GazePointer: A Real Time Mouse Pointer Control
Implementation Based On Eye Gaze Tracking

Muhammad Usman Ghani, Sarah Chaudhry, Maryam Sohail, Muhammad Nafees Geelani
Department of Electrical Engineering
COMSATS Institute of Information Technology, Lahore, Pakistan.
Email:{ch.usman.ghani, sarah.chaudhry71, maryamsohail22, ngeelani48} @ gmail.com

Abstract—The field of Human-Computer Interaction (HCI)
has witnessed a tremendous growth in the past decade. The
advent of tablet PCs and cell phones allowing touch-based control
has been hailed warmly. The researchers in this field have
also explored the potential of ‘eye-gaze’ as a possible means
of interaction. Some commercial solutions have already been
launched, but they are as yet expensive and offer limited usability.
This paper strives to present a low cost real time system for eye-
gaze based human-computer interaction.

I. INTRODUCTION

Innovative and efficient techniques of HCI are being de-
veloped rapidly. It is an active research field of many experts.
This paper concentrates on a human computer interaction
application based on eye-gaze tracking. Human eyes carry
much information which can be extracted and can be used in
many applications i.e. Computer Interaction. Eye gaze reflects
a person’s point of interest. Eye gaze tracking is aimed to keep
track of human eye-gaze. “Eye movements can be captured
and used as control signals to enable people to interact with
interfaces directly without the need for mouse or keyboard
input” [1]. This can be achieved by employing computer vision
and image processing algorithms.

Technique explained in the paper is non-invasive and user-
friendly, as it does not require a complex hardware or wires.
Moreover, it does not have any physical interaction with the
user. A cheap solution is provided for gaze-tracking. A built-in
web-cam in laptop is used as a capturing device. A software
based solution is proposed for controlling mouse pointer using
‘eye gaze’. It is a natural and efficient way of interaction with
the computer. Mostly the methods of interaction available are
complex and cumbersome. Using this method, for controlling
mouse pointer increases the interaction efficiency and reduces
complexity. This technique is a special boon for disabled
persons, such as spinal cord injured, or paralyzed patients.
These patients are entirely dependent on assistance. Currently,
disabled people usually type on the computer keyboard with
long sticks that they hold in their mouth [2], but the technique
being presented is a benefaction for handicaps to help them
be independent in their lives. Giving them a chance to work,
socialize, and entertain in their lives.

The remainder of this paper is structured as follows.
Related research work is presented in Section II. Section
IIT presents an overview of proposed system. Proposed Eye
Gaze Tracking algorithm is described in Section I'V. Section V
includes experimental results. Section VI presents conclusion
of this research work and future research directions.

978-1-4799-3043-2/13/$31.00 2013 IEEE

II. RELATED RESEARCH

A number of eye-gaze tracking techniques are already
available. Some researchers performed eye gaze tracking using
the Electro-Oculography tracking technique. It takes advantage
of the fact that an electrostatic field exists around the eyes
which changes with eye ball movement and these small
differences can be recorded with help of electrodes placed
on the skin around eye. The use of electrodes makes this
technique troublesome and not well-suited for everyday use, an
application can be found in [3]. A detailed review of Electro-
Oculography tracking technique is presented in [4].

Various methods have been developed based on tracking
contact lenses. These systems perform very well, but they are
invasive, uncomfortable, and often require a topical anesthetic.
“Matin and Pearce (1964) developed a scleral contact lens
system that uses a pair of noncoplanar 4-mm-diameter mirrors
embedded in the surface of the lens on opposite sides of
the pupil, their system has a resolution of 0.00028 within a
range of 10 for all three dimensions” [5]. A laser-based eye-
tracking system is proposed in [5], it falls under the category
of head-mounted eye tracking systems, which is not favorable
for everyday use. Other example of head mounted trackers are

(61, [71.

Video-based systems have also been reported in literature.
In past, low processing power of computing devices limited
the use of video-based techniques for Eye Gaze Tracking
as computing devices did not had the potential to provide
real time eye gaze tracking operation. In last few decades,
high processing power computing devices have been made
available which motivated the researchers to develop video-
based solutions for Eye Gaze Tracking. Several video-based
system methods have been reported in literature, a few of them
are Corneal Reflections [2], Purkinje Image Tracking [8]. This
paper also presents a video-based eye gaze tracking system
and attempts to take advantage of built-in web-cam in laptop
for eye gaze tracking. It presents a solution using computer
vision and image processing algorithms. This is an attempt
to report a low cost eye gaze tracking system for Human-
Computer Interaction.

III. SYSTEM DESCRIPTION

An illustration of setup for GazePointer is presented in
Figure 1. The system consists of a laptop built-in web-cam
which takes live image frames and GazePointer application
processes the frames to extract user’s Point of Gaze (PoG).

~
o ’ web camera

~a -
. >

&

i screen

Fig. 1. Setup for Eye Gaze Tracking [9]

Proposed system performance was analyzed in different sce-
narios and some limitations were defined, which are as follows.
User head should be at the same altitude as the web-cam.
Distance between user’s eyes and web-cam should be in the
range of 20-75 cm. This system can’t be used with glasses on,
lighting conditions should be good and head movements are
not allowed. Currently system is only tested for frontal faces.

IV. EYE GAZE TRACKING ALGORITHM

Overview of Eye gaze tracking algorithm is presented in
Figure 2. It consists of three major modules: (i) Facial features
extraction; (ii) Eyes features detection and (iii) Point of Gaze
calculation.

Algorithm presented in this paper performs operations on
grayscale images. Camera captures BGR or YCbCr color
space images, depending upon default settings. As a first step
BGR — grayscale color space conversion is performed. Basic
image pre-processing procedures are performed at each stage
of algorithm. Histogram equalization is applied on grayscale
images to normalize contrast in acquired image. It attempts to
equalize the image histogram by adjusting pixel intensities in
accordance with histogram [10]. For face detection, a machine
learning based approach is used, Object detection algorithm
proposed in [11]. This technique employs a Haar-features
based approach for object detection, which makes the rapid
and accurate object detection possible. Eye patch extraction
can also be performed using same object detection algorithm
described in [11]. For pupil detection, extracted eye patch
must be smoothed to avoid false detections. Pupil detection
technique being used is Hough Circle Transform (HCT) [12].
For image binarization, edge detection approach is used. Eye
region being used to trace the Test Area is to be detected, for
this purpose a simple calibration technique is designed, which
is explained later in this section. After features detection, a
simple Point of Gaze calculation algorithm is designed which
systematically interrelates the detected feature points to result
in a precise PoG calculation.

A. Facial Features Extraction

This paper intends to present an eye gaze tracking algo-
rithm and facial features detection i.e. face and eyes extraction
is an important task in this regard.

p

? Start
v

GazePointer Start
GazePointer

Acquire Video frames from

webcam
Facial Features l
Extraction _ . N
Histogram Equalization
Face Detection
Eye Features
Extraction

Eye Patch Extraction

Pupil Detection

Hough Circle Transform

Finding the Reference Point

Calculating the Scaling
Factor

Point of Gaze Calculation l

Computing the PoG

Screen Co-ordinates

_ |

Fig. 2.

‘ Cursor

Overview of GazePointer algorithm

1) Histogram Equalization: Histogram equalization is a
technique for contrast normalization by adjusting image inten-
sities in accordance with image histogram [10]. It is a contrast
enhancement procedure which takes benefit of histogram data
and attempts to equalize the histogram. For performing facial
features detection, histogram equalization gives benefit of
better performance in terms of accuracy.

2) Face and eye patch extraction: Face detection is a
classification problem i.e. classify acquired image into face and
non-face regions. A rapid and robust object detection algorithm
is employed to perform face and eyes extraction, proposed
in [11]. It follows a machine learning based approach. Haar-
features based classifiers can be trained for several objects
detection i.e. face, eyes. These classifiers are trained for false
positive and false negative samples as well. A set of simple
features are obtained from training data. Haar- features are
calculated by the difference between dark-region and light-
region pixel values. A threshold value is fixed at learning stage
i.e. feature is said to be present if difference value comes out
to be greater than the value fixed as threshold.

Face and eyes detection is a complex procedure, require
much computations to solve this classification problem. For
this purpose, acquired images are down-sampled, face is
detected and face co-ordinates are mapped to original image
using simple calculations. Same practice is exercised for eye
patch extraction to reduce the computation time; this approach
has proved to be effective in order to achieve real-time pro-
cessing of the frame.

B. Eye Features Detection

Eye gaze tracking is a complex problem; it needs to acquire
a number of facial and eye features to compute Point of Gaze
(PoG). In this regard, first problem is to identify necessary and
sufficient eyes features which can result in an accurate PoG
calculation. Two important eye features necessary to compute
PoG were identified, which are (i) Pupil and (ii) Eye Corners.
This section presents the techniques utilized for these eye
features extraction.

1) Pupil Detection: Pupil is the central and focusing part
of eye, located at center of iris. Light enters into eye through
pupil, and finding the position of pupil is principal point of
interest in proposed technique. Eye gaze projection is based
upon the relative displacement of pupil from center of eye.
Pupil needs to be detected to project user’s eye gaze in the “Test
Area’. The first step in this regard, is to detect the iris from the
frames captured with web-cam, and then pupil can be found, as
it is situated at center of iris. Iris is a circular region and can be
detected using the very commonly used Hough circle transform
technique [12]. Hough Circle Transform takes a binary image
as an input and detects circle in it. The quality of the image
needs to be good to extract every possible information from it.
First, the input image is enhanced for good quality and then
“Hough Circular transform” is applied on it.

To enhance image, smoothing is applied which in-effect
reduces noise. For this purpose, grayscale image is passed
through Gaussian blurring filter. The technique used for iris
detection is ‘Hough Circle Transform’. Canny edge detection
filter [10] is applied on enhanced grayscale image to compute

156

i b

> &2 y

| D
.I'\ 4) l\\g/;"‘

Fig. 3. 4-Point Simple Calibration

a binary image. HCT is then applied on binarized image to
compute Pupil points in both eyes.

2) Eye Corners Extraction: Eye corners are such an im-
portant eye feature that a lot of information about eyes can be
extracted using eye corner locations. Once eye corner locations
are known, they can be used to estimate eye width, eye height
and most importantly this information can be used to locate
center of eye.

Another fact is established through several experiments that
eye corners extraction is not suitable, to get to know about
movable area for iris in eye to trace the “Test Area’. For this
purpose, after analysis it was concluded that computer is not
that intelligent to discover those boundary points in eye, user
should feed some information at start and some procedures
must be implemented to use this information in intelligent
way to extract features i.e. movable area for iris, center of
eye etc. To meet this requirement, a simple 4-point calibration
technique is designed.

A 4-point calibration algorithm is designed for this system,
shown in Figure 3. Idea behind designing such calibration
algorithm is, it can be helpful to calculate eye region which
will be used to scan the ‘Test Area’. This simple algorithm
allows the user to look at all corner points in free mode. Here
‘free mode’ suggests that user is allowed to stay at a corner
point for an arbitrary time duration. This idea helps the system
to reduce errors occurred due to erroneous pupil detections
during calibration.

C. Point of Gaze Calculation Algorithm

Point of gaze can be referred to as the point of interest
of user in ‘Test Area’. User’s point of interest i.e. PoG can
be calculated by extracting eye patch and some important eye
features. Important eye features sufficient to calculate PoG has
been identified and discussed in earlier sections.

It is the most important and critical stage of algorithm as it
involves using already found feature points to calculate PoG.
This stage must effort to compensate the errors occurred at
detection stage.

1) Finding the Reference Point: 1t is absolutely in-feasible
to perform PoG calculations without a reference point. It will
be required to translate pupil movements in eyes into cursor
movements on screen. ‘Center of Eye’ can act as a desired
candidate for reference point. Eye’s movable region has already
been computed during calibration stage, a simple averaging of
x and y co-ordinates can result in Center of Eye calculation.
This concept is illustrated in Equation 1 and Equation 2.

TopRightCorner, + TopLeftCorner,

E. =
COE, >

ey

_ TopRightCorner, + BottomRightCorner,
B 2
2

Where, COE, and COE, denote x and y coordi-
nates of center point of eye’s movable region respectively.
TopRightCorner, TopLeftCorner, BottomRightCorner
and BottomLe ftCorner construct a rectangular region which
represent eye’s movable region.

COE,

2) Calculating the Scaling Factor: In this step the cursor
movements and pupil movements were interrelated i.e. it was
to be found that how many pixels a cursor will traverse for
a single pixel movement of the pupil. For this calculation,
width and height of eyes were associated with the width and
height of the screen. Screen width and height is constant, but
eye’s movable region width and height is subject to change
in different scenarios. Eye’s movable region width and height
can be computed using Equation 3 and Equation 4.

3)
“)

Weye = TopLeftCorner, — TopRightCorner,

heye = TopRightCorner, — BottomRightCorner,

Where, weye and hey. represent width and height of eye’s
movable region respectively. Now scaling factor is to be
computed for x and y coordinates with help of Equation 5
and Equation 6.

R, = Wscreen (5)
Weye
hSCT'eeTL

R, = —— 6

y Hoge (6)

Where, Wsereen, and hgereen, denote width and height of
‘Test Area’. R, and R, represent scaling factor for x and y
coordinates.

3) Computing the PoG: This is the final step of PoG
calculation as well as GazePointer algorithm. This stage will
realize the significance of reference point. It translates the
pupil movements in eyes into cursor movements in ‘Test Area’.
Taking assumption that reference point in eye corresponds to
center point in ‘Test Area’, pupil movements can be simply
translated into cursor movements using Equation 7 and Equa-
tion 8.

PoG, = =2 4 Ry x7, (7)
hscreen
POszT—i—RyX’ry (8)

Where, PoG, and PoG,, represent X and y coordinates of
Point of Gaze respectively and r, denotes pupil distance in x
direction from reference point and r, denotes pupil distance
in y direction from reference point and they can be computed
by using Equation 9 and Equation 10.

re = COI, — COE, ©)]

ry = COIL, — COE, (10)

Where, COI represents pupil location. Figure 4 illustrates
this procedure.

157

Ol

COE Displacemen COE

Craze

Projection

Center Point of
Test Area
Fig. 4. Computing Point of Gaze using Reference Point

TABLE 1. EXPERIMENT 1 ACCURACY RESULTS

Extracted Features Accuracy
100%
100%

87%

Face Detection

Eye Patch Extraction

Pupil Detection

V. EXPERIMENT RESULTS

Two experiment setups were designed to test the developed
system.

A. Experiment 1: GazePointer GUI

A ‘Graphical User Interface’ is designed to demonstrate
the results. First area show the extracted eye-patch from the
captured frames and second area indicates HCT results. The
portion under it represents the ‘Test Area’ for movement of
mouse pointer. A small GazePointer is shown in the Figure 4
which shows the projection of eye movements.

1) Experiment 1 Results: In this section, results of exper-
iment 1 are presented. Accuracy results of experiment 1 are
presented in Table I. Overall accuracy of 87% is being reported
for experiment 1. Experiment 1 efficiency results are presented
in Table II. Overall time for processing of 43 mS per frame is
being reported, which means GazePointer system works at 23
fps.

2) Experiment 1 Results Discussion: Face detection pro-
vided satisfactory results. Accuracy did not drop with changing
lighting conditions, backgrounds, and distance. This imple-
mentation detects frontal faces only. Its accuracy remained
100% when tested on a limited dataset of 223 frames. A few

TABLE II. EXPERIMENT 1 ACCURACY RESULTS
Extracted Features Processing Time (mS)
Face Detection 13-15
Eye Patch Extraction 10-15
Pupil Detection 6-10
PoG Computation 2-3

Gped Ehider

I

Fig. 5. PoG calculation results in different frames

Fig. 7. Extracted Eye Patch in different frames

samples of face detection results are presented in Figure 6.
GazePointer is assumed to be a system working with real-
time constraints. Captured frames were down sampled 5 times
to reduce the computation time. Before re-sizing, it took 500-
600 mS per frame and it reduced to only 13-15 mS per frame.

Eyes detection implementation was done accurately in al-
most every case when face was detected. This implementation
was also tested on a limited dataset of 223 frames and it
resulted in 100% accuracy. Eyes detection results are given in
Figure 7. This implementation resulted in a large computation
time. The computation time was reduced by limiting the region
of interest to detected face only. Then this face region was
down sampled 2 times. Computation time was reduced to 10-
15 mS per frame after modifying the implementation.

HCT implementation resulted in a few mS processing
time. Initial algorithm resulted in lots of false detections. It
resulted in accuracy of 80% when tested on a limited dataset
of 223 frames. Pupil detection results are given in Figure
8. The rate of false detections was decreased by applying a
threshold between previous frame pupil location and present
frame pupil location. Thus, accuracy improved to 87%. Point
of Gaze Calculation resulted in satisfactory results when tested
on a limited dataset PoG calculation results are presented in
Figure 5. Projections followed user’s eye-gaze. False detections
were involved because pupil detection results were not 100%
accurate.

Fig. 8. Pupil detection in different frames

158

Fig. 9. Experiment 2 Results in different frames

TABLE III. EXPERIMENT 2 ACCURACY RESULTS
Extracted Features Accuracy
Pupil Detection 100%

PoG Computation

B. Experiment 2: Test Bench

A simple Test Bench model was designed to test the
accuracy of this system. Artificial eyes instead of human eyes
were used. Application prompts user to input a number. Iris
moves in accordance with the number entered. Algorithm
processes these iris movements and projects the eye gaze in
‘Test Area’.

1) Experiment 2 Results: Accuracy results of experiment 2
are presented in Table III. Overall accuracy of 100% is being
reported for experiment 2. A few results from experiment 2
are shown in Figure 9. Time efficiency results of experiment
2 are shown in Table IV. Overall processing time of 13 mS
per frame is being reported for experiment 2.

VI. CONCLUSION

In this paper a computer vision algorithms based solution is
implemented. An attempt has been made towards development
of low cost, real-time solution for eye gaze tracking. There
are many applications of eye gaze tracking, for instance in
HCI, appliances control, usability studies and in advertising

TABLE IV. EXPERIMENT 2 EFFICIENCY RESULTS
Extracted Features Processing Time (mS)
Pupil Detection 6-10
PoG Computation 2-3

effectiveness. Accuracy for features extraction algorithms de-
pends upon image quality and lighting conditions. Algorithm
performance drops down in poor lighting environment. Com-
puter Vision algorithms are employed for features detection
and they don’t perform well in bad lighting. PoG is accurately
calculated provided detections are correct. Pointer size is large
due to low web-cam resolution and small ‘Test Area’ size.

To improve the projection results, image quality must
be enhanced. Better image quality would improve accuracy
of computer vision algorithms. Sophisticated Pre-Processing
algorithms should be introduced to compensate lighting vari-
ations and web-cam resolution should also be increased to
decrease the pointer size. A feature describing head-posture
must also be introduced, it will allow the user to move-
freely while interacting with system. Introducing the concept
of gaze estimation along with gaze projection will be beneficial
because it will improve gaze projections drastically. The idea
of gaze estimation promises to learn from usage statistics
and infer gaze projections. Particle Filters can be used to
implement gaze estimation because they are quite simple and
has resemblance with problem of gaze estimation.

ACKNOWLEDGMENT

The authors would like to thank Mr. Muhammad Adnan
Siddique for his continuous guidance during this research
work.

REFERENCES

[1] Alex Poole and Linden J. Ball, “Eye Tracking in Human-Computer In-
teraction and Usability Research: Current Status and Future Prospects,”
in Encyclopedia of Human Computer Interaction (30 December 2005)

Key: citeulike:3431568, 2006, pp. 211-219.

D. H. Yoo, J. H. Kim, B. R. Lee, and M. J. Chung, “Non-contact
Eye Gaze Tracking System by Mapping of Corneal Reflections,” in
Fifth IEEE International Conference on Automatic Face and Gesture
Recognition (FGR02), 2002, pp. 94-99.

Rafael Barea, Luciano Boquete, Manuel Mazo, and Elena Lpez, “Sys-
tem for assisted mobility using eye movements based on electrooculog-
raphy,” IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHA-
BILITATION ENGINEERING, vol. 10, no. 4, pp. 209-217, DECEMBER
2002.

H. Singh and J. Singh, “A Review on Electrooculography,” International
Journal of Advanced Engineering Technology, vol. 111, no. 1V, 2012.

K. Irie, B. A. Wilson, and R. D. Jones, “A laser-based eye-tracking
system,” Behavior Research Methods, Instruments, & Computers, vol.
34, no. 4, pp. 561-572, 2002.

P Ballard and George C. Stockman, “Computer operation via face
orientation,” in Pattern Recognition, 1992. Vol.I. Conference A: Com-
puter Vision and Applications, Proceedings., 11th IAPR International
Conference on, 1992, pp. 407-410.

T. Horprasert, Y. Yacoob, and L.S. Davis, “Computing 3-D head
orientation from a monocular image sequence,” in Second International
Conference on Automatic Face and Gesture Recognition, 1996, pp. 242-
247.

K. Arai and M. Yamaura, “Computer Input with Human Eyes-Only
Using Two Purkinje Images Which Works in a Real-Time Basis without
Calibration,” CSC Journals, vol. 1, no. 3, pp. 71-82, 2010.

D. Back, “Neural Network Gaze Tracking using Web Camera.,”
Linkping University, MS Thesis 2005.

R. Gonzalez and R. Woods, Digital Image Processing, 3rd ed.: Pearson
Education, 2009.

P. Viola and M. Jones, “Rapid Object Detection using a Boosted
Cascade of Simple Features,” in COMPUTER VISION AND PATTERN
RECOGNITION, 2001.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

(1]

159

[12]

[13]

C. Kimme, D. Ballard, and J. Sklansky, “Finding circles by an array
of accumulators,” in Communications of the Association for Computing
Machinery, 1975, pp. 120122.

H. Hua, P. Krishnaswamy, and J. P. Rolland, “Video-based eyetracking

methods and algorithms in head-mounted displays,” Optics Express, vol.
1, no. 10, pp. 4328-4350, 2006.

