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A B S T R A C T

We use deep convolutional neural networks to identify the plant species captured in a photograph and evaluate
different factors affecting the performance of these networks. Three powerful and popular deep learning
architectures, namely GoogLeNet, AlexNet, and VGGNet, are used for this purpose. Transfer learning is used to
fine-tune the pre-trained models, using the plant task datasets of LifeCLEF 2015. To decrease the chance of
overfitting, data augmentation techniques are applied based on image transforms such as rotation, translation,
reflection, and scaling. Furthermore, the networks' parameters are adjusted and different classifiers are fused to
improve overall performance. Our best combined system has achieved an overall accuracy of 80% on the
validation set and an overall inverse rank score of 0.752 on the official test set. A comparison of our results
against the results of the LifeCLEF 2015 plant identification campaign shows that we have improved the overall
validation accuracy of the top system by 15% points and its overall inverse rank score on the test set by 0.1 while
outperforming the top three competition participants in all categories. The system recently obtained a very close
second place in the PlantCLEF 2016.

1. Introduction

Automated plant identification is concerned with the classification
of photographed plant organs into botanical species, using machine
learning algorithms. The problem faces a number of challenges due to
inter-class similarities within a plant family and large intra-class
variations in background, occlusion, pose, color, and illumination.

Deep learning architectures have been popular and able to achieve
significant success in many problems in recent years [1–4]. Contrary to
traditional machine learning methods in which features are chosen
manually and extracted through instructed algorithms, deep learning
networks automatically discover increasingly higher level features from
data [5]. These networks, through utilization of large amounts of data
and exploitation of parallel architectures with high-performance com-
puting techniques, are able to overcome obstacles that were previously
associated with shallow networks.

Training deep neural networks that contain millions of parameters
requires massive amounts of data in the order of millions of samples, in
order to properly constrain the optimization. The need for large
amounts of data and high computational resources to train these
networks from scratch steer researchers to adapt pre-trained networks
to a desired task domain by means of fine-tuning with the domain-

specific data [6–8]. This approach is a form of transfer learning, which
aims to apply knowledge learned from a problem to another, different,
but related problem [9,10].

There are two ways to apply transfer learning with deep networks.
One possibility is to utilize the pre-trained network with the learned
weights to obtain features that would be subsequently used in the new
problem. Here, the outputs of the network, prior to the last fully-
connected layer, constitute features of interest. Another option is to
fine-tune the network weights by training the network with the new
dataset. In this case, the number of nodes at the output layer must be
modified to match the number of classes in the new problem.
Furthermore, in both scenarios, the data must match the input size
of the pre-trained network.

Choosing between these two options depends on the size and
similarity of the new dataset to the original one used for pre-training.
In general, fine-tuning the entire network is only suggested when the
new dataset is large enough; otherwise, there would be concerns about
overfitting especially within the earlier layers of the network. Since
these layers extract generic, low-level features such as edges and color
blobs, they do not change significantly and can be utilized for several
visual recognition tasks [11]. In contrast, the later layers of the network
gradually become tuned to the details in the problem and extract high-
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level features of the data. These layers are thus problem-dependent and
more likely to change during fine-tuning as they are closer to the output
layers which receive larger back-propagated error differentials.

In this paper, we describe a state-of-the-art plant identification
system based on deep learning, for recognizing the plant species in a
given unconstrained photograph. For this purpose, we fine-tune pre-
trained deep convolutional neural networks of AlexNet [3], GoogLeNet
[12], and VGGNet [13] using the LifeCLEF 2015 plant task dataset
[14].

Our contribution is two-fold. First, we have developed a state-of-
the-art solution for automated plant identification from unconstrained
plant photographs with validation accuracies of 76.87% and 78.44%
using individually optimized and fine-tuned models of GoogLeNet and
VGGNet, respectively, and an overall accuracy of 80.18% using a score
level fusion of these two deep networks. The resulting system improves
the validation accuracy of the winning plant identification system of
LifeCLEF 2015 by a wide margin of 15% points and its inverse rank
score by 0.1. Also, a slightly more fine-tuned version of this system
ranked a very close second in the main category of PlantCLEF 2016,
where the identification is based on multiple images, and the first in the
single-image based identification [15].

Second, beyond a mere application of deep learning to plant
recognition, we provide an in-depth performance evaluation of the
critical factors affecting the fine-tuning of pre-trained models; specifi-
cally iteration size, batch size, and data augmentation. Our findings
determine the relative significance of each of the aforementioned
variables on performance, thus paving the way for more optimal
utilization of valuable computational resources. We believe this would
be of interest to researchers who choose to fine-tune pre-trained
systems for other similar problems.

The rest of this paper is organized as follows. Section 2 starts with
an overview of related work and is followed by Section 3 which covers
details of the three deep learning models under study, i.e. AlexNet,
GoogLeNet, and VGGNet. Section 4 presents the proposed method for
data augmentation, fusion, and parameter adjustment using deep
learning models. Section 5 is dedicated to the conducted experiments
and their results. Finally, Section 6 wraps up the paper with a
discussion of our major findings.

2. Related work

Up until about a decade ago, the majority of earlier studies on plant
identification from photographs were mostly concerned with acquisi-
tion, preprocessing, feature extraction, and supervised learning from
isolated leaf images [16]. Since color information is not a highly
discriminative feature in this context, the proposed methods for leaf
recognition have frequently utilized shape analysis [17–22], texture
analysis [23–26], and venation analysis [27–29]. In addition to leaf
recognition, a number of studies in that period have addressed the
problem of identifying plants from flower images [30,31].

The early years of the Conference and Labs of the Evaluation
Forum's (CLEF) plant identification contests had been rather focused
on the feasibility of the problem at hand, with limited datasets under
study. Following their success, the goal shifted rapidly towards fully
automatic plant identification from unconstrained photographs, re-
quiring high levels of robustness against varying illumination condi-
tions, viewpoints, scale, and capacity to deal with a variety of plant
organs. These campaigns, that have been organized as ImageCLEF [32]
and LifeCLEF [33], are devoted to promoting and evaluating multi-
lingual and multimodal information retrieval systems. Plant identifica-
tion campaigns held by CLEF is the most well-known annual events
that benchmark content-based identification of plant species using
real-world plant datasets–including images from leaves, branches,
stems, flowers, and fruits–with a large number of samples.

During the early CLEF campaigns between 2011 and 2013, the
submitted systems applied a variety of generic feature extraction and

classification approaches, typically using Support Vector Machines and
Random Forests as classifiers. The steady but slow performance
progress changed drastically in 2014 when participants started explor-
ing deep neural networks. The winner of the LifeCLEF 2014 plant
identification task [34] was the only participant in that campaign who
utilized a deep learning based method, training AlexNet [3] from
scratch to classify 500 plant species. This method was able to outper-
form all the fellow participants with a great margin. Following this
successful achievement and the new developments in deep learning,
the 2015 campaign was performance-wise dominated by deep learning
based systems [35–37] that relied on fine-tuning the pre-trained
GoogLeNet model [12] against 1,000 species.

A look at the results obtained by the different methods submitted to
the plant identification tasks of CLEF campaigns immediately reveals
that fine-tuning deep learning methods clearly outperforms the pre-
viously employed strategies. This observation on the fine-tuning of
deep neural networks is by no means limited to the problem of plant
identification. For example, [6] transferred the learned weights of
AlexNet from object recognition to scene recognition using a dataset of
over seven million labeled scene images. Likewise, the approach in [7]
fine-tuned AlexNet weights to extract features useful for categorizing
urban tribes and [8] retrained GoogLeNet and VGGNet to design very
deep, two-stream networks for action recognition in videos.

3. Deep learning models

We have evaluated the performance of the following three powerful
architectures of deep neural networks for the plant identification
problem.

3.1. AlexNet

The model proposed in [3] is a deep convolutional neural network
successfully trained on roughly 1.2 million labeled images of 1,000
different categories from the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) dataset [38]. As the winner of ILSVRC 2012, the
AlexNet architecture has about 650,000 neurons and 60 million
parameters. It includes five convolutional layers, two normalization
layers, three max-pooling layers, three fully-connected layers, and a
linear layer with Softmax activation in the output. Moreover, it uses the
dropout regularization method [39] to reduce overfitting in the fully-
connected layers and applies Rectified Linear Units (ReLUs) for the
activation of those and the convolutional layers.

3.2. GoogLeNet

Inspired by the network-in-network approach [40], GoogLeNet is
an inception architecture [12] that combines the multi-scale idea and
dimension reduction layers based on the Hebbian principle and
embedding learning. This enables one to increase the width and depth
of the network for an improved generalization capacity per a constant
computational complexity.

More specifically, GoogLeNet, the winner of ILSVRC 2014, pos-
sesses roughly 6.8 million parameters with nine inception modules,
two convolutional layers, one convolutional layer for dimension
reduction, two normalization layers, four max-pooling layers, one
average pooling, one fully-connected layer, and a linear layer with
Softmax activation in the output. Each inception module in turn
contains two convolutional layers, four convolutional layers for dimen-
sion reduction, and one max-pooling layer. GoogLeNet also uses
dropout regularization in the fully-connected layer and applies the
ReLU activation function in all of the convolutional layers.

During training, GoogLeNet connects two auxiliary classifiers to the
intermediate layers of the network to effectively perform backpropaga-
tion through all the layers. In other words, this network adds auxiliary
losses to the total loss to make the earlier stages more discriminative
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and increase the backpropagated gradient. The additional classifiers
include one average pooling layer, one convolutional layer for dimen-
sion reduction, two fully-connected layers, and a linear layer with
Softmax activation.

3.3. VGGNet

As the first runner-up in ILSVRC 2014, VGGNet [13] uses a
homogeneous architecture to investigate the effects of increased
convolutional network depth on performance. The largest VGGNet
architecture involves 144 million parameters from 16 convolutional
layers with very small receptive fields (3 × 3), five max-pooling layers of
size 2 × 2, three fully-connected layers, and a linear layer with Softmax
activation in the output. This model also uses dropout regularization in
the fully-connected layer and applies ReLU activation to all the
convolutional layers.

However, despite its satisfactory performance in multiple transfer
learning tasks, this network has a greater number of parameters
compared to AlexNet and GoogLeNet, which makes it computationally
more expensive to evaluate and requires a considerable amount of
memory in optimizing the learning parameters.

4. The proposed method

Deep neural networks are generally trained based on the prediction
loss minimization. Let x and y be the input (images) and corresponding
output (class labels), the objective of the training is to iteratively
minimize the average loss (empirical risk) defined as

∑J w
N

L f w x y λR w( ) = 1 ( ( ; ), ) + ( ),
i

N

i i
=1 (1)

where N is the number of data instances (mini-batch) in every
iteration, L is the loss function, f is the predicted output of the network
depending on the current weights w, and R is the regularization term
or weight decay with the Lagrange multiplier λ.

We use the stochastic gradient descent (SGD) which is a highly
common optimization algorithm utilized in deep networks to update
the weights.

w μw α J w= − ∇ ( ),t t t+1 (2)

where μ is the momentum weight for the current weights wt and α is
the learning rate. The network weights are randomly initialized during
training the network from scratch, while in fine-tuning deep models,
the network weights are initially set to the pre-trained network weights.

The principal goal of transfer learning with deep networks is to
effectively exploit learned weights with very large datasets of generic
object recognition tasks to solve the new problem. To this end, we
compare fine-tuning deep networks with training them from scratch
while tuning all important adjustable parameters of the networks for
performance maximization Section 4.1.

Data augmentation is realized in both the training and testing
phases as explained in Section 4.2, and classification outputs for the
augmented images in the test phase are combined following the

procedure described in Section 4.3. Finally, individually optimized
deep neural networks are fused in order to enhance the overall system
accuracy.

The training and test subsets of the LifeCLEF 2015 plant identifica-
tion dataset are used to train and test the utilized deep networks,
respectively. Details of this dataset, as the largest available plant image
collection, are explained in Section 5.1.

4.1. Network parameters

We evaluate the importance of iteration size, batch size, and the
amount of data augmentation on the performance of the utilized deep
networks, while other network parameters are kept at fixed values. As
all three of these parameters directly affect a network's training time,
the goal was to study their relative importance, as well as to obtain the
best system for the plant identification problem. While the answers are
directly relevant to the plant identification problem, we hope that the
relative effectiveness of these modifications can shed some light on
where to concentrate in transfer learning with deep neural networks.

The number of iterations indicates the number of weight updates
performed on the whole network; this parameter is varied from
100,000 to 500,000 for fine-tuning and set to 200,000 for training
from scratch. The batch size refers to the number of images in each
mini-batch considered to estimate the gradient before each weight
update. In this work, we increment the number of images in each batch
among 20, 40, and 60. The number of patches indicate the number of
image patches extracted from the original image, so as to constrain the
weight values and reduce overfitting. The value of this parameter is set
to either 10 or 80 throughout our experiments.

Generally speaking, these parameters are inter-linked and any
changes in one parameter can affect the others. However, since training
deep networks takes a long time even with parallel architectures, we
analyze the effects of each parameter one by one.

4.2. Data transformation and augmentation

Given the large size and high architectural complexity of the utilized
deep convolutional neural networks, the need to artificially expand our
utilized dataset is evident as it both minimizes the possibility of
overfitting and maximizes the benefits of fine-tuning. To accomplish
this goal, we use a variety of label-preserving image transforms, namely
translation, reflection, rotation, and scaling.

The implemented data augmentation steps are shown in Fig. 1.
Since cropping and reflecting are automatically realized through
prevalent deep learning frameworks such as Caffe ([41]), the main
data augmentation approach employed in this work is based on
extracting and scaling random square patches from the original image
and augmenting them with image rotation. The left sub-block of Fig. 1
depicts the proposed steps based on rotation and scaling while the right
sub-block shows the proposed transforms of [3] and can be performed
via Caffe.

Assuming an input image of size M N× pixels, K random square
patches of length min(M,N) are extracted from the original image
around its center. Meanwhile, the original image is rotated both

Fig. 1. Block diagram of the proposed method for data augmentation. The right sub-block can be performed via deep learning frameworks such as Caffe and the left one can be applied
for rotation and scaling with square patches while preserving aspect ratio.
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clockwise and counterclockwise by a small degree of R, resulting in two
more patches. Next, the largest possible square image is cropped from
the center of each rotated image to preserve the original aspect ratio.
All the extracted K + 2 patches as well as the original image are then
scaled to a fixed size of M N×1 1 pixels and the mean image is subtracted
from them. Finally, given the input size of the networks, five patches of
size M N×2 2 pixels are extracted from four corners and the center of
each image and reflected horizontally, giving K10 × ( + 3) images in
total.

We implemented two different sets of scenarios. In the first one, we
used only the original image in the left sub-block, resulting in 10
patches in total (the top arrow in the left sub-block in Fig. 1). In the
second scenario, we set K =5 and R =10 degrees, resulting in a total of
80 patches, as shown in the left sub-block.

As required by [3], M1 and N1 are assumed to be equal to 256 and
M2 and N2 are set to the expected input size of the respective networks,
i.e. 224 × 224 for GoogLeNet and VGGNet, and 227 × 227 for AlexNet.

4.3. Score-based fusion

The score-based fusion approach is employed for combining the
classification results of the patches, as well as later combining outputs
of different classifiers assigned to deep learning models. To combine
the classification results obtained for different patches within a single
network, we use the sum rule to fuse the prediction scores assigned to
each class for all the augmented patches. Later on, the prediction
scores obtained from every network classifier are combined using the
same sum rule fusion to achieve the final prediction.

5. Performance analysis

In this section, we explain the dataset used in the experiments and
discuss the experimental results.

5.1. The dataset

We used the plant task dataset of LifeCLEF 2015 [14] to evaluate
the performance of the deep neural networks explored in this work. The
large training dataset contains 91,758 labeled images of different plant
organs (e.g. flowers, fruits, leaves, and stems), from 1,000 species of
trees, herbs, and ferns. The testing set contains 21,446 images with
recently released ground-truth labels. These datasets are very challen-
ging since different photographers have collected photographs from
different locations using varying conditions of background, pose, color,
and illumination.

To validate our results, we used proportionate stratified random
sampling and divided the training dataset into two subsets of training
and validation. Specifically, for each plant category, we randomly
selected one-fifth of the available samples from each individual class
as samples of the validation set. Therefore, the obtained training and
validation sets include 70,904 and 20,854 images, respectively.

Table 1 shows the number of total instances and classes for each
category used for experiments. The Entire column in the table is a
category in which the photographed images contain pictures of
different parts of plants, while the Overall column refers to all images
within the dataset.

5.2. Results

We used the Caffe deep learning framework ([41]) with the
implemented and pre-trained models of AlexNet, GoogLeNet, and
VGGNet obtained from the Caffe Model Zoo provided by the Berkeley
Vision and Learning Center (BVLC). These models are trained on the
ILSVRC 2012 dataset with 1.2 million labeled images of 1,000 classes.
The fine-tuned versions of these models constitute the baselines used
in Sections 5.2.1 and 5.2.2.

5.2.1. Training from scratch vs. fine-tuning
To observe the effects of transfer learning on system performance,

we evaluated the performance of fine-tuning the aforementioned pre-
trained models with the training subset of LifeCLEF 2015 until
100,000 iterations and compared them against training the same
networks from scratch until 200,000 iterations. The batch size for each
network was set to 20 while the weight decay factor and learning rate
were initialized to 0.0002 and 0.001, respectively. Moreover, the step
size for updating the learning rate was set to 12,000 iterations with a
coefficient–gamma–of 0.96.

Table 2 shows the accuracies obtained by the selected Caffe models
on the validation set. When considering the results of training the
models from scratch, AlexNet has performed the best with an overall
validation accuracy of 44.19% and closer to its own fine-tuned model
(49.63%). We conclude that if deep learning networks need to be
trained from scratch, architectures with relatively smaller number of
adjustable weights may perform better, especially with a relatively
small amount of data.

Moreover, comparing the difference between fine-tuning and
training from scratch in this problem, we see that fine-tuning has
clearly resulted in higher values of validation accuracy compared to
training the models from scratch.

Also, we notice that fine-tuning performance of these three net-
works is directly related with their relative sizes, with the most
successful one being VGGNet. In fact, VGGNet has achieved the best
results in almost all categories–except for the Flower category where
GoogleLeNet has obtained the best results with an overall accuracy of
61.93%.

Since fine-tuning the GoogLeNet and VGGNet models has achieved
the best results, we have conducted the later experiments with these
two systems, especially with GoogLeNet since VGGNet is much slower
to train.

5.2.2. Effects of number of iterations
We fine-tuned the pre-trained models until 500,000 iterations while

recording the values of training loss and validation set accuracies.
Figs. 2 and 3 show the variations of training loss and the validation
accuracy against iterations during the fine-tuning of the utilized deep
networks, respectively. As it can be seen in Fig. 3, validation accuracy
rises rapidly in the earlier iterations and increases slowly afterwards for
all three networks. In line with results reported in Tables 2 and 3, the
performance of VGGNet and GoogLeNet are highly similar and both
superior to that of AlexNet.

The improvement in performance is significant for all the evaluated
networks as the number of iterations increases from 100,000 to
500,000. This shows that these networks are resilient to overfitting

Table 1
Details of the utilized dataset for plant identification.

Branch Entire Flower Fruit Leaf LeafScan Stem Overall

Number of training samples 6,447 12,567 21,531 6,072 10,367 9,576 4,344 70,904
Number of validation samples 1,683 3,668 6,694 1,648 3,000 3,029 1,132 20,854
Number of testing samples 2,088 6,113 8,327 1,423 2,690 221 584 21,446
Number of species 891 993 967 755 899 351 649 1,000
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due to their careful architecture design and the utilized data augmenta-
tion scheme.

5.2.3. Effects of batch size
To see the effects of batch size on the performance of the fine-tuned

GoogLeNet, we evaluated the performance with batch sizes ranging
from 20 to 60. The results presented in the first, fourth, and fifth rows
of Table 3 show that increasing the batch size from 20 to 60 improves
the overall accuracy of this model from 61.06% to 65.18%.

However, a larger batch size increases the training duration. For
instance, training with a tripled batch size takes the same amount of
time as training with the triple number of iterations.

Consequently, since accuracy improves more significantly with the
increased number of iterations rather than a larger batch size, it seems
more reasonable to use a smaller but sufficient batch size, together with
a higher number of iterations to train deep networks.

5.2.4. Effects of data augmentation
We evaluated the performance of GoogleLeNet with 10 or 80

patches extracted from the input image as described in Section 4.2.
At the testing phase, we applied the score-based fusion technique to
combine all predictions before reaching the final decision. Comparing
these two cases, we see that using 8-fold data augmentation increases
the validation set accuracy significantly, i.e. from 61.06% to 67.32%.

5.2.5. Fine-tuning best networks
To further improve performance, we evaluated GoogLeNet with the

combined adjustments; specifically with 80 patches for data augmenta-
tion, 300,000 iterations, and a batch size of 60. We also explored
obtaining the best VGGNet model using augmented data with 80
patches until 500,000 iterations. As shown in Table 3, using the best
combined parameters with the longest training durations, these two
networks improve their best performance obtained thus far by more
than 7% points, achieving 76.87% and 78.44%, respectively.

5.2.6. Discussion
Based on the results shown in Table 3, we conclude that increasing

the number of iterations, the number of patches used for data
augmentation, and the batch size, improves baseline performance–
with the number of iterations having the greatest and the batch size
having the least significant effect. As an example, increasing the batch
size from 20 to 60 increases the training time 3-fold, but does not
match the performance obtained with increasing the number of
iterations by the same amount, i.e. 65.18% versus 68.57%, from
61.06%.

While we have not tried higher values for the attempted para-
meters, we believe that the performance increase would continue with
all three, with the most pronounced effects expected from data
augmentation. Furthermore, as discussed in Section 5.2.5, the combi-
nation of the best parameters brings in further improvements, but as
the goal of this paper is to study their effect in isolation, we did not run
prohibitively long experiments with all combinations.

5.2.7. Overall results with classifier fusion
We finally combined the best models of GoogLeNet and VGGNet

using the score-based fusion technique and achieved an overall
accuracy of 80.18%, as shown in the last row of Table 3. Comparing
this result with the validation results of the winner of LifeCLEF 2015
plant identification campaign [35] reveals that we have been able to
improve their performance by a considerable amount of 14.99% points.

As our last experiment, we evaluated the above fusion system using
the recently released test set of LifeCLEF 2015 ([33]). To make the

Table 2
Classification accuracies (%) for different training scenarios. Bold values indicate the best results in each category.

Branch Entire Flower Fruit Leaf LeafScan Stem Overall

AlexNet from scratch (200 K, 20, 10x)) 23.53 27.32 45.49 35.50 33.87 92.11 33.66 44.19
AlexNet fine-tuning (100 K, 20, 10x) 28.64 30.10 53.45 43.99 45.03 90.99 31.18 49.63

GoogLeNet from scratch (200 K, 20, 10x) 17.35 16.90 36.41 24.82 20.63 83.13 13.16 33.78
GoogLeNet fine-tuning (100 K, 20, 10x) 44.09 38.36 67.93 57.65 60.57 94.16 37.01 61.06

VGGNet from scratch (200 K, 20, 10x) 16.93 16.47 32.12 22.69 20.23 81.91 13.43 31.90
VGGNet fine-tuning (100 K, 20, 10x) 44.68 42.58 66.37 59.59 61.90 95.05 38.87 61.93
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results fully comparable with those obtained by task participants, we
used the user-based inverse rank score provided by the campaign
([33]). The average inverse rank score is defined as follows

∑ ∑ ∑S
U P N

s= 1 1 1

u

U

u p

P

u p n

N

u p n
=1 =1 , =1

, ,

u u p,

(3)

where U is the number of users collecting the query images; Pu is the
number of individual plants observed by the u-th user; Nu p, is the
number of pictures taken from the p-th plant observed by the u-th user;
and su p n, , is the inverse of the rank of the correct species for the given
image, ranging from 0 to 1. The results of this experiment are
compared to the best methods submitted to the plant identification
task of LifeCLEF 2015 and shown in Table 4. As it can be seen, our
proposed method significantly outperforms all other systems in all
categories with an overall inverse rank score of 0.752.

5.3. Time complexity of different networks

Wemeasured the complexity of the utilized deep neural networks in
terms of the training time per iteration during the forward-backward
pass and the testing time per image during feature extraction and
classification. Table 5 shows the average training time per iteration
with a batch size of 20 and the average testing time per image by fusing
the classification results for 10 extracted patches. All the approaches
were implemented in MATLAB, Python, and Caffe under Linux and all
experiments were run on a Tesla K40c-based system with 12 GB of
video memory.

As shown in Table 5, AlexNet has the lowest training and testing
time among the three networks while GoogLeNet's training and testing
durations are 1.5 times longer than those of AlexNet. VGGNet, on the
other hand, is almost four times slower than GoogLeNet in both
training and testing.

In order to demonstrate the capability of our network as a powerful
low-level and high-level feature extractor, we illustrate the network
layer weights learned from the retrained GoogLeNet model on the
LifeCLEF 2015 plant dataset in Fig. 4. As the figure shows, the first
layer weights are tuned to extract edges or color blobs but the higher
levels are more likely to extract specific patterns seen in plant organs.

6. Conclusions

We applied transfer learning to identify plant species using deep
convolutional neural networks. The utilized networks are based on pre-
trained deep learning models of AlexNet, GoogLeNet, and VGGNet. We
evaluated these networks on the plant task datasets of LifeCLEF 2015,
with different network parameters and data augmentation, and finally
combining the best classifiers' predictions to improve overall system
performance. The results show that our best combined system has
surpassed the overall validation accuracy of [35], the winner of the
LifeCLEF 2015 plant identification campaign, by almost 15% points
and its overall inverse score obtained on the test set by 0.1 while
outperforming the top three systems in all categories.

Comparing the relative performance of these networks reveals that
fine-tuning GoogLeNet and VGGNet results in obtaining higher
performances compared to fine-tuning AlexNet, with the best accuracy
being obtained by VGGNet with 78.44%. On the other hand, training
AlexNet from scratch outperforms GoogLeNet and VGGNet probably
due to AlexNet's simpler architecture. Therefore, we can conclude that
although we benefit from transfer learning, training from scratch using
simpler networks gives the opportunity to define novel and computa-
tionally efficient networks.

Our findings indicate that the most significant factor affecting fine-
tuning performance is the number of iterations while data augmenta-
tion comes second. On the other hand, while increasing the batch size
improves accuracy, we observed that increasing the number of itera-
tions is a better use of computation time, considering the time
complexity versus performance improvements. We hope and believe
that the observations collected in this work will shed some light to
other similar visual recognition problems.

Table 3
Classification accuracies (%) with adjusted parameters and data augmentation during fine-tuning of the pre-trained models. Bold values indicate the best obtained results in each
category. The values inside parenthesis indicate the number of iterations, batch size, and number of patches for data augmentation, respectively.

Branch Entire Flower Fruit Leaf LeafScan Stem Overall

GoogLeNet (100 K, 20, 10x) 44.09 38.36 67.93 57.65 60.57 94.16 37.01 61.06
GoogLeNet (300 K, 20, 10x) 55.08 46.05 76.23 67.96 68.07 95.77 45.76 68.57
GoogLeNet (500 K, 20, 10x) 55.02 47.66 76.43 69.11 69.13 95.58 45.49 69.11
GoogLeNet (100 K, 40, 10x) 45.63 41.03 70.05 61.23 60.73 93.20 36.49 62.48
GoogLeNet (100 K, 60, 10x) 50.98 41.09 73.07 63.59 65.50 94.19 41.52 65.18
GoogLeNet (100 K, 20, 80x) 54.01 48.06 73.38 64.99 68.63 94.85 39.84 67.32
GoogLeNet (300 K, 60, 80x) (*) 67.56 60.28 83.30 76.88 76.30 96.93 54.33 76.87

VGGNet (100 K, 20, 10x) 44.68 42.58 66.37 59.59 61.90 95.05 38.87 61.93
VGGNet (500 K, 20, 10x) 56.33 52.81 77.53 68.93 70.47 97.29 51.68 71.24
VGGNet (500 K, 20, 80x) (**) 68.09 64.37 84.40 77.00 76.67 97.92 58.75 78.44

GoogLeNet (*) & VGGNet (**) 71.24 65.16 86.90 79.13 78.93 98.02 59.45 80.18

Table 4
Average inverse rank score for the best plant identification systems evaluated on the test set of LifeCLEF 2015.

Branch Entire Flower Fruit Leaf LeafScan Stem Overall

SNUMedinfo ([35]) 0.498 0.531 0.784 0.602 0.600 0.766 0.326 0.652
QUT RV ([36]) 0.416 0.448 0.738 0.558 0.524 0.694 0.291 0.590
Inria Zenith ([37]) 0.398 0.453 0.723 0.559 0.501 0.713 0.302 0.581
Proposed Method 0.666 0.624 0.861 0.723 0.745 0.848 0.429 0.752

Table 5
Average training time per iteration and testing time per image, in milliseconds.

AlexNet GoogLeNet VGGNet

Training time 303 447 1,787
Testing time 21 31 114
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