ENS 210: Computational Biology - Fall 2013

(November 26, 2013)

Instructor: Deniz Sezer E-mail: dsezer@sabanciuniv.edu Office: FENS G021 Office Phone: 483-9881 Lectures: Tue 11:40-13:30 FENS L030 Thr 11:40-12:30 FASS 2031

Recitation: Thr 9:00-10:30 FENS 2072

Course Description: The aim of this course is to introduce some of the major contributions of computers to molecular biology. The presentation is organized around four main themes: visualization and manipulation of molecular structures, the flow of information from DNA sequences to proteins, quantitative comparison of protein sequences, and evolutionary implications of sequence analysis. (A detailed list of the course content is given below.) While following this thread of topics, students will learn about the information that is stored in the genomes of organisms, will get familiar with databases making this genetic information available, and will develop programming and analytical skills to manipulate this information. Because the course is geared towards undergraduate students in their second year, previous exposure to biology is assumed to be on the level of NS 102. Familiarity with programming on the level of CS 201 is expected to be helpful.

Evaluation:

Homeworks & quizzes	25	%
Exam 1	25	%
Exam 2	25	%
Final exam	25	%

Textbooks:

\mathbf{Perl}	Tisdall, Beginning Perl for Bioinformatics, O'Reilly, 2001.
Databases	Agostino, Practical Bioinformatics, Garland Science, 2013.
Algorithms	Setubal & Meidanis, Introduction to Computational Molecular Biology, PWS, 1997.
Evolution	Higgs & Attwood, Bioinformatics and Molecular Evolution, Wiley-Blackwell, 2005.

(Continued on the next page.)

Detailed Course Content:

	lecture topic	recitation activity
Sep 24	General information about the course	
Sep 26	Introduction to the molecules of life	No recitation
Oct 1	From hydrogen bonds to protein and DNA structures	
Oct 3	Chargaff's first and second rules	Testing Chargaff's second rule (Perl)
Oct 8	B-DNA, replication, EC #, GenBank, PDB, A-RNA	
Oct 10	Gamow's diamonds and triangles	Morphing double helices (Perl, VMD)
Oct 15	Semester Break	
Oct 17		
Oct 22	Poisson distribution, language, and protein sequences	
Oct 24	Nonoverlapping, comma-free codes	Randomizing DNA sequences (Perl)
Oct 29	National Holiday	
Oct 31	The genetic code	Pair probabilities as %hash (Perl)
Nov 5	Transcription, translation and open reading frames	
Nov 7	Control of gene expression: the lac operon	Make-up recitation
Nov 12	Random genome from Markov chain	
Nov 14	Edit distance and comparison of two sequences	Exploring the RNY codon rule
Nov 19	First Exam	
Nov 21	Introduction to sequence alignment	Solving the exam problems
Nov 26	Dynamic programming	
Nov 28	Jukes-Cantor model of DNA evolution	Finding promoters in E. coli
Dec 3	Amino acid substitution matrices PAM, BLOSUM	
Dec 5	BLAST and FASTA	Aligning protein sequences
Dec 10	BLASTN, BLASTP, BLASTX, and TBLASTN	
Dec 12	Introduction to phylogenetic trees	BLAST and databases
Dec 17	Building phylogenetic trees	
Dec 19	The tree of life	Your first phylogenetic tree code
Dec 24	Second Exam	
Dec 26		Solving the exam problems
Dec 31	Codon usage bias and origin of the genetic code	
Jan 2	Further topics in Bioinformatics	No recitation