Heinrich Heine University, Düsseldorf

Department of Computer Science

Computational Systems Biology (January 29, 2019)

Instructor: Deniz Sezer (PhD Physics, Cornell University) E-mail: sezerd@hhu.de Office: 25.02.02.25

Lecture: Tue 10:30-12:00 in 25.02.02.21 Computer lab: Tue 14:30-16:00 in 25.02.02.21

Evaluation:

Computer labs (in-class)		25~%
Midterm exam (take-home)	Nov 27 - Dec 4	35~%
Final exam (take-home)	Feb 5 - Feb 12	40~%

Course Content:

week	date	Lecture, Computer lab
		I. Bacterial populations
1	Oct 9	General information about the course. Cell division and exponential growth.
		No lab this week.
2	Oct 16	Logistic growth. Numerical solution of growth (differential) equations.
	0 1 00	Lab1: Numerical analysis of exponential and logistic growth.
3	Oct 23	Antibiotic resistance. Competition of two species.
		Lab2: Antibiotic resistance under logistic growth.
4	0 1 20	II. Inner workings of a bacterial cell
4	Oct 30	What is inside a cell? Chemical reaction networks.
_	N	Lab3: Closed, open, and enzyme-catalyzed reaction networks.
5	Nov 6	ATP hydrolysis as a battery. "Voltage" of the ATP battery.
C	NT 10	Lab4: Visualizing protein structures with VMD.
6	Nov 13	Enzymes as "wires". Kinetic modeling of Glycolysis.
-	N OO	Lab5: Numerical analysis of the first 3 steps of Glycolysis.
7	Nov 20	The stoichiometry matrix and its "downstream-aware" inverse.
0	N 97	Lab6: Stoichiometric modeling of reactions 4, 5, and 6 of Glycolysis.
8	Nov 27	Midterm exam (take-home) No lab this week.
9	Dec 4	III. Optimizing bacterial growth rate Cell growth rate from the marriage of stoichiometry and biochemistry.
9	Dec 4	Lab7: Numerical analysis of the simplest whole-cell model.
10	Dec 11	Cellular resource allocation from optimization of the growth rate.
10	Dec 11	Lab8: Growth rate optimization in self-replicating cell models.
11	Dec 18	<i>E. coli</i> eats one sugar at a time.
11	Dec 10	Lab9: Whole-cell model with two alternative food sources.
		IV. Control of protein expression
12	Jan 8	Regulation of protein expression: transcription factors and the <i>lac</i> operon.
12	Jan O	No lab this week.
13	Jan 15	Is bacterial growth rate optimized? A mechanism of growth-rate optimization.
10	5 dil 10	Lab10: Optimizing growth rate through kinetics.
14	Jan 22	Binding of transcription factors to DNA.
		Lab11: Position energy matrix of <i>lac</i> repressor from operator sequences.
15	Jan 29	Weighted least squares minimization. Protein sectors.
		Lab12: Whole-genome estimate of a position energy matrix.
	Feb 5	Final exam (take-home)

Reading assignments:

(Uploaded to ILIAS.)

Week 2 Exponential and logistic growth

- Phillips, Kondev, Theriot, Garcia, Orme, *Physical Biology of the Cell*, 2nd ed., Garland Science, 2013. (Computational Exploration: Growth Curves and the Logistic Equation, pp. 103–105.)
- Hagen, Exponential growth of bacteria: Constant multiplication through division, Am. J. Phys., 78, 1290–1296 (2010). (First three sections only.)
- Ingalls, *Mathematical Modeling in Systems Biology*, MIT Press, 2013. (Sec. 2.1.4 Numerical Simulation of Differential Equations.)

Week 3 Antibiotic resistance

• Gullberg, Cao, ..., Andersson^{*}, Selection of resistant bacteria at very low antibiotic concentrations, *PLoS Pathogens*, **7**, e1002158 (2011).

Week 4 What is inside a cell

- Goodsell, *The Machinery of Life*, 2nd ed., Springer Science+Business Media, 2009. (Ch. 4 Molecules in Cells: *Escherichia coli*, pp. 53–68.)
- Liebermeister, Noor, Flamholz, Davidi, Bernhardt^{*}, Milo^{*}, Visual account of protein investment in cellular functions, *Proc. Natl. Acad. Sci. USA*, **111**, 8488–8493 (2014).
- Ingalls, *Mathematical Modeling in Systems Biology*, MIT Press, 2013. (Ch. 2 Modeling of Chemical Reaction Networks, pp. 21–48.)

Week 5 Protein structures and their visualization.

- PDB-101 Molecule of the Month: Glycolytic Enzymes (http://pdb101.rcsb.org/motm/50).
- VMD Tutorial (http://www.ks.uiuc.edu/Training/Tutorials/). (Ch. 1 Working with a Single Molecule & Ch. 4 Working with Multiple Molecules.)

Week 6 Kinetic modeling of Glycolysis

- Goldbeter, Computational approaches to cellular rhythms, *Nature*, **420**, 238–245 (2002).
- Gustavsson,..., Snoep*, Sustained glycolytic oscillations in individual isolated yeast cells, *FEBS Journal*, **279**, 2837–2847 (2012).

Week 7 Stoichiometry matrix of a reaction network

• Ingalls, *Mathematical Modeling in Systems Biology*, MIT Press, 2013. (Sec. 5.4 Stoichiometric Network Analysis, pp. 150–165.)

Week 8 Farming mitochondria in fluctuating environment

- Lane, *Power, Sex, Suicide*, Oxford University Press, 2006. (Introduction. Mitochondria: Clandestine Rulers of the World)
- Zachar, Szilágyi, Szamádó, Szathmáry^{*}, Farming the mitochondrial ancestor as a model of endosymbiotic establishment by natural selection, *Proc. Natl. Acad. Sci. USA*, **115**, E1504–E1510 (2018).

Week 9 Mitochondrial acquisition and simplest model of a whole cell

- Garg and Martin^{*}, Asking endosymbionts to do an enzyme's job, PNAS, 115, E4543–E4544 (2018).
- Jong^{*}, ..., Mathematical modelling of microbes: metabolism, gene expression and growth, J. R. Soc. Interface, 14, 20170502 (2017).

Week 10 Cell growth and resource allocation

- Scott, Gunderson, Mateescu, Zhang, Hwa^{*}, Interdependence of cell growth and gene expression: Origins and consequences, *Science*, **330**, 1099–1102 (2010).
- Molenaar^{*}, van Berlo, de Ridder, Teusink, Shifts in growth strategies reflect tradeoffs in cellular economics, *Molecular Systems Biology*, **5**, 323 (2009).
- Week 11 Glucose versus lactose
 - Kirschner and Gerhart, *The Plausibility of Life*, Yale University Press, 2005. (Ch. 4: Weak Regulatory Linkage, pp. 112-121)
- Week 12 Optimality of cell growth
 - Towbin, Korem, Bren, Doron, Sorek, Alon^{*}, Optimality and sub-optimality in a bacterial growth law, *Nature Communications*, **8**, 14123 (2017).
- Week 13 Mechanism of growth-rate optimization
 - Towbin, Korem, Bren, Doron, Sorek, Alon^{*}, Optimality and sub-optimality in a bacterial growth law, *Nature Communications*, **8**, 14123 (2017).
- Week 14 Transcription factor binding to DNA sequences
 - Phillips, Kondev, Theriot, Garcia, Orme, *Physical Biology of the Cell*, 2nd ed., Garland Science, 2013. (Sec. 6.1.2 The Statistical Mechanics of Gene Expression: RNA Polymerase and the Promoter, pp. 244–248.) (Sec. 19.2 Genetic Networks: Doing the Right Thing at the Right Time, pp. 807–817.)
 - Belliveaua, ..., Phillips^{*}, Systematic approach for dissecting the molecular mechanisms of transcriptional regulation in bacteria, *Proc. Natl. Acad. Sci. USA*, **115**, E4796–E4805 (2018).

Week 15 Growth laws and protein sectors

• You, ..., Hwa^{*}, Coordination of bacterial proteome with metabolism by cyclic AMP signalling, *Nature*, 301–306 (2013).