Heinrich Heine University, Düsseldorf

Program in Quantitative Biology

BIQ 950 Bioinformatics II - Part 2

(May 24, 2019)

Instructor: Deniz Sezer (PhD Physics, Cornell University) E-mail: dzsezer@gmail.com Office: 25.02.02.25

Teaching Assistant: Tin Y. Pang (PhD Physics, SUNY Stony Brook) E-mail: vvoorr@gmail.com

Evaluation: (Part 2 only)

Computer labs (in-class)		10~%
Midterm exam (take-home)	May 18 - 19	15~%
Final exam (take-home)	May 27 - 29	25~%
Total		50 %

Course Contents:

day	date	Lecture, Computer lab
		Modeling population growth
1	May 15	Bacterial growth. Models of exponential and logistic growth.
		Lab1: Numerical solution of growth (differential) equations.
2	May 16	Antibiotic resistance. Competition of two species.
		Lab2: Antibiotic resistance under exponential and logistic growth.
		Netwroks of chemical reactions
3	May 17	What is inside a cell? Chemical reaction networks and the stoichiometry matrix.
		Lab3: Closed and open reaction networks. Left and right null spaces.
	May 18 - 19	Midterm exam (take-home)
4	May 20	Enzyme-controlled reactions. Enzyme states and occupancy.
		Lab4: Reaction network with enzymes. 3D structure of Phosphofructokinase.
		Autosynthetic balanced growth
5	May 21	Modeling the growth of an authosynthetic cell.
		Lab5: The simplest self-replicating cell model.
6	May 22	Bacterial growth laws. Growth time is additive.
		Lab6: The simplest whole-cell model reproduces growth laws.
		Optimization of cellular resources
7	May 23	Is bacterial growth rate optimized? A mechanism of growth-rate optimization.
		Lab7: Optimal composition of the simplest whole-cell model.
8	May 24	Resource allocation and protein sectors. Constrained optimization.
		Lab8: Cell kinetics naturally converge to optimal composition.
	May 27 - 29	Final exam (take-home)

Supplementary readings:

Day 1 Exponential and logistic growth

- Phillips, Kondev, Theriot, Garcia, Orme, *Physical Biology of the Cell*, 2nd ed., Garland Science, 2013. (Computational Exploration: Growth Curves and the Logistic Equation, pp. 103–105.)
- Ingalls, *Mathematical Modeling in Systems Biology*, MIT Press, 2013. (Sec. 2.1.4 Numerical Simulation of Differential Equations.)
- Day 2 Antibiotic resistance
 - Gullberg, Cao, ..., Andersson^{*}, Selection of resistant bacteria at very low antibiotic concentrations, *PLoS Pathogens* 7: e1002158 (2011).

Day 3 What is inside a cell

- Liebermeister, Noor, Flamholz, Davidi, Bernhardt^{*}, Milo^{*}, Visual account of protein investment in cellular functions, *Proc. Natl. Acad. Sci. USA* **111**, 8488–8493 (2014).
- Ingalls, *Mathematical Modeling in Systems Biology*, MIT Press, 2013. (Ch. 2 Modeling of Chemical Reaction Networks, pp. 21–48.)

Weekend 1 Farming mitochondria in fluctuating environment

- Zachar, Szilágyi, Szamádó, Szathmáry^{*}, Farming the mitochondrial ancestor as a model of endosymbiotic establishment by natural selection, *Proc. Natl. Acad. Sci. USA*, **115**, E1504–E1510 (2018).
- Lane, *Power, Sex, Suicide*, Oxford University Press, 2005. (Ch. 1. The Deepest Evolutionary Chasm & Ch. 2. Quest for a Progenitor, pp. 27–50.)

Day 4 More on the origin of eukaryotes. The stoichiometry matrix

- Lane, *Power, Sex, Suicide*, Oxford University Press, 2005. (Ch. 3. The Hydrogen Hypothesis, pp. 51–64.)
- Garg and Martin^{*}, Asking endosymbionts to do an enzyme's job, *Proc. Natl. Acad. Sci. USA*, **115**, E4543–E4544 (2018).
- Ingalls, *Mathematical Modeling in Systems Biology*, MIT Press, 2013. (Sec. 5.4.1 Stoichiometric Network Analysis, pp. 150–160.)

Day 5 Balanced growth. The simplest model of a whole cell

- Hagen, Exponential growth of bacteria: Constant multiplication through division, Am. J. Phys. 78, 1290–1296 (2010). (First three sections only.)
- Jong^{*}, ..., Mathematical modelling of microbes: metabolism, gene expression and growth, J. R. Soc. Interface 14: 20170502 (2017).

Day 6 Maximizing the growth rate. Bacterial growth laws

- Molenaar^{*}, van Berlo, de Ridder, Teusink, Shifts in growth strategies reflect tradeoffs in cellular economics, *Molecular Systems Biology* **5**: 323 (2009).
- Scott, Gunderson, Mateescu, Zhang, Hwa^{*}, Interdependence of cell growth and gene expression: Origins and consequences, *Science* **330**, 1099–1102 (2010).

Day 7 Optimality of cell growth

• Towbin, Korem, Bren, Doron, Sorek, Alon^{*}, Optimality and sub-optimality in a bacterial growth law, *Nature Communications* 8 14123 (2017).

Day 8 Growth laws and protein sectors

• You, ..., Hwa^{*}, Coordination of bacterial proteome with metabolism by cyclic AMP signalling, *Nature*, 301–306 (2013).