BIO 466/NS 566 Fall 2017

Biophysics: Molecules and Systems

(December 16, 2017)

Instructor: Deniz Sezer Lectures: Thu 12:40-2:30 FENS L058

Fri 10:40-11:30 FENS L063

Office: FENS G021 TA: Kadriye Kahraman

E-mail: dsezer@sabanciuniv.edu

Course Description:

The objective of this course is to introduce students to concepts and techniques in theoretical biophysics. As an introductory course it is designed to be accessible to a wide audience with diverse background. In particular, the course aims to provide engineering and physical science students with first exposure to modern molecular and cell biology. At the same time, it aims to equip biology students with a formal language and analytical tools for quantitative analysis of biological problems.

Evaluation:

Homework	20 %
Midterm exam (Nov 23)	30 %
Oral presentation and written report	20 %
Final exam (Dec 25)	30 %

In the second half of the semester, students will be expected to choose a biophysical question to examine using the recent research literature. They will present their work in class during the last week of the semester and will submit a short written report of their findings by the end of the exam period.

References:

- Phillips, Kondey, Theriot, Garcia, Physical Biology of the Cell, 2nd edn., Garland Science, 2012.
- Goodsell, The Machinery of Life, Ch. 2 Molecular Machines.
- Goodsell, The Machinery of Life, Ch. 4 Molecules in Cells: Escherichia coli.
- Schneider, Sequence logos, machine/channel capacity, Maxwell's demon, and molecular computers: a review of the theory of molecular machines, *Nanotechnology*, 5, 1–18 (1994) (first two sections only).
- Savageau, Design of molecular control mechanisms and the demand for gene expression, *Proc. Natl. Acad. Sci. USA*, **74**, 5647–5651 (1977).
- Kauffman, At Home in the Universe, Ch. 4 Order for Free.
- Elowitz & Leibler, A synthetic oscillatory network of transcriptional regulators, *Nature*, **403**, 335-338 (2000).
- Halford & Marko, How do site-specific DNA-binding proteins find their targets? *Nucleic Acid Research*, **32**, 3040–3052 (2004) (from beginning till end of p. 3042).
- Milo, Phillips, Orme, Cell Biology by the Numbers, Taylor & Francis, 2015.

Detailed Course Content:

I. Cells and molecules

Sep 21	General information about the course	How big is a cell?
Sep 22	How long is a genome?	HW1: Information content of a genome
Sep 28	How much information is in a genome?	What keeps the DNA strands together?
Sep 29	Simple model of a folding protein	HW2: Energy of a hydrogen bond
Oct 5	Entropy as information, Boltzmann factor	Role of water in protein folding
Oct 6	Models of cell population growth	HW3: Self-assembly of lipids
Oct 0	II. Transcritpion and its regulation	Tiws. Self-assembly of lipids
Oct 12	Escherichia coli eats glucose and lactose	The cost and benefit of making a protein
Oct 12 Oct 13	Transcription, RNA polymerase, promoter	~ -
Oct 19	Model of RNA polymerase binding to DNA	HW4: Cost-benefit analysis of protein expression
Oct 19 Oct 20	- v	Regulation of transcription (activator)
	Regulation of transcription (repressor)	HW5: Activator makes the promoter stronger
Oct 26	Binding and the dissociation constant	Physics view of binding
Oct 27	Relating the physics and chemistry pictures	HW6: Regulatory logic of the <i>lac</i> operon
Nov 2	lac repressor binding to DNA	Information necessary to find a binding site
Nov 3	Information content of recognized DNA sequences	HW7: Information content of lac operators
Nov 9	Demand theory of gene regulation	Logic gates
Nov 10	Molecular Boolean networks	HW8: Boolean network analysis of repressilator
	III. Diffusion in 1D and 3D	
Nov 16	What powers the motion of transcription factors?	Microscopic view of diffusion along DNA
Nov 17	Time- and length-scales of diffusion	
Nov 23	Midterm Exam	
Nov 24	Is 1D diffusion better for finding a site on DNA?	HW9: Passive transport and diffusion coefficient
Nov 30	Mean time to find a target via diffusion in 1D	and in 3D
Dec 1	Sliding along and jumping across DNA	HW10: Time to find target in 1D and 3D
Dec 7	Model of random transitions between two states	Two states of ion channels and transporters
Dec 8	Membrane permeation of small molecules	
Dec 14	Macroscopic view of diffusion: Fick's law and	continuity equation
Dec 15	Time scales related to the permeability coefficient	(HW11: Diffusion equation)
	IV. Recent research literature	
Dec 21	Presentations	Presentations
Dec 22	Presentations	
Dec 25	Final Exam	