Spring 2015

Biological Circuits and Molecular Machines

(May 31, 2015)

Instructor: Deniz Sezer E-mail: dsezer@sabanciuniv.edu Office: FENS G021 Lectures: Mon 10:40-12:30 FENS L062 Wed 10:40-11:30 FENS L027

TA: Tuğçe Oruç

Course Description: Since 21st century is the century of biology, any aspiring engineer should be equipped with knowledge of biological systems and tools to model their quantitative aspects. This course offers an introduction to molecular and cellular biology from an engineering point of view.

Evaluation:

Homework assignments	20%
First take-home exam	25~%
Second take-home exam	25~%
In-class final exam	30~%

References:

- 1. David Goodsell, The Machinery of Life, 2nd edn., Springer, 2009.
- 2. Brian Ingalls, Mathematical Modeling in Systems Biology: An Introduction, MIT Press, 2013.
- 3. Steven Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Westview Press, 1994.

Detailed Course Content: (See next page.)

Feb 2	General information about the course	0
Feb 4	Mathematical model of cell growth	
Feb 9	~	What is inside a cell?
	Cell growth with saturation	
Feb 11	Numerical solution of cell growth model	HW 1: Logistic growth with MATLAB
Batteries and wires in the cell		
Feb 16	ATP hydrolysis as a battery	Equilibrium of chemical reaction
Feb 18		
Feb 23	ATP battery needs a wire (rates of reactions)	The "voltage" of the ATP battery
Feb 25	Proteins as "wires" for chemical batteries	HW 2: Adenylate kinase (ADK)
Proteins as random machines		
Mar 2	Alternative conformations of ADK	Glucose crosses the cell membrane
Mar 4	Equilibration between inside and outside	HW 3: Equilibration in compartments
Mar 9	Membrane permeability for glucose and ions	Transporters and channels as machines
Mar 11	Protein machines are random	HW 4: Random jumps between two states
Proteins as cyclic machines		
Mar 16	Kinetic modeling of random transitions	Random association of molecules
Mar 18	Diffusion and on rate of binding. Glycolysis	HW 5: Structure of Phosphofructokinase
Mar 23	Fast and slow processes	Approximate analysis of a 3-state cycle
Mar 25	Operational cycle of Phosphoglucose Isomerase	
Mar 30	Independent binding of multiple ligands	Glucose transporter as a 4-state machine
	First take-home exam	Mar 30 - Apr 3
Apr 6	Compostor Brook	-
Apr 8	Semester Break	
	Proteins as swite	ches
Apr 13	Analysis of the Glucose Transporter cycle	Ligand binding as a switch
Apr 15	Monomers, dimers, tetramers	HW 6: Modeling steps 0, 1, 2 of glycolysis
Apr 20	Making a better switch: Cooperativity	Controlling the switch: negative effectors
Apr 22	Positive effectors	HW 7: Control of cooperative switches
	Control, feedback and energ	y transduction
Apr 27	Myoglobin and Hemoglobin	Control of glycolysis: Phosphofructokinase
Apr 29	Positive feedback and osciallations	HW 8: Positive feedback and oscillations
May 4	Glycolysis, citric acid cycle, respiratory chain	Proton gradient and ATP production
May 6	Proteins as energy transducers	~ *
May 11	Membrane potential	Nernst equation
	Second take-home exam	May 11 - May 15
May 28	In-class final exam	U U

Cells and mathematical modeling