BIO 466 Biophysics: Molecules and Systems - Fall 2014

(December 27, 2014)

Instructor: Deniz Sezer E-mail: dsezer@sabanciuniv.edu Office: FENS G021 Lectures: Mon 14:40-16:30 FENS L055 Wed 15:40-16:30 FENS L067

TA: Tuğçe Oruç

Course Description: The objective of this course is to introduce students to concepts and techniques in theoretical molecular biophysics. As an introductory course it is designed to be accessible to a wide audience with diverse background. In particular, the course aims to provide engineering and physical science students with first exposure to modern molecular biology. At the same time, it aims to equip biology students with a formal language and analytical tools for quantitative analysis of biological problems.

Evaluation:

Participation	$5 \ \%$
Homework	15~%
Exam 1 (Nov 3)	25~%
Exam 2 (Dec 8)	25~%
Final exam	30~%

Textbook:

PBoC. Phillips, Kondev, Theriot & Garcia, Physical Biology of the Cell, 2nd edn., Garland Science, 2012.

Detailed Course Content: (See next page.)

From cells to molecules (Bio-physics)			
$Sep \ 15$	General information about the course	Introduction to the molecules of life	
Sep 17	Molecular interactions		
Sep 22	DNA and protein structure	Multiplicity and entropy	
Sep 24	Hydrophobic effect and protein folding	HW1: Genomes and DNA structure	
Ŧ	Control and optimization of protein production		
Sep 29	Bacterial growth and lactose utilization	Cost-benefit analysis of protein expression	
Oct 1	Statistical mechanics of binding to DNA	HW2: Self-assembly of lipids: a lattice model	
Oct 6			
Oct 8	Spring Break		
Oct 13	Regulation of transcription	Demand theory of gene regulation	
Oct 15	Boolean logic gates from molecules	HW3: Regulatory logic of <i>lac</i> operon	
Binding to DNA: chemistry, physics and information			
Oct 20	Molecular Boolean networks	Statistical mechanics of ligand binding	
Oct 22	Information content of DNA binding sites	HW4: Boolean network analysis of repressilator	
Oct 27	Information needed to find DNA binding site	Review	
Oct 29	National Holiday		
Nov 3	First Exam		
Nov 5	Solution of exam questions (toggle switch)	HW5: Information content of operator sequences	
Moving along DNA and inside the cell			
Nov 10	Microscopic view of diffusion along DNA	Diffusion in 3D	
Nov 12	Sliding along and jumping across DNA	HW6: Passive transport and diffusion coefficient	
Nov 17	Mean time to find a target via diffusion in 1D	and in 3D	
Nov 19	First law of thermodynamics	HW7: Time to find target in 1D and 3D	
Thermodynamics and mechanosensitive ion channels			
Nov 24	Second law of thermodynamics	Microscopic model of heat flow	
Nov 26	Helmholtz and Gibbs free energies	HW8: Temperature of a two-level system	
Dec 1	Mechanosensitive ion channels	Hydrophobic mismatch and channel gating	
Dec 3	From thermodynamics to statistical mechanics		
Dec 8	Second Exam		
Dec 10	Pressure unfolding of proteins		
Diffusion and getting into the cell			
Dec 15	Fick's law and continuity equation	Macroscopic view of diffusion	
Dec 17	Permeation of molecules through membrane	HW9: Diffusion equation	
Dec 22	Nernst equation and membrane potential	Electrical signals in neurons	
Dec 24	Structures of voltage-gated ion channels		
Dec 30	Final Exam		

Reading list:

End of the week of Sep 24 $\,$

- Goodsell, The Machinery of Life, Ch. 2 Molecular Machines.
- Goodsell, The Machinery of Life, Ch. 4 Molecules in Cells: Escherichia coli.
- PBoC, Ch. 1 Why: Biology by the Numbers.
- PBoC, Sec. 2.1 An Ode to E. coli.
- PBoC, Sec. 3.1 The Hierarchy of Temporal Scales.
- PBoC, Sec. 3.2 Procedural Time.
- PBoC, Sec. 3.3 Relative Time.

End of the week of Oct 15

• Kirschner & Gerhart, The Plausibility of Life, pp. 112–121.

- Dekel & Alon, Optimality and evolutionary tuning of the expression level of a protein, *Nature*, **436**:588-592 (2005).
- PBoC, Sec. 4.4 A Tale of Two Cells: *E. coli* as a Model System.
- PBoC, beginning of Sec. 5.5 Structures as Free Energy Minimizers and Sec. 5.5.1 Entropy and Hydrophobicity.
- PBoC, beginning of Sec. 6.1 The Analytical Engine of Statistical Mechanics and Sec. 6.1.1 A First Look at Ligand-Receptor Binding.
- PBoC, Sec. 6.1.2 The Statistical Mechanics of Gene Expression: RNA Polymerase and the Promoter.
- PBoC, Sec. 19.2 Genetic Networks: Doing the Right Thing at the Right Time (up to page 742).

End of the week of Oct 29

- Kauffman, At Home in the Universe, Ch. 4 Order for Free.
- Kauffman, At Home in the Universe, Ch. 5 The Mystery of Ontogeny.
- Elowitz & Leibler, A synthetic oscillatory network of transcriptional regulators, *Nature*, **403**:335-338 (2000). (Homework 4)
- PBoC, Sec. 6.4.1 A Second Look at Ligand-Receptor Binding.
- PBoC, Sec. 18.1 Biological Information.
- PBoC, beginning of Sec. 18.2 Sequence Alignment and Homology (up to page 688).
- Schneider, Sequence logos, machine/channel capacity, Maxwell's demon, and molecular computers: a review of the theory of molecular machines, *Nanotechnology*, **5**:1–18 (1994) (first two sections only).

End of the week of Nov 19

- PBoC, Sec. 13.1 Diffusion in the Cell.
- PBoC, Sec. 13.2.1 Diffusion by Summing Over Microtrajectories.
- Halford & Marko, How do site-specific DNA-binding proteins find their targets? *Nucleic Acid Research*, **32**:3040–3052 (2004) (read from beginning to end of p. 3042).
- Bruinsma, Physics of protein-DNA interaction, *Physica A*, **313**:211–237 (2002) (read Sec. 2.2.3 only, pp. 234–236).

End of the week of Dec 3

- PBoC, Sec. 5.2 Biological Systems as Minimizers.
- PBoC, Sec. 5.3 The Mathematics of Superlatives.
- PBoC, Sec. 5.4 Configurational Energy.
- PBoC, Sec. 5.5 Structures as Free Energy Minimizers.
- PBoC, Sec. 6.1.3 Classic Derivation of the Boltzmann Distribution.
- PBoC, Sec. 11.5 The Active Membrane (read the discussion but do not expect to understand the math).

End of the week of Dec 24

- Roche, ..., & Royer, Cavities determine the pressure unfolding of proteins, *Proc. Natl. Acad. Sci.* USA, **109**:6945–6950 (2012).
- PBoC, Sec. 3.4.2 Beating the Diffusive Speed Limit (pp. 108–113).
- PBoC, Sec. 5.1.1 The Interplay of Deterministic and Thermal Forces (pp. 168–170).
- PBoC, Sec. 13.1 Diffusion in the Cell (pp. 481–487).
- PBoC, Sec. 13.2 Concentration Fields and Diffusive Dynamics (up to page 495).
- PBoC, Sec. 13.2.2 Solutions and Properties of Diffusion Equation.
- PBoC, Sec. 17.1 The Role of Electricity in Cells.
- PBoC, Sec. 17.2 The Charge State of the Cell.