Heinrich Heine University, Düsseldorf

BIQ 940 Mathematical Modeling of Biological Systems

(June 5, 2020)

Instructor: Deniz Sezer (PhD Physics, Cornell University) Teaching Assistant: Käthe Weit dzsezer@gmail.com kaethe.weit@yahoo.de

Evaluation:

Computer labs $(\times 9)$		25~%
Midterm exam (take-home)	May 30 - June 1	35~%
Final exam (take-home)	June 8 - 11	40~%
Total		100~%

Course Contents:

Day	Date	Lecture, Computer lab
		I. Modeling population growth
1	May 25	General information about the course. Cell division and exponential growth.
		Lab1: Numerical integration of exponential and logistic growth.
2	May 26	Antibiotic resistance. Competition of two species.
		Lab2: Antibiotic resistance under exponential and logistic growth.
		II. Modeling netwroks of chemical reactions
3	May 27	What is inside a cell? Chemical reaction networks.
		Lab3: Closed and open reaction networks.
4	May 28	Enzyme controlled reactions. Balanced exponential growth.
		Lab4: Autosynthetic network with enzyme-catalyzed reactions.
		III. Modeling autosynthetic cell growth
5	May 29	The simplest model of an autosynthetic cell.
		Lab5: Balanced growth and optimal growth rate of the simplest cell model.
	May 30	Midterm exam
	May 30 June 1	Midterm exam Pfingstmontag
6	May 30 June 1 June 2	Midterm exam Pfingstmontag Maximizing the cell growth rate. E. coli eats lactose.
6	May 30 June 1 June 2	Midterm exam Pfingstmontag Maximizing the cell growth rate. E. coli eats lactose. Lab6: Autosynthetic cell model of lactose consumption.
6	May 30 June 1 June 2	Midterm exam Pfingstmontag Maximizing the cell growth rate. <i>E. coli</i> eats lactose. Lab6: Autosynthetic cell model of lactose consumption. IV. Modeling transcription regulation
6	May 30 June 1 June 2 June 3	Midterm exam Pfingstmontag Maximizing the cell growth rate. <i>E. coli</i> eats lactose. Lab6: Autosynthetic cell model of lactose consumption. IV. Modeling transcription regulation Control of protein expression: transcription factors and operons.
6 7	May 30 June 1 June 2 June 3	Midterm exam Pfingstmontag Maximizing the cell growth rate. <i>E. coli</i> eats lactose. Lab6: Autosynthetic cell model of lactose consumption. IV. Modeling transcription regulation Control of protein expression: transcription factors and operons. Lab7: Glycerol utilization with induced lac operon.
6 7 8	May 30 June 1 June 2 June 3 June 4	Midterm exam Pfingstmontag Maximizing the cell growth rate. <i>E. coli</i> eats lactose. Lab6: Autosynthetic cell model of lactose consumption. IV. Modeling transcription regulation Control of protein expression: transcription factors and operons. Lab7: Glycerol utilization with induced lac operon. Growth time is a sum of the individual enzyme work times.
6 7 8	May 30 June 1 June 2 June 3 June 4	Midterm examPfingstmontagMaximizing the cell growth rate. E. coli eats lactose.Lab6: Autosynthetic cell model of lactose consumption.IV. Modeling transcription regulationControl of protein expression: transcription factors and operons.Lab7: Glycerol utilization with induced lac operon.Growth time is a sum of the individual enzyme work times.Lab8: Optimal protein composition does not depend on the k_{cat} 's.
6 7 8 9	May 30 June 1 June 2 June 3 June 4 June 5	Midterm examPfingstmontagMaximizing the cell growth rate. E. coli eats lactose.Lab6: Autosynthetic cell model of lactose consumption.IV. Modeling transcription regulationControl of protein expression: transcription factors and operons.Lab7: Glycerol utilization with induced lac operon.Growth time is a sum of the individual enzyme work times.Lab8: Optimal protein composition does not depend on the k_{cat} 's.Is bacterial growth rate optimized? Optimization through kinetics.
6 7 8 9	May 30 June 1 June 2 June 3 June 4 June 5	Midterm examPfingstmontagMaximizing the cell growth rate. E. coli eats lactose.Lab6: Autosynthetic cell model of lactose consumption.IV. Modeling transcription regulationControl of protein expression: transcription factors and operons.Lab7: Glycerol utilization with induced lac operon.Growth time is a sum of the individual enzyme work times.Lab8: Optimal protein composition does not depend on the k_{cat} 's.Is bacterial growth rate optimized? Optimization through kinetics.Lab9: On-the-fly optimization of the growth rate.

Supplementary readings:

Day 1 Exponential and logistic growth

• Phillips, Kondev, Theriot, Garcia, Orme, *Physical Biology of the Cell*, 2nd ed., Garland Science, 2013. (Computational Exploration: Growth Curves and the Logistic Equation, pp. 103–105.)

Day 2 Antibiotic resistance

• Gullberg, Cao, ..., Andersson^{*}, Selection of resistant bacteria at very low antibiotic concentrations, *PLoS Pathogens* 7: e1002158 (2011).

Day 3 What is inside a cell? Chemical reaction networks

- Liebermeister, Noor, Flamholz, Davidi, Bernhardt^{*}, Milo^{*}, Visual account of protein investment in cellular functions, *Proc. Natl. Acad. Sci. USA* **111**, 8488–8493 (2014).
- Ingalls, *Mathematical Modeling in Systems Biology*, MIT Press, 2013. (Sec. 2.1 Chemical Reaction Networks, pp. 21–25 and pp. 35–39.)
- Palsson, Systems Biology: Properties of Reconstructed Networks, Cambridge University Press, 2006. (Ch. 6 Basic Features of the Stoichiometry Matrix, pp. 89–95.)

Day 4 Enzyme rate laws. Balanced growth

- Ingalls, *Mathematical Modeling in Systems Biology*, MIT Press, 2013. (Sec. 3.1 Enzyme Kinetics, pp. 55–64.)
- Hagen, Exponential growth of bacteria: Constant multiplication through division, Am. J. Phys. 78, 1290–1296 (2010). (First three sections only.)

Day 5 The simplest model of an autosynthetic cell

• Jong^{*}, ..., Mathematical modelling of microbes: metabolism, gene expression and growth, J. R. Soc. Interface 14: 20170502 (2017).

Exam 1 Bacterial growth laws. The origin of eukaryotes

- Scott, Gunderson, Mateescu, Zhang, Hwa^{*}, Interdependence of cell growth and gene expression: Origins and consequences, *Science* **330**, 1099–1102 (2010).
- Zachar, Szilágyi, Szamádó, Szathmáry*, Farming the mitochondrial ancestor as a model of endosymbiotic establishment by natural selection, *Proc. Natl. Acad. Sci. USA*, **115**, E1504–E1510 (2018).

Day 6 Maximizing the cell growth rate

• Molenaar^{*}, van Berlo, de Ridder, Teusink, Shifts in growth strategies reflect tradeoffs in cellular economics, *Molecular Systems Biology* **5**: 323 (2009).

Day 7 The *lac* operon

- Kirschner and Gerhart, *The Plausibility of Life*, Yale University Press, 2005. (Ch. 4: Weak Regulatory Linkage, pp. 112-121.)
- You, ..., Hwa^{*}, Coordination of bacterial proteome with metabolism by cyclic AMP signalling, *Nature*, *Nature* **500**, 301–306 (2013).

Days 8 & 9 Optimality of cell growth

• Towbin, Korem, Bren, Doron, Sorek, Alon^{*}, Optimality and sub-optimality in a bacterial growth law, *Nature Communications* 8: 14123 (2017).