Symmergent Gravity and Its Black Hole Solutions

Durmuş Ali Demir

YEFAK 2023

İstanbul Üniversitesi – 27 Mayıs 2023

- \succ QFTs are inherent to flat spacetime.
- \succ QFTs are defined with an invariant action.
- \succ QFTs make sense with a UV cutoff.

L. Ford, arXiv: 9707.062 [gr-qc] R. Wald, arXiv: 0907.0416 [gr-qc]

UV COMPLETION BY GAUGE INVARIANCE

P. Anderson, Phys. Rev. Phys. 130, 439 (1962)
F.Englert & R. Brout, Phys. Rev. Lett. 13, 321 (1964)
P. Higgs, Phys. Rev. Lett. 13, 508 (1964)

Poincare-breaking UV cutoff Λ_{\wp} :

loop-level mass term = $\Lambda_{\wp}^2 \operatorname{tr}[V_{\mu}V^{\mu}]$ $\Lambda^2_{\wp} \longrightarrow$ "spurion Σ " (Poincare-breaking) $\operatorname{tr}[V^{\mu}\Sigma_{\mu\nu}V^{\nu}]$

The spurion $\Sigma_{\mu\nu}$ must be a Poincare-breaking one. It cannot involve *S*! What is it? What does correspond to the Higgs field ϕ ?

DD, Phys. Rev. D 107, 105014 (2023)
DD, Gen Relativ Gravit 53, 22 (2021)
DD, Adv. High En. Phys. 4652048 (2019)
DD, Adv. High En. Phys. 6727805 (2016)

EFFECTIVE QFT: Dimensional Regularization

QFTs without UV cutoff:

> Dimensional Regularization (
$$D \rightarrow 4$$
): $I_n = \int \frac{d^4p}{(2\pi)^4} \frac{1}{(p^2 - m^2 + i0)^n} \longrightarrow \mu^{4-D} \int \frac{d^Dp}{(2\pi)^D} \frac{1}{(p^2 - m^2 + i0)^n}$

C. Bollini & J. Giambiagi, Nuovo Cim. B12, 20 (1972) G. 't Hooft & M. Veltman, Nucl. Phys. B44, 189 (1972)

QFTs with UV cutoff:

- Question: How to extend the Dimensional Regularization to QFTs with UV cutoff such that logarithmic (global) and power-law (local) UV sensitivities come independently?
- ▶ Useful hint: Dimensional Regularization with $D \rightarrow 0$ and $D \rightarrow 2$ gather, respectively, the μ^4 and μ^2 terms.

I. Jack & D. Jones, Nucl. Phys. B342, 127 (1990) M. Al-Sarhi, D. Jones & I. Jack, Nucl. Phys. B345, 431 (1990) > In conformity with the Cutoff and Dimensional Regularizations, one finds the Detached Regularization:

$$\int^{(\Lambda_{\wp})} \frac{d^4p}{(2\pi)^4} \frac{1}{(p^2 - m^2 + i0)^n} \longrightarrow \begin{bmatrix} \frac{1}{(8\pi)^{2-n}} (\delta_{[D]0} + \delta_{[D]2}) \Lambda_{\wp}^{4-2n} \mu^{2n-D} + \delta_{[D]4} \mu^{4-D} \end{bmatrix} \int \frac{d^D p}{(2\pi)^D} \frac{1}{(p^2 - m^2 + i0)^n} \\ D \to 0 \text{ and } D \to 2 \qquad D \to 4$$

> Typical loop integral in Detached Regularization with \overline{MS} Renormalization:

$$\int^{(\Lambda_{\mathscr{G}})} \frac{d^4 p}{(2\pi)^4} \frac{1}{(p^2 - m^2 + i0)^n} = \begin{cases} \frac{i \Lambda_{\mathscr{G}}^4}{32\pi^2} & D = 0, n = 0\\ \frac{-i\Lambda_{\mathscr{G}}^2}{16\pi^2} \left(1 - \log\frac{\mu}{m}\right) & D = 2, n = 1\\ \frac{im^2}{16\pi^2} \left(1 + 2\log\frac{\mu}{m}\right) & D = 4, n = 1\\ \frac{i}{8\pi^2}\log\frac{\mu}{m} & D = 4, n = 2 \end{cases}$$

Λ₈ for <u>power-law</u> divergences
 μ for <u>logarithmic</u> divergences

DD, C. Karahan & O. Sargın, Phys. Rev. D 107, 045003 (2023)

EFFECTIVE QFT: Flat Spacetime to Curved Spacetime

adding curvature terms to make $g_{\mu\nu}$ dynamical is inconsistent (adding bare constants to a loop-level effective QFT)

Problem with effective QFTs:

curvature can arise only with the gauge fields V^{μ} through the defining relation $[\nabla_{\mu}, \nabla_{\nu}]V^{\lambda} = R^{\lambda}_{\rho\mu\nu}V^{\rho}$

DD, Phys. Rev. D 107, 105014 (2023)

Kinetic construct (bulk)	Kinetic construct (bulk+boundary)				
$I_V(\eta) = \int d^4x \sqrt{-\eta} c_V \mathrm{tr} \left[V^{\alpha\beta} V_{\alpha\beta} \right]$	$\tilde{I}_{V}(\eta) = \int d^{4}x \sqrt{-\eta} c_{V} \operatorname{tr}[V^{\alpha}(-D^{2}\eta_{\alpha\beta} + D_{\alpha}D_{\beta} + iV_{\alpha\beta})V^{\beta} + \partial_{\alpha}(V_{\beta}V^{\alpha\beta})]$				
$I_V(\eta) =$	$\tilde{I}_V(\eta)$				

Flat spacetime (metric= $\eta_{\mu u}$)	Curved spacetime (metric= $g_{\mu\nu}$)			
$-I_V(\eta) + \tilde{I}_V(\eta) = 0$	$-I_V(g) + \tilde{I}_V(g) = -\int d^4x \sqrt{-g} c_V \operatorname{tr}[V^{\alpha}R_{\alpha\beta}({}^{g}\Gamma)V^{\beta}]$			
$\eta_{\alpha\beta} \to g_{\alpha\beta}$ $\partial_{\alpha} \to \nabla_{\alpha}$				

EFFECTIVE QFT: Poincare-Breaking Spurion

$$\delta S_{pow} = \int d^4x \sqrt{-\eta} \left\{ -c_0 \Lambda_{\wp}^4 - \sum_m c_m m^2 \Lambda_{\wp}^2 - c_\phi \Lambda_{\wp}^2 \phi^\dagger \phi + c_V \Lambda_{\wp}^2 \operatorname{tr}[V_\mu V^\mu] \right\}$$

Poincare-breaking spurion:
$$\Lambda_{\&}^2 \eta_{\mu\nu} \rightarrow \Sigma_{\mu\nu}$$
General covariance: $\eta_{\mu\nu} \rightarrow g_{\mu\nu}$ $\partial_{\mu} \rightarrow \nabla_{\mu}$

$$\delta S_{pow} = \int d^4x \sqrt{-g} \left\{ -\frac{c_0}{16} \left(g^{\mu\nu} \Sigma_{\mu\nu} \right)^2 - \frac{1}{4} \sum_m c_m m^2 g^{\mu\nu} \Sigma_{\mu\nu} - \frac{c_\phi}{4} g^{\mu\nu} \Sigma_{\mu\nu} \phi^{\dagger} \phi + c_V (\Sigma_{\mu\nu} - R_{\mu\nu} (^g\Gamma)) \operatorname{tr}[V^{\mu}V^{\nu}] \right\}$$
yet-to-be specified spurion

➤ In an arbitrary second-quantized theory with no presumed properties, "... lack of translational invariance would just be interpreted as the effect of gravitational fields being present, which are not translational invariant."

C. Froggatt & H. Nielsen, Ann. Phys. 517, 115 (2007)

 \triangleright QFTs are inherent to flat spacetime and their UV cutoff Λ_{\wp} is the only translation (Poincare) breaking source. There must exist thus an affinity between the UV cutoff Λ_{\wp} in flat spacetime and curvature in curved spacetime.

 $\Gamma^{\lambda}_{\mu\nu}$ is independent of the Levi-Civita connection ${}^{g}\Gamma^{\lambda}_{\mu\nu}$ so the affine curvature $\mathbb{R}_{\mu\nu}(\Gamma)$ remains non-zero in flat spacetime.

 \succ In view of this affinity, the spurion $\Sigma_{\mu\nu}$ can be taken as the Ricci curvature $\mathbb{R}_{\mu\nu}(\Gamma)$ of an affine connection $\Gamma_{\mu\nu}^{\lambda}$:

 $\Sigma_{\mu\nu} \Rightarrow \mathbb{R}_{\mu\nu}(\Gamma) = \partial_{\rho}\Gamma^{\rho}_{\nu\mu} - \partial_{\nu}\Gamma^{\rho}_{\rho\mu} + \Gamma^{\rho}_{\rho\lambda}\Gamma^{\lambda}_{\nu\mu} - \Gamma^{\rho}_{\nu\lambda}\Gamma^{\lambda}_{\rho\mu}$

 $\mathbb{R}_{\mu\nu}(\Gamma)$ is a dynamical field at the same level as the Higgs field thanks to the dynamics of $\Gamma^{\lambda}_{\mu\nu}$.

EFFECTIVE QFT: Metric-Palatini Gravity

> Affine curvature $\mathbb{R}(\Gamma)$ gives rise to metric-Palatini gravity:

$$\delta S_{pow} = \int d^4x \sqrt{-g} \left\{ -\frac{c_0}{16} \left(g^{\alpha\beta} \mathbb{R}_{\alpha\beta}(\Gamma) \right)^2 - \frac{g^{\alpha\beta} \mathbb{R}_{\alpha\beta}(\Gamma)}{16\pi G_N} - \frac{c_\phi}{4} g^{\alpha\beta} \mathbb{R}_{\alpha\beta}(\Gamma) \phi^{\dagger} \phi + c_V(\mathbb{R}_{\alpha\beta}(\Gamma) - R_{\alpha\beta}(^g\Gamma)) \operatorname{tr}[V^{\alpha} V^{\beta}] \right\}$$

> Metrical gravity emerges once the affine connection $\Gamma^{\lambda}_{\alpha\beta}$ is integrated out. To that end, one solves the EoM of $\Gamma^{\lambda}_{\alpha\beta}$:

EFFECTIVE QFT: Emergent General Relativity

General solution of the affine connection:

$$\Gamma^{\lambda}_{\alpha\beta} = {}^{g}\Gamma^{\lambda}_{\alpha\beta} + \frac{1}{2}(Q^{-1})^{\lambda\rho} \big(\nabla_{\!\!\alpha} Q_{\beta\rho} + \nabla_{\!\!\beta} Q_{\rho\alpha} - \nabla_{\!\!\rho} Q_{\alpha\beta} \big)$$

> Enormity of the Planck scale $G_N^{-1/2}$ leads to:

•
$$\Gamma^{\lambda}_{\alpha\beta} = {}^{g}\Gamma^{\lambda}_{\alpha\beta} + 8\pi G_{N} (\nabla_{\alpha}Q^{\lambda}_{\beta} + \nabla_{\beta}Q^{\lambda}_{\alpha} - \nabla^{\lambda}Q_{\alpha\beta}) + \mathcal{O}(G^{2}_{N})$$

•
$$\mathbb{R}_{\alpha\beta}(\Gamma) = R_{\alpha\beta}({}^{g}\Gamma) + 8\pi G_{N}\left(\nabla^{\mu}\nabla_{\alpha}\delta^{\nu}_{\beta} + \nabla^{\nu}\nabla_{\alpha}\delta^{\mu}_{\beta} - \Box\delta^{\mu}_{\alpha}\delta^{\nu}_{\beta} - \nabla_{\alpha}\nabla_{\beta}g^{\mu\nu} + (\alpha \leftrightarrow \beta)\right)Q_{\mu\nu} + \mathcal{O}(G_{N}^{2})$$

derivatives of the scalars ϕ and gauge fields V_i^{lpha}

EFFECTIVE QFT: Emergent General Relativity

gauge symmetries got restored!

 $\succ \int d^4x \sqrt{-g} \{ c_V(\mathbb{R}_{\alpha\beta}(\Gamma) - R_{\alpha\beta}(^g\Gamma)) \operatorname{tr}[V^{\alpha}V^{\beta}] \} = \int d^4x \sqrt{-g} \{ 0 + \mathcal{O}(G_N) \}$

$$\succ \int d^4x \sqrt{-g} \left\{ -\frac{1}{16\pi G_N} g^{\alpha\beta} \mathbb{R}_{\alpha\beta}(\Gamma) \right\} = \int d^4x \sqrt{-g} \left\{ -\frac{R(g)}{16\pi G_N} + \mathcal{O}(G_N) \right\}$$

quadratic corrections to scalar masses give cause to non-minimally coupled scalar fields

GR emerged!

$$\succ \int d^4x \sqrt{-g} \left\{ -c_{\phi} g^{\alpha\beta} \mathbb{R}_{\alpha\beta}(\Gamma) \phi^{\dagger} \phi \right\} = \int d^4x \sqrt{-g} \left\{ -\frac{c_{\phi}}{4} R(g) \phi^{\dagger} \phi + \mathcal{O}(G_N) \right\}$$

 \triangleright

quartic corrections to vacuum energy give rise to quadratic curvature terms

$$\int d^4x \sqrt{-g} \left\{ -\frac{c_0}{16} \left(g^{\alpha\beta} \mathbb{R}_{\alpha\beta}(\Gamma) \right)^2 \right\} = \int d^4x \sqrt{-g} \left\{ -\frac{c_0}{16} (R(g))^2 + \mathcal{O}(G_N) \right\}$$

EFFECTIVE QFT: Renormalized QFT + Emergent GR

$$S_{QFT+GR} = S\left(g,\psi\right) + \delta S(g,\psi) + \int d^4x \sqrt{-g} \left\{ -\frac{R(g)}{16\pi G_N} - \frac{c_0}{16}R(g)^2 - \frac{c_{\phi}}{4}R(g)\phi^{\dagger}\phi + \mathcal{O}(G_N) \right\}$$

<u>QFT</u> with

- dimensional-regularization in curved background geometry,
- loop corrections computed in the flat spacetime QFT

$R + R^2$ gravity with

- non-minimal coupling to scalars,
- loop-induced coefficients originating
 from the flat spacetime QFT.

symmetry-restoring emergent gravity = "symmergent gravity"

Symmergent Gravity: Main Properties and Salient Predictions

new massive particles are a must for Newton's constant to take the right value	ne cc	ew particles do not have to ouple to the SM particles		Higgs n particle to SM p	nass stabi es (<i>e.g.</i> da particles v	lity requires new ork matter) to couple weakly/feebly.		
Higgs mass stability requires neutrinos to be Dirac	Hi ca	Higgs-curvature coupling (10 % in the SM) can reveal Higgs couplings to new particles				pure Einstein gravity is attained if nature has equal numbers of bosonic and fermionic degree of freedom		
cosmic inflation is naturally of th Starobinsky type but scalar field inflation can also be realized	9	black hole shadow, photon deflection angle and quasip oscillations can provide viab	radius, periodic ple testk	oeds		DD, Phys. Rev. D 107, 1050 DD, Gen Relativ Gravit 53, DD, Galaxies 9 DD, Adv. High En, Phys. 46520	14 (2023) 22 (2021) 9, 2 (2021)	
detection of new particles can wait for high-luminosity LHC		the Universe may contain dark stars, dark planets, even dark galaxies.			K. C DD	 DD, Adv. High En. Phys. 4032048 (201 DD, Adv. High En. Phys. 6727805 (201 K. Cankoçak <i>et al.</i>, Eur. Phys. J. C80, 1188 (202 DD, C. S. Ün, arXiv: 2005.03589 [hep-ph] (202 		
		0		I. Çi	I. Çimdiker, DD, A. Övgün, Phys. Dark Univ. 34, 100900 (2021) J. Rayimbaev <i>et al.</i> , Annals of Physics 454, 169335 (2023) R. Pantig, A. Övgün, DD, Eur. Phys. J. C83, 250 (2023) S. Jalalzadeh <i>et al.</i> , Phys. Dark. Univ. 40, 101227 (2023)			

Symmergent Black Holes: The Action

$$S_{sgr} = \int d^4x \sqrt{-g} \left\{ -\frac{R(g)}{16\pi G_N} - \frac{c_0}{16} R(g)^2 - V_{tot} \right\}$$

$$V_{tot} = V_{tree} + \delta V$$

$$\delta V = \frac{1}{64\pi^2} \operatorname{str}[M^4]$$

$$\delta V = \frac{(1-\hat{\alpha})}{24\pi G_N^2 c_0}$$
(one possible parametrization)

(if bosons and fermions had equal masses m_0)

J. Rayimbaev *et al.*, Annals of Physics 454, 169335 (2023) R. Pantig, A. Övgün, DD, Eur. Phys. J. C83, 250 (2023)

$$R_{\mu\nu} - \frac{1}{2}R g_{\mu\nu} - 2\pi G_N c_O \left(R_{\mu\nu} - \frac{1}{4} R g_{\mu\nu} + g_{\mu\nu} - \nabla_{\!\mu} \nabla_{\!\nu} \right) R - 8\pi G_N V_{tot} = 0$$

> One class of solutions corresponds to constant scalar curvature ($R = R_0 = -8\pi G_N V_{tot}$)

- dS solution ($V_{tot} > 0$ or $n_B > n_F$)
- AdS solution ($V_{tot} < 0$ or $n_B < n_F$)
- c_o disappears from asymptotically-flat zero-R solution

W. Nelson, Phys. Rev. D 82, 104026 (2010) H. Lü *et al.* Phys. Rev. Lett. 114, 171601 (2015)

- > Another class corresponds to corresponds to variable scalar curvature ($R \neq \text{constant}$)
 - There exist asymptotically-flat solutions explicitly involving co

H. Buchdahl, Nuovo Cim. 23, 141 (1962) H. Nguyen, Phys. Rev. D 107, 104009 (2023) B. Puliçe, R. Pantig, A. Övgün, DD, work in progress (2023)

I. Çimdiker, DD, A. Övgün, Phys. Dark Univ. 34, 100900 (2021)

gravity theory ($V_{tot} = 0$)

Symmergent gravity action:

$$\int d^4x \,\sqrt{-g} \,\left(-\frac{R}{16\pi G_N}-\frac{c_0}{16}R^2\right)$$

static spherically-symmetric solutions

Buchdahl-Nguyen solution:

$$(ds)^{2} = A(r) (dt)^{2} - \frac{(dr)^{2}}{B(r)} - C(r) \left((d \theta)^{2} + \sin^{2} \theta (d\phi)^{2} \right)$$

$$A(r) = e^{-\varphi(r)} \left(1 - \frac{r_s}{r}\right)$$

$$B(r) = e^{\varphi(r)} \left(1 - \frac{r_s}{r}\right)$$

$$C(r) = e^{-\varphi(r)} r^2$$

$$\frac{d}{dr}\left((r^2 - rr_s)\frac{d\varphi(r)}{dr}\right) = -\gamma r^2 \varphi(r)$$
$$\gamma = -\frac{1}{6\pi c_0} = -\frac{64\pi}{3(n_b - n_f)}$$

H. Buchdahl, Nuovo Cim. 23, 141 (1962) H. Nguyen, Phys. Rev. D 107, 104009 (2023) B. Puliçe, R. Pantig, A. Övgün, DD, work in progress (2023)

➤ Conformal factor $\varphi(r)$ diverges at the Schwarzschild horizon $r = r_s \equiv 2M$ and gets suppressed exponentially (sinusoidally) at large r for $n_B - n_F < 0$ ($n_B - n_F < 0$).

> Metric potentials A(r) and B(r) approach to the flat spacetime limit of A(r) = B(r) = 1 at large r. The approach is exponential and different $n_B - n_F < 0$ values are hard to distinguish observationally.

➤ Metric potentials A(r) and B(r) approach to the flat spacetime limit of A(r) = B(r) = 1 at large r. The approach is sinusoidal and gradual and different $n_B - n_F > 0$ values could be distinguished observationally.

▶ Photonsphere radius r_{PS} for $n_B - n_F < 0$ (left) and $n_B - n_F > 0$ (right).

B. Puliçe, R. Pantig, A. Övgün, DD, work in progress (2023)

> Hawking temperature as a function of the radial coordinate r for $n_B - n_F < 0$ (left) and $n_B - n_F > 0$ (right).

Hawking radiation from photon, neutrino etc. :

Hawking radiation from new dark fields:

Black hole temperature and evaporation rate change if symmergent particles are included!

Hawking radiation={ γ , ν } + {light symmetry particles}

D. Gogoi, A. Övgün, DD, work in progress (2023)

Thank you.