

Gülşen Demiröz

IT 528
Developing .NET Applications Using C#

Summary of the Course

 Hands-on applications programming course

 We will learn how to develop applications using the C#

programming language on Microsoft ®.NET Platform

 We will also learn many classes from the Microsoft

®.NET Framework Library

Course Information

 Website: http://myweb.sabanciuniv.edu/gulsend/su_current_courses/it-528/

 Instructor: Gülşen Demiröz, FENS L015, x9559, gulsend@sabanciuniv.edu

 Lectures: Thursdays 19:00-22:00, Karakoy Center
 Saturdays 13:00 - 16:00, FENS G032

 Textbooks
 Visual C# 2012 How to Program, 5th Edition, (ISBN: 0132151421), by Harvey & Paul Deitel
 C# 2010 for Programmers, 3rd Edition, (ISBN: 0132618206), by Paul J. Deitel & Harvey M. Deitel
 Inside C#, 2nd Edition, (ISBN: 0735616485), by Tom Archer & Andrew Whitechapel
 CLR via C#, 2ndEdition,(ISBN: 0137144156), by Jeffrey Richter

 Lecture Notes: http://myweb.sabanciuniv.edu/gulsend/su_current_courses/it-
528/lecture-notes/
 I can also upload them to SUCourse if you wish

 Grading:
Midterm (30%): 4th week of the course (12 October Saturday 13:00)
Final Exam (40%): Last (7th) week of the course (14 November Thursday 19:00)
Homeworks (30% total): 2 homework will be assigned and they are of equal weight

 Homework: programming homework, zip the whole solution and send it to me via
SUCourse

 Exams: programming exams on your laptops in the class, then you e-mail me

http://myweb.sabanciuniv.edu/gulsend/su_current_courses/it-528/
http://myweb.sabanciuniv.edu/gulsend/su_current_courses/it-528/
http://myweb.sabanciuniv.edu/gulsend/su_current_courses/it-528/
mailto:gulsend@sabanciuniv.edu
http://myweb.sabanciuniv.edu/gulsend/su_current_courses/it-528/lecture-notes/
http://myweb.sabanciuniv.edu/gulsend/su_current_courses/it-528/lecture-notes/
http://myweb.sabanciuniv.edu/gulsend/su_current_courses/it-528/lecture-notes/
http://myweb.sabanciuniv.edu/gulsend/su_current_courses/it-528/lecture-notes/
http://myweb.sabanciuniv.edu/gulsend/su_current_courses/it-528/lecture-notes/

About Me & then You

 Work Experience

 1997-2008 Microsoft Corporation, Redmond WA, USA

 Senior Development Lead (Microsoft Online Services)

 Senior Software Design Engineer (Office Outlook)

 Software Test Lead (Windows Networking)

 Software Design Engineer (Windows Networking)

 Education

 Ph.D. student, Sabanci University, Computer Engineering
and Information Science, 2011-Present

 M.Sc., Bilkent University, Computer Engineering and
Information Science, 1997

 B.S., Bilkent University, Computer Engineering and
Information Science, 1995

Course Outline
 Introduction (algorithms, programming languages, .NET Platform, Common Language

Runtime, Framework, assemblies, packaging)

 How to use Visual Studio® 2012

 A program’s structure, basic data types, arithmetic operations, assignment, implicit casting

 .NET Type System (value types vs. reference types), memory concepts, garbage collector

(GC)

 Classes I (constructors-destructor, properties, access modifiers)

 Methods (overloading, pass-by-reference, scope of variables, static methods, operator

overloading)

 Control statements (if-else, switch, while, for, do-while)

 Classes II (inheritance, abstract classes, interfaces, is-as)

 Arrays, Collections (foreach, indexers, anonymous types, introduction to LINQ)

 Exception Handling

 Delegates and Event Handlers

 Windows® Forms and introduction to Windows Presentation Foundation

 Strings and StringBuilder

 Files and Streams

 Generics, Generic Collections

 XML and LINQ to XML

 Database access (with ADO.NET and LINQ to SQL)

Before we start, let’s install Visual

Studio 2012

 Fast Integrated Development Environment (IDE)

 Very good user interface (UI) design

 easy to find compiler errors and debugging

 Let’s install it, detailed instructions on course’s web site:
http://myweb.sabanciuniv.edu/gulsend/su_current_courses/it-528/

 Also install SQL Server 2012 Express from
http://www.microsoft.com/en-
us/download/details.aspx?id=29062

http://myweb.sabanciuniv.edu/gulsend/su_current_courses/it-528/
http://myweb.sabanciuniv.edu/gulsend/su_current_courses/it-528/
http://myweb.sabanciuniv.edu/gulsend/su_current_courses/it-528/
http://www.microsoft.com/en-us/download/details.aspx?id=29062
http://www.microsoft.com/en-us/download/details.aspx?id=29062
http://www.microsoft.com/en-us/download/details.aspx?id=29062

Algorithms

 Arabic-originated word

 Step-by-step process that solves a problem
 do this, then do that, ...

 eventually stops with an answer

 general process rather than specific to a programming language

 Example: cooking pasta (makarna)

 Issues
 correctness

 complexity and efficiency

 I picked a number between 1 and 100
 You will guess it

 I’ll respond “high”, “low”, “correct”.

 how many guesses needed (worst case)?

Example Algorithm - Find the minimum

 Initial list: 4 6 7 3 9 1 4 5

 Should we sort? 1 3 4 4 5 6 7 9

 The minimum is the first one

 Optimal algorithm - About n operations

 Pick 4 as the minimum

 Compare 4 to 6 - min is still 4

 Compare 4 to 7- min is still 4

 Compare 4 to 3 - Pick 3 as the minimum

 Compare 3 to 9- min is still 3

 Compare 3 to 1 - Pick 1 as the minimum

 Compare 1 to 4- min is still 1

 Compare 1 to 5 - We are done and the minimum is 1

Basic Program Development Steps

Analyze

Problem

Develop

Algorithm

Design Program

Write pseudo-

code on paper

Code over the

computer

Source

Code

Compile & Build

Syntax

Errors?

Yes

Correct it

No

Run

Correct

Results?

Yes - Done

No

Correct

(Debug)

Development at Microsoft

 I will talk more about it whenever we get a chance

M1 M2 M3 M0

• Plan
• Schedule
• Design
 (Architecture)

Implement
• Code reviews
• Unit testing

Stabilize
• Testing
• Bug fixing

4-12 weeks each

Release

Programming Languages
 We solve problems with algorithms

 Then we use computers to run these algorithms

 For this, we need programming languages to interact with the computer’s
hardware

 Computers represent data in numeric format

 Internal representation (at the lowest level) is in binary form: 0 and 1 (4=100,
5=101)

 0 and 1’s are stored in a bit, 8 bits is called a byte

 Programs are set of instructions that process data

 These low level instructions are also in binary (0 and 1)

 machine language: not human readable and programmable!

 Rather than instruct computers at the level of 0’s and 1’s, higher level
languages have been developed.
 Flexible and easier programming

 Compilers translate a high level language, such as C, into machine-specific
executable program (0s and 1s)

12

C, C++ and Java

 C first gained widespread recognition as the development
language of the UNIX operating system.

 C++ took the C language and provided capabilities for object-
oriented programming (OOP).

 Objects are reusable software components that model items in
the real world.

 Object-oriented programs are often easier to understand,
correct and modify.

 Sun Microsystems began development of the Java
programming language in 1991.

 Java is now used to develop large-scale enterprise applications.

13

C# (read as “C Sharp”)

 C# was designed specifically for the .NET platform
as a language that would enable programmers to
migrate easily to .NET.

 C# is object oriented and has access to a powerful
class library of prebuilt components.

 It has roots in C, C++ and Java, adapting the best
features of each.

 Microsoft introduced C# along with its .NET
strategy in 2000.

 The .NET platform allows applications to be
distributed to a variety of devices.

.NET Platform

 Provides programmers to develop their components in any
language and easily share them (old way: COM).

 Very rapid development with the help of already built-in
classes or platforms.

 Applications in any .NET-compatible language can interact
with each other.

 The .NET strategy allows programmers to concentrate on
their specialties without having to implement every
component of every application.

 End to DLL hell with versioning.

Compiling

code.cpp

Assembly
language

Machine
language

.exe

C/C++
old languages

C#
.NET languages

co
m

p
ili

n
g

code.cs

Intermediate
Language (MSIL)

+ metadata

Machine
language

.exe

 C# compiler

 JIT compiler

code.vb

 VB.NET compiler

Common
Language
Runtime

(CLR)

Common Language Runtime (CLR)

 Programs are compiled first into Microsoft Intermediate
Language (MSIL) and metadata. This is called a managed
module.

 When this managed application runs, first the CLR’s
mscoree.dll’s _CorExeMain function is executed

 Then the just-in-time (JIT) compiler translates the MSIL in
the executable file into machine-language code.
 CLR does not need to know which language was used.

 Once the code is compiled into machine-language by the
JIT, it is not needed to be compiled again.

 End users need CLR on their machine to execute managed
code, which comes with the .NET Framework installation.

Parts of a Managed Module

 Managed module is a PE (portable executable) that
requires CLR to execute.

 It contains:

 PE32 or PE32+ header (32-bit vs. 64-bit)

 CLR header

 Metadata

 IL (Intermediate Language) code

Automatic Memory Management

 One of the services that the common language
runtime provides during Managed Execution.

 Allocation and releasing of memory is managed by the
CLR: Garbage collection.
 No more memory leaks 

Common Type System (CTS)

 The common type system defines how types are declared, used, and
managed in the runtime.

 A type contains zero or more members:

 Field

 Method

 Property

 Event

 A type’s members can have the following accessibility:

 Private

 Family (protected)

 Family and assembly

 Assembly (internal)

 Family or assembly

 Public

 Important part of the support for cross-language integration.

 CTS together with Common Language Specification (CLS) enables cross-language
integration.

.NET Framework Class Library (FCL)

 Set of classes, interfaces, and value types that exposes some
functionality for re-use.

 The foundation on which .NET Framework applications,
components, and controls are built.

 Thousands of types are organized into namespaces
 Example: Object base type and types for integers, characters are in the
System namespace

 Uses a dot syntax naming scheme that connotes a hierarchy.
 Groups related types into namespaces so they can be searched and

referenced more easily.

 The first part of the full name — up to the rightmost dot — is the
namespace name.

 The last part of the name is the type name.

 Example: System.Collections.ArrayList

 namespace type

.NET Framework Class Library (FCL)

 We will use and learn classes from some of these FCL libraries
in this class.

 Examples:
 System

 System.Collections

 System.IO

 System.Windows.Forms

 System.Linq

 System.Net

 System.Text

 Full list:
http://msdn.microsoft.com/en-us/library/ms229335.aspx

http://msdn.microsoft.com/en-us/library/ms229335.aspx
http://msdn.microsoft.com/en-us/library/ms229335.aspx
http://msdn.microsoft.com/en-us/library/ms229335.aspx

Visual Studio 2012

 Fast Integrated Development Environment (IDE)

 Very good user interface (UI) design

 easy to find compiler errors and debugging

 Heavy visual support to develop UI

 Drag and drop controls for WinForms and ASP.NET

 Easy tools to access databases and view data
relationships

 Let’s install it, detailed instructions on course’s web site:
http://myweb.sabanciuniv.edu/gulsend/su_current_courses/it-528/

http://myweb.sabanciuniv.edu/gulsend/su_current_courses/it-528/
http://myweb.sabanciuniv.edu/gulsend/su_current_courses/it-528/
http://myweb.sabanciuniv.edu/gulsend/su_current_courses/it-528/

“Hello World” Program

 Let’s develop our very first application using Visual Studio 2012
 Create a project

 Build, compile, run and debug

 Useful windows and customizing its locations

 Solution Explorer

 Toolbox

 Properties

 Error List

 Debugging windows

 Intellisense

 Menu and the toolbar
 Enable Line numbers: Tools\Options\Text Editor\All Languages\Line numbers checkbox.

 Help and MSDN

C# command-line compiler: csc.exe

What is an Assembly?

 When we compiled HelloWorld.cs using C# compiler, we
created an assembly called HelloWorld.exe

 An assembly is a .NET unit of modules put together that the
runtime (CLR) can run

 An assembly could be:

 EXE (/target:exe or /target:winexe)

 DLL (/target:library)

 Module (/target:module)

 Visual Studio generates either an EXE or a DLL.

 An assembly could be a single file or contain multiple files

 Multiple files could be .NET modules or resource files (gif/jpg)

 csc /addmodule:<file list>

What is in an Assembly?

 Summary: an assembly is a .NET executable file with one
or more type definitions and resources in it.

 An assembly is the smallest unit of deployment in .NET

 performance improvement to load multiple modules in
one assembly

 An assembly contains a manifest to describe itself to the
runtime  self-describing

Assembly Manifest

 Assembly name

 Versioning information
 major and minor version, revision and build number

 Culture (language)

 Shared name (optional) and signed assembly hash

 List of files that exist in the assembly

 Referenced assemblies

 Types
 All types in the assembly with a mapping to the module containing the type

 Security
 List of security permissions refused by the assembly

 Custom attributes

 Product information
 Company, Trademark, Product and Copyright

.NET Tool: ildasm.exe

 Let’s analyze “Hello World” program with ildasm.exe

Deployment of Assemblies

 Private Assemblies

 This is the default

 You just copy them to a folder

 Public (Shared) Assemblies

 Needs a shared (strong) name, why?

 Needs to be signed with a public key:
 You can use Project Properties\Signing tab

 Or you can use the Strong Name tool (sn –k IT528Key.key) to
create a key and then

 Use the al.exe tool with /keyfile option OR

 Add AssemblyKeyFile attribute to the source file

 After signing, now you can share this assembly

Example: HelloWorldLibrary.dll

 Let’s create a library (DLL)
 csc /target:library

c:\Users\gulsen\Documents\it528\week1\HelloWorld

Library\HelloWorldLibrary\HellowWorldLibrary.cs

Public Assemblies and GAC
 Global Assembly Cache (GAC) is a code cache

 Code downloaded from the Internet or other servers

 Components shared by multiple .NET applications

 Your code that has been JIT’ted the first time it’s run

 Where is it?

 View the GAC: gacutil –l

 Install an assembly to GAC:
gacutil –i HelloWorldLibrary.dll

 Uninstall an assembly from the GAC:

gacutil –u HelloWorldLibrary

 Unfortunately gacutil is not enough to add your library as a reference 

Example
 Change HelloWorld.exe to use HelloWorldLibrary.dll

 ildasm HelloWorldLibrary.dll

 Strongly name HelloWorldLibrary.dll

 ildasm HelloWorldLibrary.dll

 Put it in the GAC

HelloWorld.cs program’s Structure

// This program displays some text.

using System;

namespace World

{

 public class HelloWorld

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Hello World");

 }

 }

}

comment

using
namespaces

namespace
declaration

class
declaration

Main method

statements

C# Program’s Structure

 C# is 100% object-oriented:
 Everything is a class  the program itself has to be a class

class Program

{ // classes start with a {

 …

} // classes end with a }

 Classes are grouped into namespaces
 You can use existing namespaces by using directive

using System;

 You can create your own namespace

namespace World

{ // namespaces start with a {

 // class definition goes here

} // namespaces end with a }

C# Program’s Structure

 Programmers use blank lines and space characters to make
applications easier to read.

 Together, blank lines, space characters and tab characters
are known as whitespace. Whitespace is ignored by the
compiler.

 Certain indentation makes the code easier to read. You can
let the IDE format your code by selecting

Edit > Advanced > Format Document.

 Set tab size: Tools\Options\Text Editor\C#\Tabs\Tab size.

C# Program’s Structure
 Classes have methods (functions)

 Methods start with a { and end with a }

 For each application, one of the methods in a class must be called
Main; otherwise, the application will not execute

static void Main(string[] args)

 Main is where the program starts executing

 Methods have <n> statements inside { }
static void Main(string[] args)

{

 statement_1;

 … statements must end with ;

 statement_n;

}

 Keyword void indicates that this method will not return any
information after it completes its task.

 Only statement of Main method in HelloWorld.cs:

Console.WriteLine("Hello World");

C# Program’s Structure

 .NET class library has thousands of methods

 Console.WriteLine("Hello World");

 using System;

System .Console.WriteLine("Hello World");

namespace class method string

 using directive tells the compiler where to look for a .NET class used in
this application

 The Console.WriteLine method displays a line of text in the console
window.

 The string in parentheses is the argument to the Console.WriteLine
method.

 Method Console.WriteLine performs its task by displaying its argument in
the console window.

Syntax Errors
 The syntax of a programming language specifies the rules for creating a

proper application in that language.

 A syntax error occurs when the compiler encounters code that violates
C#’s language rules.

 Example: Forgetting to include a using directive for a namespace that
contains a class used in your application results in a syntax error,
containing a message such as:

“The name 'Console' does not exist in the current context.”

 When this occurs, check that you provided the proper using directives
and that the names in the using directives are spelled correctly,
including proper use of Uppercase and Lowercase letters.

 To find the namespace:

Comments
 Comments make programs readable by humans (and yourself!)

 Easier maintenance
 Try to use natural language, do not repeat the code!

 Bad example
area = pi * r * r; /* area is pi*r*r */

 Better example
area = pi * r * r; /* calculate area */

 Best example
area = pi * r * r; /* calculate area of a
 circle of radius r */

 Two ways of commenting
 Using // make the rest of the line comment
area = pi * r * r; // calculate area

 Between /* and */

/*

 Calculate area of a circle of radius r

*/

area = pi * r * r;

 Compiler disregards comments
 Comments in your homework affect your grades
 In Visual Studio, comments are in green

Literals
Console.WriteLine("Hello World");

 string literal

 Fixed (constant) values

 They cannot be changed during program’s execution

 They can be output by Console.WriteLine

 Different format for different types:

 String literals

 Sequences of characters

 Within double quotes (quotes are not part of the string)

 Almost any character is ok (letters, digits, symbols)

" 10 > 22 $&*%? "

 Numeric literals

 Integer

3 454 -43 +34

 Real

3.1415 +45.44 -54.6 1.2334e3

1.2334e3 is 1.2334 times 10 to the power 3 (scientific notation)

Identifiers
 Names of programmer defined elements in a program

 Names of classes, methods, variables, etc.

namespace World

{

 public class HelloWorld

 {

 Syntax (rules):

1. Sequence of letters (a .. z, A ..Z), digits (0 ..9) underscore _

2. Cannot start with a digit or underscore

3. Case-sensitive (number1 and Number1 are not the same)

 Examples:

Program1 valid

number_1 valid

mySum valid

1number not valid

 Pick meaningful names to improve readability and understandability of
your program (be consistent)

Console Output

// This program displays some text.

using System;

namespace World

{

 public class HelloWorld

 {

 static void Main(string[] args)

 {

 Console.Write("Welcome to ");

 Console.WriteLine("C# Programming");

 }

 }

}

The Write method

does not move the

cursor to a new line

after displaying its

argument.

Console Output

using System;

namespace World

{

 public class HelloWorld

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Welcome\nto\nC#\nProgramming");

 }

 }

}

• A single statement can display multiple lines by using newline characters.

• Like space characters and tab characters, newline characters are whitespace
characters.

• The below application outputs 4 lines of text, using newline characters to
indicate when to begin each new line.

44

Console Output

 The backslash (\) is called an escape character, and is used as
the first character in an escape­ sequence.

 The escape sequence \n represents the newline character.

Common Escape Sequences Description

\n Newline. Positions the screen cursor at the
beginning of the next line.

\t Horizontal tab. Moves the screen cursor to
the next tab stop.

\r Carriage return. Positions the screen cursor
at the beginning of the current line—does
not advance the cursor to the next line.

\\ Backslash. Used to place a backslash
character in a string.

\“ Double quote. Console.Write("\"in
quotes\""); displays "in quotes"

Console Output

using System;

namespace World

{

 public class HelloWorld

 {

 static void Main(string[] args)

 {

 Console.WriteLine("{0}\n{1}", "Welcome to", "C# Programming");

 }

 }

}

• Console methods Write and WriteLine also have the capability to display formatted data.

• Method WriteLine’s first argument is a format string that may consist of fixed text and
format items.

• Each format item is a placeholder for a value, corresponding to an additional argument to
WriteLine.

– {0} is a placeholder for the first additional argument.
– {1} is a placeholder for the second, and so on.

• Format items also may include optional formatting information.

Method WriteLine’s first

argument is a format string that

may consist of fixed text and

format items.

Keywords (reserved words)
 Special and fixed meanings

 built-in in C# language

 always spelled with all lowercase letters

 You cannot use a reserved word as a user-defined identifier

 Cannot be changed by programmer

 Examples:

 The class keyword introduces a class declaration and is immediately
followed by the class name.

 using

 namespace

 static

 void

 Full list: http://msdn.microsoft.com/tr-tr/library/x53a06bb(en-us).aspx

 Identifiers may be preceded by the @ character to interpret a keyword as an
identifier (e.g. @class).

http://msdn.microsoft.com/tr-tr/library/x53a06bb(en-us).aspx
http://msdn.microsoft.com/tr-tr/library/x53a06bb(en-us).aspx
http://msdn.microsoft.com/tr-tr/library/x53a06bb(en-us).aspx
http://msdn.microsoft.com/tr-tr/library/x53a06bb(en-us).aspx
http://msdn.microsoft.com/tr-tr/library/x53a06bb(en-us).aspx

Variables

• A variable is a location in the computer’s memory where a value
can be stored for use later in an application.

Example Program: Addition

static void Main(string[] args)

{

 int number1; // declare first number to add

 int number2; // declare second number to add

 int sum; // declare sum of first and second number

 Console.Write("Enter first integer:");

 // read first number from user

 number1 = Convert.ToInt32(Console.ReadLine());

 Console.Write("Enter second integer:");

 // read second number from user

 number2 = Convert.ToInt32(Console.ReadLine());

 sum = number1 + number2; // add numbers

 Console.WriteLine("The sum of {0} and {1} is {2}",

 number1, number2, sum);

}

Variables
 A variable declaration specifies the name and type of a variable.
type name;

int sum;

 A variable’s name enables the application to access the value of the
variable in memory—the name can be any valid identifier.

 A variable’s type specifies what kind of information is stored at that
location in memory.

 Several variables of the same type may be declared in one
declaration.
type name1, name1, name2;

int number1, number2, sum;

 The variables can also be initialized when declared.
int sum = 0;

int number1 = 1, number2 = 2, sum = 0;

Variables

• Variables of type int store integer values (whole numbers
such as 7, –11, 0 and 31914).

• Types float, double and decimal specify real numbers
(numbers with decimal points).

• Type char represents a single character.

• These types are called simple types. Simple-type names
are keywords and must appear in all lowercase letters

Console Input

• The Console’s ReadLine method waits for the user to type a
string of characters at the keyboard and press the Enter key.

• ReadLine returns the text the user entered.

• The Convert class’s ToInt32 method converts this sequence of
characters into data of type int.

• ToInt32 returns the int representation of the user’s input.

52

Assignment Operator

• A value can be stored in a variable using the assignment
operator, =.

• Operator = is called a binary operator, because it works
on two pieces of information, or operands.

• An assignment statement assigns a value to a variable.
• Everything to the right of the assignment operator, =, is

always evaluated before the assignment is performed.

Good Programming Practice
Place spaces on either side of a binary operator to make it stand
out and make the code more readable.

53

Expression

• An expression is any portion of a statement that has a
value associated with it.

– The value of the expression number1 + number2 is the
sum of the numbers.

– The value of the expression Console.ReadLine() is the
string of characters typed by the user.

• Calculations can also be performed inside output
statements.

54

Memory Concepts

• Variable names actually correspond to locations in the
computer’s memory.

• Every variable has a name, a type, a size and a value.
• In Figure below, the computer has placed the value 45

and 72 in the memory locations corresponding to
number1 and number2.

55

Memory Concepts (Cont.)

• After sum has been calculated, memory appears as shown in
figure below:

• Whenever a value is placed in a memory location, the value
replaces the previous value in that location, and the previous
value is lost.

Data Types

 Two general categories of types:

 Value types directly contain their data, and instances of
value types are either allocated on the stack or
allocated inline in a structure.

 int is a value type.

 Reference types store a reference to the value's
memory address, and are allocated on the heap.

Value vs Reference Types

number1 42

int number1 = 42;

string name = " Gulsen Demiroz ";

int number2 = number1;

string text = name;

name Gulsen Demiroz

number2 42

name

Reference Types

 Built-in reference types:
 System.Object

object myObj;

 System.String

string name;

name = "Gulsen";

myObj null

name null

 User-defined reference types:

 Classes

 Arrays

 Interfaces

 Delegates

Gulsen

Value Types
Type System namespace Definition Uninitialized

value

short System.Int16 16 bit signed integer 0

int System.Int32 32 bit signed integer 0

long System.Int64 64 bit signed integer 0

ushort System.UInt16 16 bit unsigned integer 0

uint System.UInt32 32 bit unsigned integer 0

ulong System.UInt64 64 bit unsigned integer 0

float System.Single 32 bit real number 0.0

double System.Double 64 bit real number 0.0

decimal System.Decimal 128 bit real number 0

bool System.Boolean true or false false

char System.Char 16 bit Unicode character ‘\0’

byte System.Byte 8 bit unsigned integer 0

sbyte System.SByte 8 bit signed integer 0

enum user-defined defines a type for a closed set 0 index value

struct user-defined defines a compound type that
consists of other types

assumed value types,
null reference types

.NET Common Type System

 All types derive from System.Object base type.

 System.Object allows you to:

 Compare two instances for equality

 Obtain a hash code for the instance

 Query the true type of an instance

 Perform a shallow (bitwise) copy of the instance

 Obtain a string representation of the instance’s object’s
current state

Boxing and Unboxing

 With boxing and unboxing, you can use any value type as
an object when needed.

 Boxing: converting a value type to an object

 Unboxing: converting an object (which was boxed before)
to a value type

Boxing

int i = 42;

object o = i;

i 42

o int i | 42

Unboxing

int i = 42;

object o = i;

int j = (int)o; // casting is needed

i 42

o int i | 42

j 42

Casting Between Types

 Implicit type-casting
byte a = 20;

int b;

b = a;

 safe when smaller bigger

 .NET has forbidden bigger  smaller
byte a = 5;

byte b = 3;

byte c = a + b;

Compiler error:

 Cannot implicitly convert type 'int' to 'byte'.

 An explicit conversion exists (are you missing a cast?)

0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Valid Implicit Castings

Type Types It Can Be Converted To

sbyte short,int,float,long,double,decimal

byte short,ushort,int,uint, long,ulong,float,double,decimal

short int,long,float,double,decimal

ushort int,uint,long,ulong,float,double,decimal

int long,float,double,decimal

uint long,ulong,float,double,decimal

long, ulong float,double,decimal

char float,double,decimal

float double

Explicit Casting

 Needed when implicit casting is not allowed by the
compiler

 Smaller Type  Bigger Type is the same as implicit

 Could cause data loss when Bigger Type  Smaller Type

 Need to use a type-casting operator:

int i = 256;

byte b;

b = (byte)i;

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

checked & unchecked

 To prevent data loss: put code that could cause data
loss inside a checked block

 In case of data loss, it will throw
System.OverflowException exception

 To ignore possible data loss: put code that could cause
data loss inside a unchecked block

Convert.ToInt32

 int number1; // declare first number to add

 Console.Write("Enter first integer:");

 // read first number from user

 number1 = Convert.ToInt32(Console.ReadLine());

• Convert is a class in System namespace

• Convert.ToInt32 method converts a
string into an int

Convert class

Method

Convert.ToBoolean(string str) converts string str to bool

Convert.ToByte(string str) converts string str to byte

Convert.ToSByte(string str) converts string str to signed byte

Convert.ToInt16(string str) converts string str to short

Convert.ToUInt16(string str) converts string str to unsigned short

Convert.ToInt32(string str) converts string str to integer

Convert.ToUInt32(string str) converts string str to unsigned integer

Convert.ToInt64(string str) converts string str to long

Convert.ToSingle(string str) converts string str to float

Convert.ToDouble(string str) converts string str to double

Convert.ToDecimal(string str) converts string str to decimal

Convert.ToChar(string str) converts string str to char type

Arithmetic Operations

 Operators: + - * / %

 Operands: values that operator combines
 variables or literals

 Combination of operators and operands is called
expression

 Syntax and semantics for arithmetic operations:

Addition

Subtraction

Multiplication Division Modulus

23 + 4 23 * 4 21 / 4 is 5 21 / 4 is 5

x + y x * 3.0 21 / 4.0 is

5.25

18 % 2 is 0

d – 14.0 + 23 d * 23.1 * 4 x / 4 x % 4

5 - 3 + 2 5 – 3 * 2 x / y x % y

Operator Precedence

 Upper operator groups have precedence

Operator Explanation Associativity

+ - plus and minus signs right-to-left

* / % multiplication, division and modulus left-to-right

+ - addition, subtraction left-to-right

= += -=

*= /= %=

assignment operators

right-to-left

Assignment operator

 Assigning single expression to several variables
variable1 = variable2 = variable3 = ... variablen = expression;

 all variables are assigned the same value of expression

 example:
int x, y, z;

x = y = z = 6;

 x, y and z contain 6

 Arithmetic assignment operators
+= -= *= /= %=

 Combines arithmetic operation and assignment in one operator

 variable += expression is the same as
variable = variable + expression

 Example: x += 1 is the same as x = x + 1

 Same for -= *= /= and %=

 x -= 1 x *= 3 x /= 2 and x %= 2

 Example: operators.cpp

