are measured for each training

ignature and assembled into feature vectors that are used to train

 diversified pool of two-class classifiers through a specialized ran-

om subspace method. The most accurate ensembles are selected

ased on the K-nearest-oracles algorithm. The GPDS-160 database

s used to evaluate the system and 16.81% EER is reported using

2 references per user. 

An offline signature verification system using two different

lassifier training approaches is proposed by Hu and Chen [20] . In

he first mode, each SVM is trained with feature vectors obtained

rom the reference signatures of the corresponding user and ran-

om forgeries, while the global Adaboost classifier is trained using

enuine and random forgery signatures of signers that are ex-

luded from the test set. Global and user-dependent classifiers are

sed separately. Combination of all features for writer-dependent

VMs results in 7.66% EER for 150 randomly selected signers

rom the gray-level GPDS-300 dataset, using 10 references. The
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Fig. 2. Alignment example: (a) not aligned and (b) aligned reference and query. 
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riter-independent Adaboost using a combination of all features

esults in 9.94% EER for a random 100-person subset of the same

ataset, again using 10 references. 

Fierrez-Aguilar et al. give a comprehensive survey of different

usion strategies in the context of multimodal biometrics, but the

esults are also applicable to single modality combination [21] . Dif-

erent approaches are categorized as global fusion-global decision,

ocal fusion-global decision, global fusion-local decision, and lo-

al fusion-local decision. Adapted fusion and decision methods are

lso proposed in the same work, using both the global and local

nformation. 

In summary, among the systems that report accuracies on

killed forgery tests on the GPDS-160 database which is also used

n this work, the best DER is reported to be 16.81% with 12 ref-

rence signatures [19] . There are other systems that report lower

ERs; however we cannot fully compare our results with theirs

ecause they report DERs on slightly non-standard versions of the

ataset (a random subset of users) or with different testing pro-

ocols (e.g. with less skilled forgeries). Previous works that have

eported results on GPDS dataset are listed in Section 6 , following

ur proposed system described in Sections 3 –5 . 

. Preprocessing 

Signature images have variations in terms of pen thickness, em-

ellishments found in strokes, translation or relative position of

trokes, rotation, scaling even within the genuine signatures of the

ame subject. In order to gain invariance to such natural variations,

mages should be normalized before they are further processed. 

To compensate for large translation variations that would result

rom embellishments, we discard strokes that are far away from

mage centroid. This is done using a distance threshold which is

erived from the standard deviation of the coordinates of trajec-

ory points ( ≈ 3 σ ). 

To compensate for pen thickness variations, we find the upper

nd lower contours of the signature. Skeletonisation is another al-

ernative, but it loses some details, as can be seen in Fig. 1 . This
Fig. 1. Preprocessing (a) Original signature (b) Contour image (c) Skeleton image. 
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tep is found to be useful in feature types that use gradient infor-

ation (HOG), while features that use texture information, namely

BP and SIFT, are directly extracted from the image. 

For the effects of rotation, scaling and fine translation, we use

he following alignment procedure. Each query signature image Q

f a training user is aligned to each reference signature R i of that

ser, with the best scaling ( σ ), rotation ( θ ) and translation ( δ) pa-

ameters minimizing the distance between the query and reference

mage: 

rgmin σ,θ,δ{‖ Q 

i 
σ,θ,δ − R 

i ‖} , (1)

here Q 

i 
σ,θ,δ

is the transformed version of Q . 

We use the � 2 -norm of the difference between LBP features.

n fact, for faster alignment during testing, we apply all possible

ransformations to each enrolled reference R i , ahead of time and

pply the inverse transformation to Q with parameters 1/ σ , −θ
nd −δ. An example reference, query and aligned query are shown

n Fig. 2 . 

We use a small interval to search for best transformation: −2.5

o +2.5 degrees for θ , 0.8 to 1.2 for σ , −10 to +10 pixels for δ.

hese intervals seem to be enough as there are no significant align-

ent differences in the used database. Larger parameter intervals

aturally increase the cost of search and should be handled by

ore sophisticated methods such as iterative closest point (ICP) or

andom sample consensus (RANSAC) algorithms. 

Note that preprocessing that removes individual characteristics

e.g. signer always signs with a 20 degree slope) may lead to per-

ormance degradation in biometric systems. Furthermore, in align-

ent, a sufficiently similar forgery can be made very similar to a

enuine signature using a complex transformation such as a non-

inear scaling. In that case, the system should either incorporate

 cost measure reflecting the effort needed for alignment (e.g.

imilar to a dynamic time warping algorithm); or it should only

se simple transformations (e.g. scaling, rotation) within a limited

ange, as done in our work. 

In the proposed system, signature alignment is implemented

nly on the training phase of the global classifier, so as to obtain

eatures that are better aligned with the reference signatures. It

s experimentally observed that the alignment algorithm improves

erformance as reported in Table 3 , but alignment of test signa-

ures or alignment with user-dependent classifiers do not improve

he overall performance. 

. Feature extraction 

Feature extraction step reduces the dimension of original sig-

ature images while preserving and extracting the important
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Fig. 3. Log-polar grids, origin taken as the image center. 

Fig. 4. Log-polar grids, origin taken as the top-left corner. 
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information encoded in the image to distinguish between genuine

and forgery classes. We utilize a complementary set of features

that are commonly reported to be successful in the context of

offline signature verification, namely HOG, LBP and SIFT features.

After describing the grids where local features are extracted in

Section 4.1 , the features are explained in detail in Sections 4.2 –4.4 .

4.1. Grids in cartesian and polar coordinates 

In order to develop a system robust to global shape variations,

we extract features from local zones of the signature image. We

evaluated two different alternatives: 

Cartesian grids: First and most common choice of grids in

many works is the rectangular grids in Cartesian coordinates. The

grids may be overlapping to capture the signature at grid bound-

aries, or non-overlapping. We use overlapping grids which are

found to perform better. 

Log-polar grids: Another choice of coordinate system is the

log-polar coordinate system. If the registration point is selected as

the top-left point of the bounding box and the embellishments are

on the right, then the left parts of the two signatures align bet-

ter than the right. With this observation and at the cost of having

some redundant features, we decide to use multiple registration

points (center, top-left, top-right and so on) in the polar grid, to

reduce the effect of registration mismatches. 

Using multiple fixed registration points is motivated by the fact

that there are no reference points in signatures, unlike face (e.g.

eyes) or to some degree fingerprints (core point). The centroid or

center of mass can be used as a lesser alternative in registering

two signatures. Unfortunately, the location of both of these points

may show large variations due especially to large variations in em-

bellishment. Another alternative could be the use of Local Self-

Similarities (LSS) as proposed by Shechtman and Irani [22] to ex-

tract reference points for signature matching. However, LSS tends

to provide good matching results for texturally rich samples, which

is not the case for binary signatures. 

A sample signature divided into regions in log-polar space is

shown in Fig. 3 where the origin is taken as the image center.

Same signature with overlaid log-polar grids where the top-left

corner is used as the origin is shown in Fig. 4 . 

Hierarchical representation: Using a small number of grids

will result in features that are almost globally extracted, losing lo-

cation information. In contrast, using a large number of grids will

decrease the system’s ability to allow for small deformations. 
To eliminate the need for searching the ideal grid resolution, we

se a hierarchy of grids in increasing resolution and thus extract

oarse to fine features. In the top-level, the single grid corresponds

o the full image, while lower levels have increasingly more grid

ones. Features extracted from all levels are then concatenated at

he end, to form the final feature vector. 

Feature vectors: Once the grids are fixed, the feature vectors

re obtained by the concatenation of features extracted from each

rid zone. Using a fixed grid solves the problem of matching uni-

ormly scaled signatures; however embellishments such as those at

he beginning or end of a signature may significantly vary in loca-

ion, orientation and size, thereby significantly changing the global

hape of a signature. Our expectation is that with the use of mul-

iple registration points, at least some of the features will capture

imilarities between two signatures, even in the presence of such

mbellishments. 

.2. Histogram of Oriented Gradients 

We use the Histogram of Oriented Gradients (HOG) features

ntroduced by Dalal and Triggs [23] . The HOG features represent

he gradient orientation relative to the dominant orientation. They

ave been used before in offline signature verification by Zhang

24] . 

While computing the gradient orientation histogram, circular

hift normalization is done within the grid zone, to allow for rota-

ional differences of the strokes. Specifically, after finding the gra-

ient orientation at each point, we find the dominant gradient ori-

ntation and represent it at the first bin of the histogram. 

HOG features are extracted both in Cartesian and polar coordi-

ates, separately. 

.3. Local binary patterns 

Local binary patterns (LBP) form a powerful feature vector that

s proposed to capture texture in objects [25] . LBP is used in sev-

ral works and found to be suitable for offline signature verifica-

ion as well [12,26] . 

An important drawback of the original LBP method is the spar-

ity of the generated histogram; for example the size of the his-

ogram for a 3 by 3 neighborhood is 256. More importantly, many

f these patterns would never be seen on a small image sample.

hile there are many LBP variants proposed in the literature, there

re few works for LBP pattern selection. An example LBP histogram

election is used in color texture classification by Porebski et al.

27] . It consists in assigning a score to each histogram bin, mea-

uring its efficiency in characterizing the similarity of the textures

ithin different classes. 

There are also many works in literature to offer more com-

act histograms instead of pattern selection. In the work by Su-

atha et al. [28] , a special OR operator is implemented which takes

he Boolean OR function of symmetric neighbor pairs, claiming to

reserve more than 90% of information content while reducing the

BP code from 8 bits to 4 bits. Another work to compactly repre-

ent exponentially growing circular neighborhoods is presented by

äenpää and Pietikäinen [29] . Large-scale texture patterns are de-

ected by combining exponentially growing circular neighborhoods

ith Gaussian low-pass filtering. Then, cellular automata are pro-

osed as a way of compactly encoding arbitrarily large circular

eighborhoods. 

Because of the exponential growth of the size of the his-

ograms, it is not feasible to directly encode farther neighborhoods

ith closer neighborhoods. A novel way to jointly encode multi-

le scales is proposed by Qi et al. [30] . When each scale is en-

oded into histograms individually, the correlation between differ-

nt scales is ignored and a lot of discriminative information is lost.
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Fig. 5. Each 4-neighbor implicitly combines all combinations of diagonal neighbors 

in LBP-1 method. 
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Fig. 6. Neighbors with Chebyshev distance of 2 are shown in black, center pixel 

shown in gray. 

Fig. 7. Neighbors with Chebyshev distance 2 are sampled in 2 groups, each group 

having 8 pixels. 
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he joint encoding strategy can capture the correlation between

ifferent scales and hence depict richer local structures. Reported

esults show about 7% accuracy improvement over baseline multi-

cale LBP on texture recognition problems. 

In another work in this direction, Zhang et al. offer a multi-

lock LBP method [31] . Inspired from Haar-like features [32] , sim-

le averaging in multiple rectangular blocks is applied to come

p with 3 by 3 rectangular blocks of multiple pixels, each be-

ng treated like a single-pixel to calculate the conventional LBP

ode. This method is capable of taking farther neighborhoods into

ccount, while avoiding the exponential growth in the resulting

istogram. 

In this work, LBP features are extracted only in Cartesian coor-

inates. We utilized different LBP pattern selection alternatives, as

xplained below. 

.3.1. LBP-0 

We name the conventional LBP method for a 3x3 neighborhood

8-neighbors) as LBP-0. We extract LBP-0 features both globally

full image) and in finer grids in the Cartesian coordinates, in a

oarse-to-fine approach. This is the baseline LBP extraction method

hat is used in subsequent LBP pattern selection alternatives given

elow. 

.3.2. LBP-1 

LBP-0 results in a sparse feature vector since most of the pat-

erns are never seen in a given grid zone. Also after the hierarchical

rid placement, feature vector gets bigger, although the considered

eighbors are just the 8 neighbors in a 3 × 3 neighborhood. 

In the LBP-1 method, we make the system faster and con-

urrently improve the performance by separately considering the

atterns formed by the 4-neighbors ({South, North, West, East})

nd the diagonal neighbors ({North-East, North-West, South-East,

outh-West}), resulting in a feature vector of size 2 × 2 4 = 32 . This

ircularly symmetric grouping is inspired by the work of Ojala

t al. [33] . 

When computing the counts for the 4-neighbors’ patterns, we

mplicitly combine the counts of all different combinations of

iagonal-neighbors as don’t-care patterns , and vice versa. This is il-

ustrated in Fig. 5 where the gray pixels and all of their possible

6 combinations are combined into the histogram of each pattern

ormed by the 4-neighbors (the black pixels). 

.3.3. LBP-2 

In this method we take all patterns in LBP-0 and select the

est patterns explicitly. The selection criterion is based on the

ifference of the term frequencies ( �TF) of each pattern among

he genuine and forgery samples. The aim is to select those pat-

erns that occur more among the genuine signatures, as well as

hose that appear among the forgeries (e.g. patterns resulting from

esitation). 

To do this, we first compute the histogram H of all the LBP-0

odes over the whole image, separately for genuine signatures and

killed forgeries, using the training set (GPDS 161–300). Then we

ompute the �TF value for each LBP pattern p and select the first
2 patterns with the highest | �TF | values: 

T F (p) = H Genuines (p) − H F or ger ies (p) . (2)

Alternative pattern selections: To explore the effect of select-

ng the best patterns according to the delta term frequency cri-

erion, we generate two other features: i) by selecting the worst

2 patterns with the smallest | �TF | values and ii) by select-

ng the next best 32 patterns, denoted as LBP-2 min and LBP-2 n 32 ,

espectively. 

.3.4. LBP-2F 

Detecting LBP patterns on a larger window than 3x3 can be

seful, but the number of patterns grows exponentially with the

ize of the window. For instance, there are 2 24 patterns to be con-

idered in a 5x5 window. In order to take into account larger

eighborhoods, we decided to consider only the borderline pix-

ls of the considered window, in this variation. For instance in a

x5 window, only the patterns constructed by pixels that are 2-

hebyshev distance to the center are considered, ignoring the vari-

tions in the 3x3 center, as shown in Fig. 6 . 

Reducing the feature size: Even only with the borderline pix-

ls, there are 2 16 different patterns for a 5x5 window, which is dif-

cult to deal with in practice. In the literature, the generalized LBP

perator is derived on the basis of a circularly symmetric neighbor

et of a defined number of members, on a circle of radius R that

s designed to deal with this situation [33] . Neighbors in each of

hese circularly symmetric groups are completely independent and

t the end all of the neighbors are covered by different groups,

orming a basis. This LBP operator is previously applied to offline

ignature verification by Vargas et al. [12] . 

Similar to this work, we sample the pixels of 2-Chebyshev dis-

ance resulting in two groups of 8 pixels, as shown in Fig. 7 for

 5x5 window. Then, we select the best patterns for each group,

s explained in Section 4.3.3 . Pre-selected specific paths of Cheby-

hev distance 2 are also used in offline signature verification by

arkoula et al. [34] . 

Alternative pattern selections: To explore the effect of select-

ng the best patterns according to term frequency criterion, alter-

ative pattern selections LBP-2 F min and LBP-2 F n 32 are again consid-

red, as in Section 4.3.3 . 

Multiple Chebyshev distances: We repeat this process for

hebyshev distances of one, two and three, where there are

ne, two or three neighbor groups, respectively. Building individ-

al classifiers for each neighbor group, we obtain a total of 6

lassifiers, each one being an expert on completely independent
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Fig. 8. Example SIFT matches in (a) and (c), with the corresponding most voted 

transformations in (b) and (d). 

Table 1 

SIFT results with different usages. 

Method Rotation ( θ ) bins Translation (x,y) bins EER 

SIFT-MP 8 4 29 .12% 

SIFT-MR 8 4 25 .84% 

SIFT-TH 8 4 24 .09% 
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information. We then use the average of these 6 classifiers’ output,

to obtain the final output for the LBP-2F method. Hence the LBP-2F

method implicitly includes classifier combination. 

4.4. Scale invariant feature transform 

The Scale Invariant Feature Transform (SIFT) is a popular and

successful feature extraction method used in computer vision for

finding the correspondence between different views of an object

or detecting and recognizing objects/scenes. The SIFT descriptors

are extracted around local interest points and serve as distinctive,

scale and rotation invariant features [35] . 

While SIFT features are used for offline signature verification

previously [11,36] , we use both the conventional SIFT matching ap-

proach and a novel one that is found to be more suitable for offline

signature verification. In the second approach, we discretize the

SIFT transformations and compute a feature vector in the form of

a transformation histogram showing the most voted histograms by

matching points. The motivation is to allow for different transfor-

mations in different parts of the signature, to allow for non-linear

deformations. 

4.4.1. Conventional approach 

In the conventional SIFT keypoint matching, a common rigid

transformation can be found by voting for the most commonly

occurring rigid transformation between matching point pairs. Ex-

ample matches between two signature pairs are shown in Fig. 8 ,

where corresponding matches of the most popular transformation

bin are separately shown. 

In our first approach, we discretize the SIFT transformations in-

dicated by different matching points and analyze the number of

votes in the most popular transformation for deciding whether the

signature is genuine or forgery. 

The transformation parameters between two matching points

are found as follows. Assume that x 1 , y 1 and x 2 , y 2 are coordinates

of two SIFT descriptors to be matched. To find the transforma-

tion, we first find the normalized coordinates xn 1 = x 1 /w 1 , yn 1 =
y 1 /h 1 , xn 2 = x 2 /w 2 , yn 2 = y 2 /h 2 where w i and h i are the width and

height of image i . We find the translation in two dimensions us-

ing xd = xn 1 − xn 2 and yd = yn 1 − yn 2 . We then find orientations of

matches using θ = arctan ((y 1 − y 2 ) / (x 1 − x 2 )) . We quantize θ val-

ues into 8 bins, xd values into 4 bins, yd values into 4 bins; in total

128 bins. 

Since the number of matches will be higher for longer and

more complex signatures, we have to normalize the match counts

so that longer signatures are not easily matched due to the sheer

number of matches. We investigate two different normalization

methods. In the first normalization method called SIFT-MP , we sim-

ply consider the ratio of matches in the most voted transformation

( N h ) to the total number of matches. In the second normalization

method called SIFT-MR , we normalize N h with the average number

of matches among reference pairs ( N 

R 
h 

). Thus, SIFT-MR considers

the ratio of matched points in the most voted transform, to what

is observed among reference pairs. 

4.4.2. Handling non-linear alignments 

Signatures of a person often display large non-linear variations,

especially with signatures having extensive embellishments. With

these signatures, finding one global transformation to align them

is not sufficient. To handle such situations, we developed a novel

method which we refer as SIFT-TH . In this method, we use the

number of votes for all the transformation bins as a feature vec-

tor, resulting in a feature vector of the same size as the number of

the considered transformations (in our case 8 × 4 × 4 = 128 ). 

This novel representation is intended to address signatures

where two parts of a signature may undergo different transfor-
ations. For instance for the genuine signatures of a person who

igns his signature without any variability in the main body but a

ot of variation in the embellishing stroke, the transformation his-

ogram may show a consistent high match in one bin (no rotation

nd no translation) and a smaller match in one of the other bins. 

Finally, we train USVM classifiers described in Section 5.2 ,

here positive examples are collected by matching reference sig-

ature pairs and negative examples are collected by matching ref-

rences to random forgeries. 

For testing any of the three methods described above (SIFT-MP,

IFT-MR and SIFT-TH), we match the query to all the references

f the user and use the median match score (normalized match

ounts or match scores) as the final SIFT score for the query. 

Results given in Table 1 show the performance of three meth-

ds on the GPDS-160 dataset, using 5 genuine signatures as
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eference. As seen in these results, normalization based on refer-

nce set statistics (SIFT-MR) is the better normalization method,

ut the novel SIFT-TH approach outperforms the others. 

. Classification 

One can use both user-based and global classifiers in offline

ignature verification. Because user-based classifiers are trained to

iscriminate just a single person against others, they are reported

o be more successful [37] , as long as there are enough references

or each subject, to train the classifiers. 

Combining user-dependent and global verification systems have

een investigated before. For instance, Eskander et al. propose a

ybrid offline signature verification system, consisting of writer-

ndependent and writer-dependent classifiers that are used selec-

ively, instead of concurrently [38] . 

In our system, classification is performed using SVMs, where

wo different approaches are investigated, namely global and user-

ependent SVMs. The SVM classifier is found to be very successful

n signature verification literature [13,20,26,39–42] , in addition to

eports of their good generalization abilities in general. 

Both the user-dependent and global classifiers are trained with

BF kernels and parameters are optimized with grid search on a

eparate validation set (users 161–300 from the GPDS-300 dataset,

ho are not in the test set). The number of genuine signatures

sed as reference is set to 5 or 12, in-line with most previous re-

earch. For global SVMs (GSVMs), half of the users in the validation

et is used for training and the other half is used for testing. 

.1. Global SVMs (GSVM) 

A global (also called writer-independent or user-independent)

ignature verification system learns to differentiate between two

ypes of classes: genuine and forgery. The global classifier (GSVM)

n this work is a user-independent classifier that is trained to sep-

rate difference vectors obtained from genuine signatures of a user,

rom those obtained from (skilled) forgery signatures of the same

ser. 

To obtain the difference vectors, features obtained from a query

ignature (genuine or forgery) are compared to the features ob-

ained from each of the reference signatures of the claimed iden-

ity. The resulting difference vectors are then normalized so that

ach element of this vector represents how many standard devia-

ions away the query feature is from the reference feature, using

he standard deviation measured among the difference vectors of

 given query and references. 

More precisely, let { R 1 , R 2 , …, R N } be the feature vectors ex-

racted from the reference signatures of a particular user and let

 = [ q 1 . . . q M 

] be the feature vector extracted from a test signa-

ure, where N is the number of reference signatures and M is the

umber of features. Then, we compute N difference vectors for

ach query, where the i th difference vector is computed as: 

 

i = Q − R 

i = 

⎡ 

⎢ ⎣ 

(q 1 − R 

i 
1 ) / (σ1 + τ ) 

(q 2 − R 

i 
2 ) / (σ2 + τ ) 
. . . 

(q M 

− R 

i 
M 

) / (σM 

+ τ ) 

⎤ 

⎥ ⎦ 

(3)

here σ m 

is the standard deviation of the m th dimension of the

ifference vectors between query and claimed user’s reference sig-

atures i = 1 , ... , N. It is calculated as: 

m 

= 

√ 

1 

N 

N ∑ 

i =1 

((q m 

− R 

i 
m 

) − μm 

) 2 (4) 

here μm 

= 

1 
N 

∑ N 
i =1 (q m 

− R i m 

) and τ is a small constant to elim-

nate division by zero. By the help of this normalization, the dif-

erence vector represents how many standard deviations away the
uery feature is from the reference feature. It is possible to eval-

ate a given query even with one reference of the claimed user,

hich is especially advantageous in real life applications. Because

e have N difference vectors Q − R i obtained from each reference,

e have N classifier scores for each query. To get a final classifier

core, we calculate the average score. 

Note here that the SVM is learning which differences in the

eature vector may be within the normal variations of a user and

hich differences indicate forgeries. For instance, using global fea-

ures such as size, pixel density, width-to-height ratio, the SVM

earns how much variation in a particular feature matters. In the

ase of local features, the SVM can learn how to weight differ-

nces in the center compared to the periphery of the signature, for

nstance. 

We devote users 161–30 0 from the GPDS-30 0 dataset for the

SVM training, such that users of train and test sets do not over-

ap. Actually the users devoted for training could be selected from

 completely different database if appropriate image normalization

s applied. In testing, references of test users are just used to cal-

ulate difference vectors; while their remaining signatures are used

s queries. 

.2. User-dependent SVMs (USVM) 

In the second approach, we train one user-dependent SVM per

ser, with the expectation that the user-dependent SVM can bet-

er learn to differentiate genuine signatures of a person from forg-

ries. Each SVM is trained with the raw feature vectors obtained

rom the reference signatures of the corresponding user and those

btained by random forgeries (other users’ reference signatures re-

erved for training). Note that in this case, we do not need a sepa-

ate group of users for training as opposed to GSVM, since we only

se genuine signatures of others. 

.3. Classifier combination 

In general, classifiers may differ by changing the training set,

nput features and parameters of the classifier. In many problems,

core level combination of the classifiers using different represen-

ations is reported to perform better than feature level combina-

ion. 

We combine the classifiers of the features introduced in

ection 4 for user-dependent and user-independent (global) cases.

pecifically, for a single query signature, there are 7 score outputs

btained: HOG-Cartesian USVM, HOG-Polar USVM, SIFT USVM,

BP-Cartesian USVM, HOG-Cartesian GSVM, HOG-Polar GSVM, LBP-

artesian GSVM. A simple score level linear combination is used

o obtain the final score where the weight set is found empiri-

ally from a validation set. We have only used well-known fusion

ethod of averaging (with fixed and learned weight sets). How-

ver, the important contribution here is to show that we can ob-

ain error rates that are 8–15% points lower compared to the best

ingle feature classifier (using 5 references), either with USVMs or

SVM. 

. Experimental evaluation 

.1. Database and methodology 

The GPDS-300, a publicly available subset of the GPDS-960

ataset [43] is used to train and evaluate the system performance.

e perform evaluations on the GPDS-160 subset for testing in or-

er to be compatible with most of the recent works, while the re-

aining 140 subjects are used for training (GSVMs). 

In order to obtain results that are comparable to those re-

orted in the literature, we train classifiers using 5 or 12 reference
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Table 2 

USVM results (EER) with different features. 

Features (Grid hierarchy) 12 ref. 5 ref. 

SIFT-TH 20 .51% 24 .09% 

HOG-Cartesian 19 .54% 21 .36% 

HOG-Polar 16 .39% 18 .26% 

LBP-0 (global) 21 .30% 24 .18% 

LBP-0 15 .32% 17 .54% 

LBP-1 15 .01% 16 .94% 

LBP-2 15 .10% 17 .43% 

LBP-2 n 32 15 .78% 18 .16% 

LBP-2 min 21 .68% 22 .43% 

LBP-2F 11 .30% 12 .77% 

LBP-2F n 32 11 .16% 11 .20% 

LBP-2F min 9 .64% 11 .01% 

LBP-2F (fusion) 8 .75% 9 .13% 

Table 3 

GSVM results (EER) with different features. 

Features (Grid hierarchy) 12 ref. 5 ref. 

HOG-Polar 24 .00% 25 .41% 

HOG-Polar (aligned) 22 .35% 23 .87% 

HOG-Cartesian 20 .83% 26 .13% 

HOG-Cartesian (aligned) 20 .55% 23 .49% 

LBP-2 F (5x5, first group) 30 .25% 30 .32% 

LBP-2 F (5x5, first group, aligned) 26 .96% 26 .84% 

Table 4 

Equal error rates for classifier combination. 

Method 12 ref. 5 ref. 

All GSVMs, not aligned 17 .14% 20 .60% 

All GSVMs, aligned 18 .32% 20 .88% 

All USVMs (both HOGs, LBP-2F fusion, SIFT-TH) 7 .84% 8 .57% 

All USVMs and all GSVMs 7 .32% 8 .30% 

All USVMs and all GSVMs with precise weights 6 .97% 7 .98% 

Table 5 

Effect of varying reference sets. 

Method 5-fold EER 

HOG-Cartesian GSVM, aligned 21 .38% ± 2.13% 

HOG-Polar USVM 16 .33% ± 2.11% 

LBP-2 USVM 15 .40% ± 2.29% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Comparison of score level fusion and feature level fusion results. 

Method EER 

HOG-Cartesian (1) 21 .36% 

HOG-Polar (2) 18 .26% 

LBP-2 F (3x3) (3) 17 .43% 

LBP-2 F (5x5, first group) (4) 13 .47% 

LBP-2 F (5x5, second group) (5) 13 .76% 

Feature fusion of (1) and (3) 17 .43% 

Score fusion of (1) and (3) 16 .05% 

Feature fusion of (2) and (3) 18 .32% 

Score fusion of (2) and (3) 14 .42% 

Feature fusion of (4) and (5) 13 .61% 

Score fusion of (4) and (5), equal weights 13 .54% 
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signatures. However, we note that most real life applications in-

volve the use of 5 or fewer reference signatures. 

During testing, we use all genuine signatures of a user except

those that are used as reference; thus resulting in 12 and 19 gen-

uine tests per user for the cases of 12 and 5 reference signatures,

respectively. Since we do not use any skilled forgeries of test users

in training, all skilled forgeries of a user (30 of them) are used in

testing. 

We do not use any random forgeries during testing as they

are generally much easier to detect and using them together with

skilled forgeries basically amounts to averaging the performance

obtained with skilled and random forgeries. 

All results in Tables 2 –6 are reported as EER results on skilled

forgery tests, while we report DER results in Table 8 in order to

compare our work with previous works that do not provide EER

results. 

6.2. Results 

The USVM results are given in Table 2 , where all classifiers use

a hierarchy of coarse-to-fine Cartesian grids, except for the LBP-0

global method where the features are obtained globally. Consider-
ng these results, we see that LBP features are better than HOG

nd SIFT-TH features. Furthermore, for farther neighborhood cases,

he LBP-2 F min performs the best; while counter-intuitive at first,

his shows the discriminative power of rare LBP patterns exploited

ith the power of information fusion. We analyze the statistical

ignificance of these results in Section 6.5 . 

The GSVM results are given in Table 3 . Considering these

esults, we see that GSVMs obtain higher accuracies with HOG

eatures compared to LBP, in contrast to USVMs. However, the ac-

uracy results are significantly lower compared to the best results

btained with USVMs. This is not very surprising as the USVMs

re specifically trained for each user, while GSVMs only know

bout global (across all users) variations in each dimension. On

he other hand, GSVM improves the overall performance slightly

hen used in conjunction with USVMs, as shown later. 

The best grid method is not conclusive: the log-polar grid is

etter with USVMs while the Cartesian grid is better with the

SVM. 

Finally, classifier combination results are provided in Table 4 . As

ound in many studies in different fields, we also find that score-

evel combination of classifiers (using a weighted sum-rule) im-

roves overall accuracy. Specifically, using the best combination

ith weights that are learnt from a separate validation set, we

btain very low equal error rates: 6.97% and 7.98% EER using 12

nd 5 references, respectively. Precise weights are found by more

ensitive weight learning such that the discrete intervals used for

eight searching are kept smaller. 

While GSVMs contribute slightly to the USVM combination,

hey can have a significant role in applications where each user

nly have a few reference signatures or when re-training the sys-

em is not possible. 

The ROC curve for the best combined system is shown in Fig. 9

oth for 5 references and 12 references. Log-scaled values for x-

xis are used for all ROC curves for easier analysis. 

.3. Effect of varying reference sets 

As a sensitivity analysis of the selection of reference signatures,

e ran 5-fold cross validation tests, with results given in Table 5 .

n each fold, we selected a different subset of 12 genuine signa-

ures as reference and used the remaining ones as genuine test

amples. In all our other experiments, the first N genuine signa-

ures are chosen as the reference set, where N is the number of

eferences. 

The mean EER values reported with varying reference sets are

lose to the results given with the first 5 or 12 genuine signa-

ures used as reference. Furthermore, the relative performances of

he three methods remain unchanged. On the other hand, there is

 relatively high standard deviation, indicating that not only the

umber, but also the selection of reference signatures matters in

verall accuracy. 
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Fig. 9. ROC curve for the best system given in Table 4 . 

Table 7 

Confidence intervals for some of the main methods. 

Method Confidence intervals 

LBP-0 15 .63 ± 5.00% 

LBP-1 15 .00 ± 5.62% 

LBP-2 15 .31 ± 5.00% 

LBP-2F min 9 .69 ± 4.38% 

LBP-2F (fusion) 9 .07 ± 4.07% 

All GSVMs (not aligned) 17 .50 ± 5.63% 

All GSVMs (aligned) 18 .44 ± 5.94% 

All USVMs 7 .81 ± 4.06% 

All USVMs and all GSVMs (coarse weights) 7 .35 ± 3.91% 

All USVMs and all GSVMs (precise weights) 6 .88 ± 3.75% 

Feature fusion (2) and (3) 17 .50 ± 5.63% 

Score fusion (2) and (3) 14 .07 ± 5.31% 
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Fig. 10. ROC curves for score and feature level combinations: a) fusion of methods 

(1) and (3); b) fusion of (2) and (3); c) fusion of (4) and (5), defined in Table 6 . 
.4. Comparison with feature level combination 

Another common choice for information fusion is feature level

ombination. We have compared feature level fusion with score

evel fusion, for several pairs of features and corresponding clas-

ifiers, with results given in Table 6 . The results are obtained with

 reference signatures on the GPDS-160 dataset and the weights

or score level fusion are learnt from a separate set (GPDS 161–

00). ROC curves are provided in Fig. 10 for detailed analysis of

his comparison. 

We observe that score level fusion outperforms feature level fu-

ion. Furthermore, besides the performance advantage, score level

usion is easier to implement, requiring only a simple optimization

f the weights and can be parallelized. 

.5. Statistical analysis 

We report 95% confidence intervals for the main methods con-

idered in this work, in Table 7 . To obtain confidence intervals, we

rst use a Monte Carlo simulation of the balanced repeated repli-

ates method of Micheals and Boult [44] , as described in [45] . This

ethod samples the result of a single query from each user in one

rial and computes the confidence interval of the equal error rate

bserved in 10 0 0 such trials, similar to [46] . 

In addition, we performed statistical significance tests by con-

idering the results of paired trials that were used to obtain the

onfidence intervals. These analyses indicate that LBP-2F (fusion)

ethod is significantly better compared to LBP-0 and LBP-1 meth-
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Table 8 

Summary of recent results on GPDS dataset. 

Reference Method GPDS Set Training Testing DER 

Vargas et. al. [49] Wavelets GPDS-100 gray level 5 gen. + rand. forg. 19 gen. and 24 skl. forg. 14 .22% 

Vargas et. al. [12] Texture features GPDS-100 gray level 10 gen. + rand. forg. 14 gen. and 24 skl. forg. 9 .02% 

Hu and Chen [20] Writer indep., Adaboost GPDS rand − 100 gray level 10 gen. + rand. forg. 14 gen. + 30 skl. forg. 9 .94% 

Hu and Chen [20] Writer dependent, SVM GPDS rand − 150 gray level 10 gen. + rand. forg. 14 gen. + 30 skl. forg. 7 .66% 

Parodi et. al. [50] Graphomt. features GPDS rand − 130 13 gen. + rand. forg. 11 gen., 24 skl. forg., 4 .21% 

and simple forg. (not detailed) 

Bharathi and Shekar [42] Chain code histogram GPDS-100 12 gen. + rand. forg. 12 gen. + 30 skl. forg. 11 .4% 

Nguyen et. al. [40] SVM GPDS-160 12 gen. + rand. forg. 12 gen. + 30 skl. forg. 20 .07% 

Nguyen et. al. [51] Global features GPDS-160 12 gen. + rand. forg. 12 gen. + 30 skl. forg. 17 .25% 

Batista et. al. [19] EoCs GPDS-160 12 gen. + rand. forg. 12 gen. + 30 skl. forg. 16 .81% 

Eskander et. al. [38] Writer indep. classifier GPDS-160 12 gen. + rand. forg. 12 gen. + 30 skl. forg. 26 .73% 

Eskander et. al. [38] Writer dependent classifier GPDS-160 12 gen. + rand. forg. 12 gen. + 30 skl. forg. 22 .71% 

Proposed SVM GPDS-160 5 gen. + rand. forg. 19 gen. + 30 skl. forg. 7 .98% 

Proposed SVM GPDS-160 12 gen. + rand. forg. 12 gen. + 30 skl. forg. 6 .97% 
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ods; and the USVMs are significantly better compared to GSVMs ( p

≤ .05, two-tailed). 

When we consider 90% confidence intervals, the LBP-2F min re-

sults are also found to be significantly better compared to LBP-0

and LBP-1 results ( p ≤ .10, two-tailed). 

6.6. Comparison with state-of-the-art results 

For evaluation of our results, we give recent results on the GPDS

database in Table 8 . We note that most of these results are not di-

rectly comparable, as performance depend heavily on several fac-

tors: the used database (GPDS-100, GPDS-160, or some random

subset of the full database denoted with subscript Rand ); the num-

ber of reference signatures used in training (more references nor-

mally help with verification); the use of skilled forgeries in training

(some systems use none, while others may use a varying number);

and the image type (binary or gray-level). Nonetheless, we give re-

sults from the literature for context. 

This comparison set includes systems that use skilled forgeries

in training [13,14,47] , but we do not use any skilled forgeries in

training as the use of skilled forgeries is not really suitable for

real life applications. Also some systems use smaller subsets of the

GPDS database [12,20,42,47–49] , while we use the whole GPDS-

160 database. Finally, some systems utilize the gray-level version

of the database and benefit from the richer information present in

the gray-level image [12,14,20,47,49] , but our work is done on the

binary version of the database. 

In summary, our experimental evaluation protocol considers the

binary GPDS-160 with 12 genuine signatures as reference set and

without skilled forgeries in training. The best previous result with

this configuration is reported as 16.81% DER [19] . Our fusion results

that are directly comparable to this system are 6.97% and 7.98%

EERs with 12 and 5 genuine references, respectively. 

7. Summary and conclusions 

We present a state-of-the-art automatic offline signature verifi-

cation system based on HOG and LBP features extracted from lo-

cal grid zones. For either of the representations, features obtained

from grid zones are concatenated in a coarse-to-fine hierarchy to

form the final feature vector. Two different types of SVM classi-

fiers are trained to perform verification, namely global and user-

dependent SVMs. We also evaluate the fusion of classifiers and

show that fusion improves the overall verification performance and

that score level fusion outperforms feature level fusion. 

Using the definitions in [21] , our system can be defined as an

adapted classification, global fusion and global decision system. It

is experimentally shown that when enough training data (at least

5 genuine signatures and many random forgeries as the reference
et) is available, user-based classifiers are much more successful, as

reviously observed in literature, but user-independent classifiers

omplement them to improve performance. 

Obtained results are in par or better compared to those re-

orted in the literature for the GPDS database without using any

killed forgeries in training. 

. Future work 

While state-of-the-art in offline signature verification achieves

round 10–15% EER in various databases, the performance of

hese systems would be expected to be significantly worse with

ignatures collected in real life scenarios. In the future, systems

esearch needs to concentrate on increasing the robustness of

ystems towards larger variations encountered in real life (e.g. sig-

atures signed in smaller spaces, or in a hurry, or on documents

ith interfering lines). 

Another issue is to allow the system work well with less num-

er of references, such as three as is the case in many banking

perations or even with one reference. Importance of user-based

core normalization becomes significant with such extreme cases.

eveloping a simpler and better score normalization method is a

art of our future work. 

Measuring the complexity level of a signature can also help

ith many issues such as user-based score normalization or en-

orcing the strength of the signature. 
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