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Abstract
Delayed strokes, such as i-dots and t-crosses, cause a challenge in online handwriting recognition by introducing an extra
source of variation in the sequence order of the handwritten input. The problem is especially relevant for languages where
delayed strokes are abundant and training data are limited. Studies for handling delayed strokes have mainly focused on
Arabic and Farsi scripts where the problem is most severe, with less attention devoted for scripts based on the Latin alphabet.
This study aims to investigate the effectiveness of the delayed stroke handling methods proposed in the literature. Evaluated
methods include the removal of delayed strokes and embedding delayed strokes in the correct writing order, together with
their variations. Starting with new definitions of a delayed stroke, we tested each method using both hidden Markov model
classifiers separately for English and Turkish and bidirectional long short-term memory networks for English. For both the
UNIPEN and Turkish datasets, the best results are obtained with hidden Markov model recognizers by removing all delayed
strokes, with up to 2.13% and 2.03% points accuracy increases over the respective baselines. In case of the bidirectional long
short-term memory networks, stroke order correction of the delayed strokes by embedding performs the best, with 1.81%
(raw) and 1.72% (post-processed) points improvements above the baseline.

Keywords Online handwriting · Delayed strokes · Accented characters

1 Introduction

Online handwriting recognition is the task of interpreting
handwritten input, at character, word, or line level. The
handwriting is represented in the form of a time series of
coordinates that represent themovement of the pen-tip which
is captured by a digitizer equipment.

One of the well-known problems in online handwrit-
ing recognition domain is the so-called delayed strokes that
increase timing variations in online handwriting. A delayed
stroke is ‘a stroke, such as the crossing of a “t” or the dot of an
“i,” written in delayed fashion (not immediately after the cor-
responding character’s body).’Writers have different writing
practices as to when they write such strokes (right after the
character body or after the word is written), which cause
variations in the resulting sequence, which in turn degrades
recognition performance.
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As with other sources of variations, one option is to try
to remove the variation by putting the data in a canonical
form (e.g., reordering the strokes) or using large amounts of
data to represent all possible variations in the training data.
As large amounts of data are not always available, different
approaches to the problem have concentrated on reducing
the source of the variations. One suggested alternative is to
remove delayed strokes altogether, whichmay be suitable for
languages where delayed strokes are either not very common
or where words are not differentiated by such strokes. For
instance, accents are common in French, but words can still
be recognized to the large extent even if the accents were
removed. A recent variation of this approach uses the hat
feature to mark sampling points deemed to be associated
with the removed delayed strokes. Yet another alternative is
to try to embed the delayed strokes in the writing sequence in
a canonical order (e.g., always right after the corresponding
letter body is drawn). Finally, there are also systems that
try to overcome the problem by using only offline features
in order to gain invariance toward writing order variations,
while losing some or all of the timing information.
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Hidden Markov models (HMMs) have been the most
popular technique for online handwriting recognition until
recent years [15,16,21], to be surpassed by deep learning
techniques, especially in problems where large amount of
training data are available [10,22]. In particular, recurrent
neural networks (RNNs) and a special kind of RNNs—long
short-term memory neural networks (LSTMs)—have been
very successful in both online and offline handwritten and
machine-print recognition problems in recent years [11].
LSTMs are capable of learning long-range temporal depen-
dencies from unsegmented input streams, which makes them
suitable for sequence recognition tasks such as handwriting
recognition.

Despite the success of deep learning systems, HMMs
remain a viable alternative, especially when the computa-
tional resources are limited or in domains where training
data are not abundant or in hybrid systems together with
various kinds of artificial neural networks (ANNs) [17,23,
28,29]. A comprehensive survey of handwriting recognition
approaches is out of scope of this paper, but can be found in
[18,24,25].

While delayed stroke handling is used as a preprocessing
in some studies [5,11,17,22], very few studies report how
delayed stroke handling affects performance. Jaeger et al.
report 0.5% points improvements for English by identify-
ing and removing delayed strokes [17] using the hat feature.
Delayed strokes pose a big problem, especially in languages
writtenwithmany diacriticalmarks and accents (e.g., Arabic,
Farsi, Turkish). Ghods et al. report 6.8% points improvement
in Farsi, using reordering of delayed strokes with sub-word
models [7]. The most extreme improvement are reported by
Abdelaziz et al., where an increase from 2 to 92% is reported
with reordering of delayed strokes in Arabic. Authors report
that more than 60%of characters have delayed strokes or dia-
critical marks [2]. Note that if there is no special processing
for handling of delayed strokes, they can affect recognition
performance since the variability in the writing order trans-
lates into variability in the alignment of the input to the states
in the models.

This study proposes a new method for automatically
detecting delayed strokes and evaluates the effects of dif-
ferent delayed stroke handling approaches proposed in the
literature. The evaluation is done separately for English and
Turkish using hidden Markov models (HMMs) which have
been the main approach in recognizing handwritten text,
and Bidirectional LSTM (BLSTM) networks, which have
outperformed other methods on the problem of recognizing
unsegmented cursive handwriting recently.

We reviewexisting definitions for defining delayed strokes
and propose a new definition in Sect. 2. Then, suggested
delayed stroke handling alternatives from the literature are
given in Sect. 3. Section 4 describes the HMM and BLSTM
recognizers, and Sect. 5 presents experimental results, for

both theUNIPENdataset for English andElementaryTurkish
dataset for Turkish.

2 Delayed strokes

Astroke is a pen trajectory startingwith a pen-downpoint and
ending with a pen-up point. It can thus be a full character, a
part of a character or several characterswritten consecutively.
When a stroke is separated from the character body it belongs
to by one or more strokes, it is said to be ‘delayed.’ For
instance, the dot of an ‘i’ or the cross of a ‘t’ can be delayed,
when the dot or cross is not written immediately after the
corresponding letter body.

Delayed strokes occur in multi-stroke characters, but
not every multi-stroke character is written in delayed fash-
ion. For instance, uppercase characters are typically written
one character at a time; hence, even multi-stroke let-
ters (e.g., ‘E’) are not written with delay. In fact, each
script has different strokes that are typically written in
delayed fashion. These strokes can be either diacritical
marks or integral parts of characters. Hence, the delayed
stroke problem should ideally be examined for each lan-
guage/script.

An exact delayed stroke detection can only be done after
recognition, or more specifically after letter boundaries are
known, by considering those letter parts that arewritten sepa-
rately from the corresponding character bodies. For instance,
the dot of an ‘i’ is not considered delayed if it is written
right after the letter body, even though it involves a pen-up
movement with a backward move of the pen. Nonetheless,
there have been various definitions, such as calling all back-
ward moves after pen-up as delayed strokes, so as to detect
and handle delayed strokes automatically during preprocess-
ing.

Once such a working definition is at hand, the delayed
strokes can be detected and then handled according to a cho-
sen method, of which there are a few. In the remainder of
the paper, we use the terms ‘definition’ (to be consistent with
previous work) and ‘algorithm’ interchangeably, to refer to
the algorithm used to describe/detect delayed strokes auto-
matically.

Delayed strokes of Latin-based scripts can be investigated
in three groups: (1) those that are written spatially above
other strokes of the character, mostly without touching them,
such as i-dots, umlauts (pair of dots) or other similar accents
(e.g., accents grave and breve); (2) those that are written spa-
tially below other strokes of the character, with or without
touching them (e.g., cedilla and hook); and (3) those that are
spatially overlappingwith other strokes of the character, such
as crosses of ‘f,’ ‘t,’ ‘z’ and ‘x.’ Figure 1 shows some exam-
ples of characters with diacritical marks as delayed strokes
from the UNIPEN dataset.
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Fig. 1 Samples of characters with potential delayed strokes: a ‘i’ with dot, b ‘t’ with cross, c ‘ç’ and ‘ş’ with cedilla, d ‘ü’ and ‘ö’ with umlaut and
e ‘ğ’ with breve

2.1 Existing definitions

The definition given in the beginning of Sect. 2 [‘strokes
separated from the corresponding character body by other
stroke(s)’] is not very useful for automatically detecting
delayed strokes. There are other definitions in the literature
for delayed strokes, proposed in the context of automati-
cally detecting and handling them. For instance, [16] defines
delayed strokes as:

…strokes such as the cross in ‘t’ or ‘x’ and the dot in ‘i’
or ‘j,’ which are sometimes drawn last in a handwritten
word, separated in time sequence from the main body
of the character.

Another definition is given by [17] as:

…usually a short sequence written in the upper region
of the writing pad, above already written parts of a
word, and accompanied by a pen movement to the left.

Finally, [11] identify delayed strokes as:

…those strokes that are written above already written
parts, followed by a pen movement to the left.

In this work, wemake a newworking definition which can
be used for detection of delayed strokes. We start with the
minimal definition based on a backwards movement, which
expectedly marks too many strokes as delayed due to its very
general/simple description:

…anewstroke startingwith abackwards penmovement
from the last pen-up point.

Improving the minimal definition is possible through
incorporation of script-specific features such as absolute and
relative size and x- and y-position of the strokewith threshold
values learned from samples from the target script. Adding
more constraints increases detection precision for the cost of
increasing complexity of the definition.

In the next section, the minimal definition is expanded for
English to obtain the proposed definition. The new defini-
tion is learned automatically from the handwriting statistics
learned from the UNIPEN dataset. Specifically, a subset
of 1000 random words are marked manually for the pres-
ence and type of delayed strokes: Each sample is visually
inspected at stroke level and the strokes that correspond to a
dot or a cross of a character are marked, along with whether
they are ‘delayed’ or ‘regular.’

This 1000-word training set contains a total of 5124
strokes and a total of 816 dots and crosses that can be writ-
ten in delayed fashion. Of these 816 strokes, 332 are delayed
(225 i-dots and 107 t-crosses), while the rest (484) are not.
Overall, the number of non-delayed strokes is 4792. Details
of the UNIPEN dataset itself can be found in Sect. 5.1.

After generating the ground truth dataset, the decision tree
learning algorithm is used to minimize the delayed stroke
classification error, subject to some constraints regarding the
tree size.
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2.2 Proposed definition for delayed strokes in
English

The English script uses 26 letters from the Latin alpha-
bet. Parts of letters and diacritical marks can be written
in delayed fashion: dots for the letters ‘i’ and ‘j,’ bar-like
strokes (crosses) in ‘f,’‘t,’‘z,’ and ‘x,’ and diacritical marks
in borrowed words. Delaying dot-type strokes is very com-
mon, followed by crosses,while diacriticalmarks like accent,
umlaut and cedilla are used mostly in loan words like naïve,
café and façade.

We formulate a delayed stroke definition for English by
concentrating on dots and crosses, as they cover the over-
whelming majority of delayed strokes in English. Indeed,
all of the strokes that are delayed in the randomly selected
1000-word training subset of UNIPEN are either i/j-dots or
crosses.

We start with describing each stroke of a word in terms
of the following set of measurements which conveys infor-
mation about the shape of the stroke itself and its position
within the global context of the word it belongs to. In this
study, the baseline and corpus line refer to the baseline of
the text and the top of the lowercase letter bodies as in [17],
while midline and corpus height are derived from them as
the midpoint and height of the region between the two. The
new features are:

– positions w.r.t baseline, corpus line and midline: as per-
centage of sampling points lying above these lines

– height of bounding box/width of bounding box
– normalized height of bounding box : height/corpus
_height

– normalizedwidth of bounding box : width/corpus_height
– depth of the stroke: distance to the middle point from line
connecting two ends

– normalized stroke length: stroke_length/corpus_height
– stroke curvature : angle between lines connecting ends to
the middle point

After feature extraction, we train a decision tree classifier
using theCARTdecision tree learning algorithmand evaluate
its performance using tenfold cross-validation on the 1000-
word dataset.

As the data are highly unbalanced (332 delayed strokes
vs. 4792 regular strokes), random subsampling is applied
to regular strokes, so that the ratio of positive and negative
examples is 1/4. Also, a higher cost (x2) is set for the mis-
classification of the delayed strokes (false negatives). Class
prior probabilities are empirically determined from class fre-
quencies in the dataset. When the training is complete, the
full tree is pruned to keep the number of rules small, to make
the definition simple and for better generalization.

The resulting tree classifies a stroke in a given word as
‘delayed’ or ‘regular’ based on the features of that stroke. The
rules of the tree can be extracted, yielding a working defini-
tion for automatic detection of delayed strokes. In Algorithm
1, we present the procedure for detecting the delayed strokes
according to the new definition derived from the tree rules.

The threshold for backward movement, which is the dis-
tance skipped backwards over the last written letter, is set to
average character width. The number of characters is esti-
mated using a heuristic method given in [22], while the
baseline and corpus line are calculated by regression through
minima and maxima method as described in [11].

Input: W: A ”word” (a set of strokes)
S: A stroke in W

Output: Return True if S is a delayed stroke and False otherwise
Wend = x-coordinate of the last pen-up before S
Sbeg = minimum of the x-coordinates in S
height = normalized height of bounding box of S
Wch_width = average character width in W
Wc_line = y-coordinate of the corpus line of W
Wc_height = difference between y-coordinates of the corpus line
and the base line of W

if Wend -Sbeg ≥ Wch_width
AND 0.86% or more of points in S are above Wc_line
AND height < 1.45*Wc_height then

Return True;
else

Return False;
end

Algorithm 1: Proposed definition for detecting delayed
strokes (see above for definitions).

Based on the upper and lower regional characteristics of
strokes, a discrimination for the type is also made, by simply
considering whether there are points in the upper region of
the detected delayed stroke. Those with points in the upper
region are labeled as crosses, while others are considered
dots.

2.3 Detecting all dots and crosses

The newdefinition finds dots and crosses that are delayed, but
any subsequent handling of delayed strokes can potentially
increase variation in writing if all (delayed or not) dots and
crosses are not handled in the sameway. For instance,with the
approach of removing delayed strokes, someof the characters
will be stripped off the delayed parts while their counterparts
with non-delayed strokes are left intact.

In order to study this issue, we developed a new definition
for detecting all dots and crosses—whether they are delayed
or not—using the samedecision tree learning approach (with-
out enforcing a backward movement constraint), and using
the appropriate data (the 816 strokes corresponding to the all
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dots and crosses in the training dataset and randomly selected
3000 strokes from the rest). The procedure for detecting the
delayed strokes according to the new definition is shown in
Algorithm 2.

Input: W: A ”word” (a set of strokes)
S: A stroke in W

Output: Return True if S is a delayed stroke and False otherwise
height = height of bounding box of S
depth = depth of S
above_C = percentage of points above corpus line in S
above_M = percentage of points above

(baseline + corpus line)/2 in S

if above_M ≥ 87%
AND height < 1.9*corpus height
AND ((above_C ≥ 42% AND depth < 381)
OR (above_C < 42% AND height < 0.56*corpus height)) then

Return True;
else

Return False;
end

Algorithm 2: DetectAll: Definition for detecting all
(delayed or not) dots and crosses.

The performance of the three definitions (minimal, pro-
posed andDetectAll) is given in Table 1. As can be seen here,
the minimal definition based on the often cited backward
movement has a very high false positive rate (25.1%), while
the proposed definition has about 10.3% error rate (equal
false positive and negative). Detecting all dot and cross-like
strokes has a lower error rate; however, as it is computed over
all strokes (delayed or not), the absolute number of errors is
almost twice as much as the proposed method (297 versus
158).

Table 1 Accuracies of different delayed stroke definitions

Definition FN FP

1 Minimal 7.5% (25/332) 25.1% (301/1200)

2 Proposed 10.2% (34/332) 10.3% (124/1200)

3 DetectAll 2.6% (21/816) 9.2% (276/3000)

The type labeling is evaluated separately, following the
proposed definition. For the 298 (= 332 − 34) strokes that
are correctly detected as delayed stroke, type identification is
correct for 95.30%. On the other hand, out of the 34 missed
delayed strokes (not recognized as delayed), about 40% are
dot strokes and 60% are crosses.

3 Delayed stroke handling alternatives

There have been a variety of alternatives to address the
variations caused with delayed strokes, namely discarding
(removing) delayed strokes altogether; embedding delayed

Fig. 2 Detected delayed strokes (shown in red) are embedded as the
arrows indicate. Best viewed in color (color figure online)

strokes as if they are written after each corresponding char-
acter (also called reordering); and their variations.

3.1 Removal

In this approach, delayed strokes are identified and removed
before the recognition phase [1,3]. Here, the assumption is
that they are somewhat superfluous andmay not be necessary
for recognition. While this assumption may largely hold for
English, many more words may become indistinguishable in
the absence of dots and accents in certain languages, such as
Turkish and Arabic.

Information about removed delayed strokes can be used in
post-processing for lexicon reduction [1] and disambiguation
of similar word bodies [13]. While useful, the shortcoming
of these post-processing attempts is that the recognition pro-
cess itself cannot make use of the information about delayed
strokes. Also, there is a risk of removing correctwords during
lexicon reduction due to faulty delayed stroke detections.

3.2 Embedding

Another alternative to deal with delayed strokes is to embed
them in the writing sequence such that they are reordered
to appear after the corresponding letter. This reordering
normalizes the sequence to a canonical writing order and
thus reduces or removes sequence variations and extensions.
Embedding is illustrated in Fig. 2.

Some handcrafted rules are used for deciding attachment
points of delayed strokes in [5]. For Arabic, a vertical pro-
jection of detected delayed strokes is used in [4], while a
more complex approach of segmenting the word body into
strokes and sub-strokes to find correct projection locations
of delayed strokes is used in [2].

The main difficulty with embedding is to find the cor-
rect attachment points of delayed strokes, which can in
turn adversely affect recognition. For English, the rules are
designed for each type of delayed strokes separately. While
there is some difficulty in deciding attachment points for i-
dots, this is less of a problem for t-crosses.

In this study, for any stroke that is classified as an i-dot
by some detection mechanism, we first find the nearest local
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Fig. 3 Hat feature value is 1 for points lying below the delayed strokes
(in the pink rectangular area) and 0 for the rest (color figure online)

maximum of the y-coordinate among the subsequent points
(called nearest_max). Next, we find the first local minimum
of the y-coordinates of the points after nearest_max along the
x-axis (called nearest_min). The i-dot is attached right after
nearest_min by modification of the nearest_min as a pen-up
point.

As for the t-crosses, we utilize the observation that crosses
are in relation with letter bodies most of the time. If there are
any pen-up points lying under a t-cross-stroke and within
its x-coordinate range, the cross-stroke is attached right after
the one with the greatest x-coordinate. Otherwise, wemake a
sequential search for a convenient attachment position start-
ing from the point with greatest y-coordinate lying under
the t-cross. We stop the search when the next point in the
sequence has greater y-coordinate than the previous one. The
cross-stroke is inserted to its new position afterward.

3.3 Hat feature

In this approach, the delayed strokes are removed, but the
existing feature vector is expanded with a binary feature, to
indicate the location of the removed strokes [11,17,22]. The
binary feature takes on the value of 1 at locations that were
under a removed delayed stroke, and zero otherwise (see Fig.
3).

An alternative is to keep the original input and add the hat
feature to obtain an extended feature set. In this case, the hat
feature serves to highlight the presence of a delayed stroke
event.

3.4 Delayed strokes as characters

In this approach, delayed strokes are considered as special
characters in the alphabet [15,16,33]. Words which contain
characters that can be written in delayed fashion are repre-
sented with all the alternative forms (corresponding to the
possible writing orders) in the lexicon. For instance, if the i-
dot is represented with a ‘.’ and a cross is represented by a ‘-,’
then, the word ‘it’ has three possible spellings in the dictio-
nary: {i.t-, it.-, it-.}. While this seems like the best approach
in terms of not losing information or interferingwith thewrit-
ing order, it is not suitable for mid-to-large scale vocabulary
tasks, as the hypotheses space can grow dramatically.

3.4.1 Adding at the end

Anothermethod for handling delayed strokes ismoving them
to the end of the word such that they are appended to the
last sampling point of the word, in the order of appearance
in the writing order [7]. The main issue with this method is
that it is not suitable for sub-word-based recognition systems,
such as character HMMs, as it separates delayed strokes from
corresponding letter bodies with respect to time.

3.4.2 Removal and embedding hybrid

We have also tried a hybrid method of removing the i-dots
and embedding the t-crosses. This hybrid approach was due
to the observation that deciding on the correct position of a
dot and embedding it is difficult, as dots are not constrained
to be in a precise position with respect to the corresponding
letter body, while crosses are. Furthermore, while rare, some
writers omit writing dots altogether in certain languages, so
removing all i-dots may be beneficial, as it would make the
dotted and not dotted versions of the words match.

3.4.3 Definitions for different handling methods

We have made two extensions to the minimal definition
and presented the related detection procedures in Algorithm
1 (proposed) and Algorithm 2 (detection of all dots and
crosses). While each of them can be used with each han-
dling method, some are more suitable for particular methods
than the others. For a fair evaluation, it is important to detect
delayed strokes using the appropriate definition for the cho-
sen handling method. With this in mind, embedding and
hat feature approaches are evaluated by detecting delayed
strokes according to the proposed definition, while remov-
ing approach is evaluated by detecting delayed strokes using
both of the definitions. Stroke-type labeling can be of use
if character-specific heuristics will be used for finding the
attachment points.

4 Recognition systems

We used hidden Markov model and bidirectional long short-
term memory (BLSTM) classifiers that are trained from
scratch for each considered definition-handling method pair.

HMMs can be used for modeling strokes, characters or
words; in this work, we train HMM character models since
the model set increases with the size of the vocabulary in
case of word models and it is more convenient to use char-
acter models when there are not enough samples for each
word model. For training and recognition, we use the stan-
dard forward and backward passes and Viterbi decoding, as
explained in [26].
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The BLSTM systems can use unsegmented sequences of
varying lengths to indirectly model constituent characters.
We train the networks by truncated backpropagation algo-
rithm [30]. The letter probabilities that are output by the
networks are used by the Connectionist Temporal Classi-
fication (CTC) beam search decoding algorithm [8] with a
beam width of 100 and without a dictionary, for finding the
most probable output transcription.

4.1 Preprocessing

Slant and height normalization are applied for preprocessing,
to remove size and slant variations. Number of characters are
estimated as described in [22] for each word. Then, equidis-
tant resampling is performed at a 50 sampling points per
character rate.

Delayed stroke handling is done at this stage according to
the chosen definition and processing method.

4.2 Feature extraction

We use a set of 10 features that are summarized below. The
first 9 features are defined in [20], while the last one is newly
designed to distinguish among similar strokes by incorporat-
ing more neighborhood information. Together, the features
are capable of capturing important characteristics of writing
and many of them are used in previous studies.

– (1–2) delta: differences between the x- and y-coordinates
of the current and previous points;

– (3–4) sine and cosine of the angle between x-axis and the
line joining consecutive points;

– (5) curvature angle: the angle between the lines to the
previous and the next point;

– (6) vicinity linearity: average squared distance of each
point in the vicinity to the straight line from the first to
the last vicinity point;

– (7) vicinity slope: a pair of features such that cosine and
sine of the angle of the straight line from the first to the
last vicinity point;

– (8) pen-up/down: a binary feature showing whether a
sampling point is an up point (pen is lifted up here) or a
down point (pen is touching the writing pad);

– (9) normalized x: the x-position taken after high-pass fil-
tering (subtracting amoving average of 5 previous points’
x values from the current x).

– (10) distance to median y-value: for each point, distance
to the median y-coordinate value of the given sample
point sequence.

When the hat feature method is employed for delayed
stroke handling, the binary hat feature is used along with this
feature set.

4.3 Classifiers

We evaluate the delayed stroke detection and handling meth-
ods with HMM and BLSTM recognizers.

An HMM is built for each of the 52 characters in the
English alphabet with all upper and lowercase letters, all with
linear topology (self and next transitions) and 20 states per
character which is decided empirically. In the emitting states,
the observation probability distributions are estimated by 35
mixtures of Gaussian components.

The number of Gaussians is decided using an iterative
approach as suggested in [12].

Starting from an initial model with 3mixtures, the number
of mixture components is increased by one via splitting the
Gaussian distribution with the highest weight until no further
improvement was obtained on a validation set. The mean
vectors of resulting Gaussian distributions are defined as the
mean of the original one perturbed by plus or minus 0.2
standard deviations. After each split, the whole system of
models is trained for a particular number of iterations until
the next split. In our case, four iterations of training is applied
before the next splitting. The average total training time was
40 h.

Once trained, the character models are concatenated to
representwords. For system implementation, thewell-known
HTK software [14] is used.

The LSTM recognizer has two bidirectional recurrent lay-
ers (i.e., two forward and two backward) each with 100
LSTM cells without peepholes. The input layer size is 10 in
accordance with the features listed in Sect. 4.2 (except for the
hat featuremethodwhich has 10+1 = 11 features). There are
52 output nodes for the symbols in the English alphabet and
an extra node for the special blank symbol which is required
by the CTC loss function [9] that we used in our recognition
system. We utilize the open source, parallel implementation
of CTC by Baidu.1

An adaptive learning rate optimization algorithm, root
mean square prop (RMSProp) is used for minimizing the
objective function, with an initial learning rate of 0.001. The
networks are trained with mini-batches of 64 variable-length
sequences that are padded to the same length before they are
fed to the network. The training continues until no improve-
ment is observed in recognition accuracy of the validation
set for 10 epochs, and the best performing network is used
on the test set.

The whole system is implemented with the open-source
TensorFlow framework and the experiments are run on a
NVIDIA Quadro K4000 graphical processing unit (GPU)
card. Utilization of the GPU brings 7x improvement in train-
ing time (1.5 h per epoch on average) over training the

1 https://github.com/baidu-research/warp-ctc.

123

https://github.com/baidu-research/warp-ctc


E. F. Bilgin Tasdemir, B. Yanikoglu

network with a Intel c© Xeon c© CPU E5-2630 v2 2.60 GHz
CPU.

5 Experiments

We evaluate the effectiveness of different delayed stroke han-
dling approaches with both HMM and BLSTM recognizers.
The BLSTM networks are evaluated on 7300 samples from
a 3845-word lexicon.

The HMM systems are tested on the UNIPEN dataset for
changing lexicon sizes (3500-word and 1000-word lexicons),
in order to be comparable to previous work in the literature.
Later on, we also carry out the same experiments on a small
(9860-sample) dataset of Turkish, with a ∼ 2000-word lex-
icon, so as to see the results in a language where delayed
strokes are more prominent.

5.1 Dataset

There are a few standard online handwriting datasets
(IRONOFF [32], UNIPEN [31], IAMonDB [19]) that have
been widely used in handwriting recognition research. We
use isolatedword collection of theUNIPENdataset as it is the
largest publicly available collection with a large vocabulary.
The UNIPEN online handwriting database is a collection of
handwritten samples (containing sets of characters, digits,
words and texts), collected by a consortium of 40 compa-
nies and institutes over time. The whole collection consists
of a total of 5 million characters by writers from all around
the world, representing a wide variety of writing styles. The
number of words contributed by different writers is highly
unbalanced, ranging from less than 5 to more than 500. In
fact, more than 2000 writers submitted very small number
of words, specifically between 1 and 5, whereas there are 59
writers who contributed more than 400 words.

In this work, we use the isolated word collection (cat-
egory 6) of the current publicly available version called
train_r01_v07 training dataset. This collection contains
75,529 cursive or mixed-style words in total. The lexicon
size is 13,913 words, with separate upper and lowercase ver-
sions for some of the words.

There is no common standard for how to split theUNIPEN
data as training, test and development/validation sets. There
is a development release called devtest_r01_v02used in some
works [16], but it is not publicly available. Hence, different
works use different splits and thus report results on different
portions of the UNIPEN dataset, rendering them not directly
comparable.

In order to have reproducible and comparable results, we
had previously split the data randomly into 10 random but
similar subsets for tenfold cross-validation experiments and

made the splits public.2 Specifically, the subsets are roughly
equal in number of writers (∼ 320), number of samples (∼
7000) and size of lexicon (3500). The split also takes the
skewed contribution per writer distribution of the UNIPEN
(i.e., some with 1 sample and some with more than 400)
into account and maintains similar distributions in each of
the subsets. No writer appears in more than one subset, so
the evaluation is writer independent. Lexicons of the subsets
are not the same, but 1000-words were found to be shared
between 5 of the subsets.

5.2 Methodology

We use different experimental protocols for HMM and
BLSTM recognizers depending on the amount of data and
the required training times.

For the HMM systems on UNIPEN, two series of HMM
experiments are conducted with 3500-word and 1000-word
lexicons in order to be comparable to results with same lex-
icon sizes reported in the literature (Tables 2 and 3). We do
not use the tenfold cross-validation due to time complexity.
Instead, five subsets (set1, set2, set4, set5, set8) described in
5.1 and that contain a common set of 1000-words in their lex-
icons, are each used as the hold-out test set while the rest of
the 9 subsets are used for training. In the second set of exper-
iments with the 1000-word lexicon, the same test sets are
used, but they are reduced so that they contain only samples
of these 1000 common words.

For the HMM experiments using the Turkish data (Table
4), all of the UNIPEN dataset and the training set of the Ele-
mentaryTurkish dataset are used together for training. The
tests are conducted with the 2500 samples from a 2089-word
Turkish lexicon which constitutes the test set of the Elemen-
taryTurkish dataset.

For the BLSTM systems (Table 5), we randomly chose 2
of the 10 UNIPEN subsets for validation and testing, while
the others are used in training the networks. Specifically, set9
(319 writers, 3548 unique words, 7040 samples) is chosen as
the validation set and set7 (321 writers, 3845 unique words,
7300 samples) is used for testing the system performances.

Both HMM and BLSTM approaches are used together
with the following delayed stroke methods:

– (1) No handling: The recognition performance without
any delayed stroke handling is given as the baseline.

– (2) Removal of all delayed strokes: Delayed strokes are
detected and removed from the sample word.

– (3) Embed all: All of the delayed strokes, i.e., i-dot and
t-cross type delayed strokes, are reordered in time so that
they are repositioned after the corresponding letter body.

2 https://tinyurl.com/y7m3rv5w.
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Table 2 HMM results for the 3500-word task on UNIPEN, using five-
fold cross-validation

Handling method Definition Accuracy (%)

Baseline 81.01 ± 2.66

Remove all Proposed 83.02 ± 2.32

Remove dots—embed crosses Proposed 82.73 ± 2.35

Embed all Proposed 82.20 ± 2.82

Remove all DetectAll 80.79 ± 2.29

Hat feature, without removal Proposed 79.12 ± 2.66

Hat feature, with removal Proposed 79.07 ± 2.69

Table 3 HMM results for the 1000-word task on UNIPEN, using five-
fold cross-validation

Handling method Definition Accuracy (%)

Baseline 83.99 ± 3.75

Remove all Proposed 86.12 ± 3.03

Remove dots—embed crosses Proposed 85.44 ± 3.29

Embed all Proposed 85.08 ± 3.73

Remove all DetectAll 84.54 ± 3.15

Hat feature, with removal Proposed 82.76 ± 3.28

Hat feature, without removal Proposed 81.72 ± 4.14

Table 4 HMM results for the ElementaryTurkish dataset with a 2089-
word lexicon

Handling method Definition Accuracy (%)

Baseline 89.14

Remove all Proposed 91.17

Embed all Proposed 90.58

Remove dots—embed crosses Proposed 89.94

– (4) Remove i-dots, embed t-crosses as proposed in this
paper.

– (5) Binary hat feature representation of delayed strokes
with removal.

– (6) Binary hat feature representation of delayed strokes
without removal, but using extended feature representa-
tion (tested with the HMM systems only).

The handling methods are tested with appropriate defini-
tions to achieve their intended effect. Thus, embedding and
hat feature approaches are tested with detection according
to the proposed definition while removing method is tested
with detection using both the Proposed (Algorithm 1) and
DetectAll (Algorithm 2) definitions.

5.3 HMM results on UNIPEN

We report results obtained over 5 test subsets with the
3500-word lexicon in Table 2 and those obtained with the
1000-word lexicon in Table 3. According to these results,
removal of the delayed strokes using the detection method in
Algorithm 1 (proposed definition) performs best, with 2.01
and 2.13% points above the baseline of no special handling.
The second best approach is the hybrid method, followed
by embedding. All three methods are found to show statisti-
cally significant improvements over the baseline in the five
experiments, while the hat feature-based approaches resulted
in performance degradation. The statistical significance was
calculated using paired t-tests with results of the five sets of
experiments.

5.4 HMM results on ElementaryTurkish dataset

We evaluate different handling approaches in a small dataset
of Turkish text as well, in order to see their effectiveness on
a script with more diacritical marks.

The modern Turkish alphabet is based on the Latin alpha-
bet and differs from the English alphabet by the addition of
six more characters (‘ç,’ ‘ğ,’ ‘ı,’ ‘ö,’ ‘ş’ and ‘ü’) and omis-
sion of three others (‘q,’ ‘w’ and ‘x’). Delayed strokes pose
a serious problem in Turkish script due to increased number
of characters with diacritics. In this work, we treat the cedilla
in ‘ç’ and ‘ş’ as a t-cross as they are mostly attached to the
body and umlaut and accent breve in ‘ğ,’ ‘ ö’ and ‘ü’ as an
i-dot, as they are written disconnectedly and similar to a dot.

The ElementaryTurkish dataset that contains around 10K
samples of isolated words from a 2089-word lexicon of 1st
and 2nd Grade Turkish books, written by 113 different writ-
ers including children. We have made the dataset publicly
available.3

The train set includes 7360 samples from a 1950-word
lexicon by 79 writers, and the test set contains 2500 samples
from a 2089-word lexicon written by 34 writers in the test
set. The dataset split is designed such that the writers are not
overlapping. The training set lexicon is covered by the test
set lexicon.

Since the number of training samples of ElementaryTurk-
ish dataset is very small, we use UNIPEN training data and
Turkish data together for training. Specifically, models of
characters which are common for English and Turkish are
trained with both UNIPEN and ElementaryTurkish samples,
while the others are trained with relevant samples in the cor-
responding dataset.

For the sake of brevity, we evaluate only embedding,
removing and hybrid methods, as they performed the best
on UNIPEN data.

3 https://tinyurl.com/yc93rcf5.
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Table 5 BLSTMword recognition accuracies obtained by detecting delayed strokes according to the proposed definition, on 7300UNIPEN samples
from a 3845-word lexicon (see Sect. 5.2)

Handling method Validation raw (%) Validation post-processed (%) Test raw (%) Test post-processed (%) Best epoch

Baseline 39.76 69.40 42.79 74.40 125

Hat feature, with removal 41.69 71.76 44.46 75.84 125

Embed all 41.05 70.85 44.60 76.12 155

Remove all 38.92 69.17 40.38 73.74 120

Remove dots—embed crosses 39.20 69.21 42.04 75.08 135

Table 4 shows performances of the three methods on
the ElementaryTurkish dataset. Removal of delayed strokes
(detected according to the proposed definition) is again the
best method, with a 2.03% points improvement over the
baseline. Performances of embedding method and the hybrid
method are above the baseline by 1.44 and 0.8 points, respec-
tively.

5.5 BLSTM results on UNIPEN

In this section, we present the recognition results obtained
by the BLSTM networks, each of which uses a differ-
ent delayed stroke handling method, with delayed strokes
detected according to our proposed definition.

We report two types of results for each recognizer in terms
ofword recognition accuracy in Table 5 for the validation and
test sets. The first one is the accuracy of raw recognition result
that is obtained by the CTC beam search decoder without a
dictionary constraint. We use the raw recognition results in a
post-processing step to find the most probable word matches
in the test set lexicon. The second accuracy corresponds to
the recognition performance after the dictionary matching.

In the post-processing stage, we use PyEnchant, a Python
library for spell checking which use many popular spell
checking algorithms including Ispell, Aspell and MySpell.
For each string output by the recognizer, we search the pos-
sible matches in the lexicon of the relevant test set. The
nearest word is found using a slightly modified version of
the Ratcliff–Obershelp stringmatching algorithm [27] which
calculates the similarity of two strings as as twice the num-
ber of number of matching characters divided by the total
number of characters in the two strings.

According to the results in Table 5, stroke order correc-
tion of the delayed strokes by embedding performs the best,
with 1.81 (raw) and 1.72 (post-processed) percent points
improvements over the baseline (i.e., no special handling).
The second best approach is the hat featuremethod. The other
two approaches, removal and the hybrid method fail to excel
over the baseline.

5.6 Error analysis

We observe that different handling methods have different
shortcomings. Embedding delayed strokes for order cor-
rection is heavily afflicted with unaligned delayed strokes
which are observed to be of i-dots most of the time (Fig.
4a, b). Unusual writing styles which do not comply with
the heuristics for deciding attachment points are another
source of error (Fig. 4c). Also, incorrect type detection of
delayed strokes sometimes leads to incorrect repositioning
when type-specific embedding strategies are applied (Fig.
4d). Lastly, since this method always integrates dots and
crosses to character bodies, recognizers model such char-
acters with those strokes; consequently, they suffer from
omitted dots and crosses more than some other methods.
The main problem with removing delayed strokes method
is losing distinguishing information, which in turn leads to
confusion with other characters. Case errors are common
for all methods. If we do not count the case errors, scores
increase to 85.92% for the 3500-word task and 87.73% for
the 1000-word task.

5.7 Comparison with state-of-art

In this section, we give a summary of the previous results on
the UNIPEN data to give context and also to show that our
results are state-of-art level.

There are a limited number of studies on isolated word
recognition using the UNIPEN dataset. In one of the earlier
studies, Hu et al. [16] use a two-stage delayed stroke mod-
eling combined with N-best decoding for large vocabulary
tasks. For testing, they use a subset of devtest_r01_v02 that
include more than 1500 samples from 100 writers which are
not in the training set and report recognition rates of 90.5%
and 87.2% for 1000- and 2000-word lexicons, respectively.
Unfortunately, these test sets are not publicly available.

Marukatat et al. use neural networks (NNs) to predict the
emission probabilities in a hybrid system combining HMMs
with NNs [23]. They train the systemwith 30Kwords by 256
writers from UNIPEN dataset. They do not give particulars
of their test set, but report 80.1% and 77.9%word recognition
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Fig. 4 Examples for sources of error with resulting incorrect embed-
dings: a, b unaligned delayed strokes; c unusual writing style; d
incorrect type detection. The original writings are given in the first
column

rates for multi-writer and writer-independent (omni-writer)
recognition tasks, respectively, with a 2000-word lexicon.

Gauthier et al. also use a hybrid approach, with the
combination of an online HMM-NN and an offline HMM
system [6]. Using 40K words written by 256 writers from
UNIPENdataset for training, the combined classifier is tested
on parts of a 1K sample set written by the same training set
writers, all chosen from lowercase words. They report a 87%
recognition rate with a 1500-word lexicon, which decreases
to 79% when the lexicon size is increased to 10,000 words.

Our average best result with the 1000-word lexicon
(86.12%) by the HMM approach is in accordance with what
has been reported on the UNIPEN database before, using
similar size lexicons.

To the best of our knowledge, there have been no previous
studies that apply a deep learning method on the UNIPEN
dataset. In this work, we present the first results obtained by
using BLSTM networks with UNIPEN word collection. Our
best system achieves 76.12% word accuracy with the 3845-
word lexicon test set with no dictionary constraint during
decoding.

However, none of the results reported so far are directly
comparable, as they have been obtained using different sub-

sets of the UNIPEN databases or different conditions (e.g.,
writer-independent vs. multi-writer) or different test sample
selection procedures. In this work, we have split theUNIPEN
dataset into writer-independent subsets randomly to avoid
any biases. Also, we have used larger test sets in terms of
both number of samples (3.5–4K for the 1000-word test) and
number of writers for more reliable evaluation.

5.8 Evaluating the proposed definition

We conduct another set of experiments in order to measure
to which extent errors in the proposed detection algorithm
affect the recognition performance with different handling
methods. For this, we compare the accuracies obtained when
detecting delayed strokes with the proposed delayed stroke
definition versus ground truth (manual) labels, using the
1000-sample dataset where delayed strokes are manually
labeled (see Sect. 2.1). Specifically, we measure the perfor-
mance of the five previously trained classifiers from Sect.
5.3 on the 1000-sample dataset, excluding the samples over-
lapping with the test and training subsets for an unbiased
testing. As a result, 503 test samples from a 428-word lexi-
con are tested in total out of the 1000 samples.

The results are given in Table 6 along with the recognition
accuracies when the proposed definition is used for detection
of delayed strokes. As seen in this table, different handling
approaches achieve very similar scores with both the ground-
truth labels and the proposed definition. Furthermore, the
removal of delayed strokes performs the best on the chosen
test set,with both the ground truth and the proposed definition
as well. The results are higher than those found in Table 3,
due to the smaller test set and the variations in UNIPEN.

A perfect detection is of course not possible without first
recognizing the input. However, our proposed working defi-
nition appears to be a viable solution to automatically detect
delayed strokes, considering the very small differences from
those obtained with the ground truth.

It should be noted that for this experiment, each HMM
system is trained with samples where the delayed strokes are
detected according to the proposed definition and handled
according to the considered handling method. For a fully
unbiased evaluation, the recognition systems should have
been trainedwith the ground truth detection aswell. Unfortu-
nately, its too labor-intensive to label all of the samples in the
UNIPEN dataset manually as we did for the selected 1000
words. So, the additional results we provide in this section
may be taken with some caution as they may contain some
bias toward the proposed definition.

5.9 Discussion

We make a set of observations based on the results of exper-
iments and analysis of error cases.
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Table 6 Comparison of the perfect (manual) detection and detection according to the proposed definition, for different handling approaches

Handling method Perfect detection Detection according to the proposed definition

Baseline (no handling) 89.53 ± 2.95 89.53 ± 2.95

Remove all 90.58 ± 4.23 90.24 ± 4.90

Remove dots—embed crosses 90.32 ± 4.03 88.19 ± 3.23

Embed all 88.57 ± 3.52 87.09 ± 4.77

Hat feature, with removal 87.40 ± 3.18 88.15 ± 3.94

Performance shows the average accuracy with the 5 previously trained HMMs on 503 UNIPEN samples from the 1000-sample UNIPEN subset
(see Sect. 5.8)

– Removal, embedding and their hybrid, all perform
better than baseline, for both English and Turkish
with the HMM approach, while removal and hybrid
removal approaches lead to performance degradation
with BLSTMs.We can conjecture that BLSTMs can deal
with delayed strokes sufficiently well so that a drastic
measure such as the removal of delayed strokes harms
the performance.

– With the HMM systems, removing all delayed strokes
performs the best for both English and Turkish. This is
a surprising finding for Turkish, since diacritical marks
help differentiate betweenmany similar words in Turkish
(e.g., ‘ol’ vs. ‘öl’; ‘oldu’ vs. ‘öldü’). On closer inspection,
we found that recognition performance is not affected by
collisions between similar words since such collisions
did not occur in the small lexicon; however, 303 of the
1442 test words would collide with a larger lexicon of
50K words.
Furthermore, extra Turkish characters become the same
as their diacritic-free counterparts in English (e.g., ‘ö’
becomes ‘o’ and ‘ç’ becomes ‘c’) with the removal
methods. Considering this, we have used the character
models trained with both UNIPEN and ElementaryTurk-
ish datasets with the removal methods, rather than the
ones trained with the latter one only. The use of the larger
training data can also be a factor in the higher perfor-
mance of the removal method for Turkish.

– The relatively lower success of the embedding approach
with HMM systems can be attributed to faulty deci-
sions at choosing the attachment point when relocating a
delayed stroke. However, the BLSTMs can capitalize on
the order-corrected strokes, even if the attachment points
are not precisely found. While RNNs are able to learn
long-range dependencies, reordering the delayed strokes
such that they are closer to their corresponding letter bod-
iesmay havemade it easier to associate these strokeswith
their corresponding letter bodies.

– The hat feature approaches which were used in a number
of studies [11,17,22] and were reported to bring a small
(0.5%) improvement [17], are observed to underperform
the baseline for English and subsequently not tried for

Turkish inHMMsystems.However, theBLSTMsystems
benefit from the hat feature considerably.

– The deep learning techniques are shown to be superior
to HMM systems in online handwriting recognition task
[10,11,22]. In this work, the best HMM system achieves
better results (83.02%, Table 2) than the best BLSTM
system (76.12%, Table 5). However, it should be noted
that these systems are not directly comparable since the
experimental settings including the training and test set
sizes and the lexicons are not the same for them. More
importantly, the BLSTM systems do not benefit from any
dictionary constraint during the decoding phase.

– According to the results in Table 5, the number of training
epochs of aBLSTMnetwork increases as the handwriting
signal contains more information, which is as expected.
Unlike HMMs, network performances decrease as the
signal is overly simplified by the removal of some or
all of the delayed strokes. This can be explained by
the capability of deep networks in capturing long-term
dependencies.

6 Conclusions

While delayed strokes are known to cause difficulties in the
recognition of online handwriting, there has been no work
comparing different alternatives that are suggested in the lit-
erature, to the best of our knowledge. Also, very few studies
report how delayed stroke handling affects performance indi-
vidually.

In this work, we provide a comprehensive evaluation of
the techniques mentioned in the literature, for two of the
most common handwriting recognition approaches (HMMs
and RNNs) and for two languages (English and Turkish).
Our contributions are as follows: (1) We develop and eval-
uate a working definition for detecting delayed strokes. (2)
We evaluate delayed stroke handling methods suggested in
the literature for their effectiveness in English and Turkish
text with HMM and BLSTM systems. (3) We present repro-
ducible results that are comparable to the state-of-the-art
results on the well-knownUNIPEN dataset. (4)Wemake our
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online handwritten word dataset for Turkish publicly avail-
able.

The best delayed stroke handling method achieves around
2% points improvement over the baseline in various tasks.
However, the difference between the best and the worst
method can exceed 4% points. We believe that this large
difference among viable alternatives shows the importance
of choosing the appropriate method for the task at hand.

Weobserve that delayed strokes have an impact in recogni-
tion performance with both the conventional HMM systems
and the BLSTM networks of the deep learning approach, but
the most effective handling method differs for each tech-
nique. While all preprocessing alternatives improve over
the baseline for HMMs (for both languages), removal and
the hybrid removal result in performance degradation in
BLSTMs, for which we believe removal is too harsh a strat-
egy.Also considering that removalwouldperformworsewith
large lexicons, we suggest to use the embeddingmethod with
HMMs and the hat feature with LSTM approaches, for large
vocabulary tasks in English or Turkish.
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