
if-else, switch, while, for, do-while

Control Statements



Conditional Statements

 So far statements of our programs execute sequentially 
one after another.

 What happens when
 we want to execute a statement depending on a condition?
 e.g. If there is enough money in the bank account, give the money

 we want to execute one statement when a condition holds and 
another statement when a condition does not hold?
 e.g. If dollar is high, sell dollar. Otherwise, buy dollar.

 we want to select from many statements according to one or 
more criteria (selection).
 e.g. If dollar is high and euro is low, sell dollar and buy euro. If dollar is low 

and euro is high, sell euro and buy dollar. If both of them are high, sell both 
and buy YTL.

 You achieve conditional execution with if-else
statements



Syntax

if (<condition>) 

{

<statement_true_1>;

...

<statement_true_N>;

}

else

{

<statement_false_1>;

...

<statement_false_N>;

}

 If condition is TRUE then 
statement_true_1 … 

statement_true_N

are executed, 
if condition is FALSE 
statement_false_1 … 

statement_false_N

are executed.

if (<condition>) 

{

<statement_true_1>;

...

<statement_true_N>;

}

 else and statement_false’s are 
optional

 if condition is FALSE then 
nothing will be executed and 
execution continues with the 
next statement in the program

 <condition> must be in 
brackets



Another Syntax (without { })

if (<condition>)

<statement_true>;

else

<statement_false>;

if (<condition>) 

<statement_true>;

• Can be used when there is only one statement
• Not suggested (we will see why)



Flow diagram of if-else

test 

condition

true

statements

true

next

statement

false

false

statements



if-else example

if ( grade >= 60 ) 

Console.WriteLine( "Passed" );

else

Console.WriteLine( "Failed" );



Boolean type and expressions

 The condition in an if statement must be a Boolean 
expression (named for George Boole)
 Values are true or false
 bool is a built-in value type like int, double

int degrees;

bool isHot = false;

Console.WriteLine("enter temperature: “);

degrees = Convert.ToInt32(Console.ReadLine());

if (degrees > 35)

{  

isHot = true;
}



8

 The conditional operator (?:) can be used in place of an  
if…else statement.

Console.WriteLine( grade >= 60 ? "Passed" : "Failed" );

– The first operand is a boolean expression that evaluates to true
or false.

– The second operand is the value if the expression is true

– The third operand is the value if the expression is false. `

Conditional operator (?:)



< less than number < 5

<= less than or equal number <= 0

> greater than num1 > num2

>= greater than or equal num1 >= num2

== equality check num1 == 0

!= inequality check num1 != num2

Relational Operators

 Relational operators are used to compare values: 

 They take two operands
 operands can be literals, variables or expressions

 Used for many types
 numeric comparisons

 string comparisons (alphabetical)



Logical operators

 Boolean expressions can be combined using logical 
operators: AND, OR, NOT

 In C# we use      &&      ||        !      respectively

A B A || B A && B

true true true true

true false true false

false true true false

false false false false

A !  A

true false

false true



Example
• Range check: between 0 and 100 (includes 0 and 100), or not?

If so, display a message saying that the number is in the range. 
If not, the message should say “out of the range”.

• Solution 1: using logical AND operator

if (num >= 0 && num <= 100)

Console.Write("number is in the range");

else

Console.Write("number is out of range");

• Solution 2: using logical AND and NOT operators

if ( ! (num >= 0 && num <= 100) )

Console.Write("number is out of range");

else

Console.Write("number is in the range");

• Solution 3: using logical OR operator

if (num < 0 || num > 100)

Console.Write("number is out of range");

else

Console.Write("number is in the range");



De Morgan’s Rules
 Compare solution 2 and 3

 two conditions are equivalent

( ! (num >= 0 && num <= 100) )

( num < 0 || num > 100 )

 De Morgan’s Rules  (assume a and b are two boolean expressions)

! (a   &&   b)  =   !a   ||  !b

! (a   ||   b)  =   !a   &&  !b

 De Morgan’a Rules can be generalized to several expressions (e.g. 

4 boolean expressions case)

! (a && b && c && d) =  !a  ||  !b ||  !c  ||  !d

! (a || b || c || d) =  !a  &&  !b &&  !c  &&  !d



Operator Precedence - Revisited

 Upper operator groups have precedence

Operator Explanation Associativity

+    - ! plus and minus signs, logical NOT right-to-left

*    /    % multiplication, division and modulus left-to-right

+    - addition, subtraction left-to-right

<<    >> stream insertion and extraction left-to-right

<  <=   >  >= inequality comparison operators left-to-right

==    != equal,  not equal comparison left-to-right

&& logical and left-to-right

|| logical or left-to-right

=    +=   -=   

*=   /=   %=

assignment operators right-to-left



Nested if statements

 if/else statements are inside other if/else statements

 Method to select from multiple choices

 Example: input a numeric grade and convert to letter grade
90 .. 100 A

80 .. 89 B

70 .. 79 C

60 .. 69 D

0  .. 59  F

otherwise  F



15

 This may be written in C# as

if ( grade >= 90 )

Console.WriteLine( "A" );

else

if ( grade >= 80 )

Console.WriteLine( "B" );

else

if ( grade >= 70 )

Console.WriteLine( "C" );

else

if ( grade >= 60 )

Console.WriteLine( "D" );

else

Console.WriteLine( "F" ); 

Nested if statements



16

 Most C# programmers prefer to use else if:

if ( grade >= 90 )

Console.WriteLine( "A" );

else if ( grade >= 80 )

Console.WriteLine( "B" );

else if ( grade >= 70 )

Console.WriteLine( "C" );

else if ( grade >= 60 )

Console.WriteLine( "D" );

else

Console.WriteLine( "F" ); 

Nested if statements (Cont.)



Short-circuit Evaluation
 Some subexpressions in Boolean expressions are not evaluated if the entire 

expression’s value is already known using the subexpression evaluated so far.

 Rule: Evaluate the first (leftmost) boolean subexpression. If its value is 
enough to judge about the value of the entire expression, then stop there. 
Otherwise continue evaluation towards right.

if (count != 0 && scores/count < 60)
{   

Console.WriteLine("low average");
}

 In this example, if the value of count is zero, then first subexpression becomes false 
and the second one is not evaluated. 

 In this way, we avoid “division by zero” error (that would cause to stop the 
execution of the program)

 Alternative method to avoid division by zero without using short-circuit evaluation:

if (count != 0)
{  

if (scores/count < 60)
{   

Console.WriteLine("low average");
}

}



Dangling Else Problem

if ( x % 2  == 0) 

if ( x < 0 ) 

Console.WriteLine("{0} is an even, negative number“, x); 

else 

Console.WriteLine("{0} is an odd number“, x); 

 What does it display for x=4?

 The problem is that it displays “odd number” message for positive 
even numbers and zero.

 Reason is that, although indentation says the reverse, else belongs 
to second (inner) if

 else belongs to the most recent if

 Solution: use braces (see next slide)



Solution to Dangling Else Problem 

if ( x % 2  == 0) 

{

if ( x < 0 ) 

Console.WriteLine("{0} is an even, negative number“, x); 

}

else 

{

Console.WriteLine("{0} is an odd number“, x); 

}

 Now else belongs to the first if

 if – else matching rule
 Each else belongs to the nearest if for which there is no else and in the same 

compound block



switch statement

 The switch multiple-selection statement performs 
different actions based on the value of an expression.

 Each action is associated with the value of a constant 
integral expression or a constant string expression
that the expression may assume.

 Let’s see an example: GradeBookswitch.cs



private void IncrementLetterGradeCounter( int grade )

{

switch ( grade / 10 )

{

case 9: // grade was in the 90s

case 10: // grade was 100 

++aCount; 

break; // necessary to exit switch

case 8: // grade was between 80 and 89

++bCount;

break; // exit switch

case 7: // grade was between 70 and 79

++cCount; 

break; // exit switch

case 6: // grade was between 60 and 69

++dCount; 

break; // exit switch

default: // grade was less than 60

++fCount; 

break; // exit switch

}

} // end method IncrementLetterGradeCounter



Flow diagram of switch



23

 The expression after each case can be only a constant 
integral expression or a constant string expression.

 You can also use null and character constants which 
represent the integer values of characters. 

 The expression also can be a constant that contains a value 
which does not change for the entire application.

switch statement



From Selection to Repetition
 The if statement and if/else statement allow a block of statements to be 

executed selectively: based on a condition
Console.WriteLine("Please enter a non-negative number");
inputnumber = Convert.ToInt32(Console.ReadLine()); 
if (inputnumber < 0)
{

Console.WriteLine(inputnumber + " is negative. Wrong Input");
} 

 This piece of code does not ask another input number if the number is 
negative.

 The while statement repeatedly executes a block of statements while the 
condition is true

Console.WriteLine("Please enter a non-negative number");
inputnumber = Convert.ToInt32(Console.ReadLine()); 
while (inputnumber < 0)
{

Console.WriteLine(inputnumber + " is negative! Try again");
inputnumber = Convert.ToInt32(Console.ReadLine());

}



Flow diagram of while loop

if (test)                   while (test)

{                           {

statement list;              statement list;

}                           }

test

Statement list

Next statement

true

false

test

Statement list

Next statement

true

false



while loop syntax

<initialization>

while (<test>) 

{

<statement1>;

...

<statementN>;

<update>

}



Counter-controlled loop example

 Consider the following problem statement:

A class of 10 students took a quiz. The grades (integers in

the range 0 to 100) for this quiz are available to you.

Determine the class average on the quiz.

 The algorithm must input each grade, keep track of the 
total of all grades input, perform the averaging 
calculation and display the result.



Counter-controlled loop algorithm

set total to zero

set grade counter to one

while grade counter is less than or equal to 10

prompt the user to enter the next grade

input the next grade

add the grade into the total

add one to the grade counter

set the class average to the total divided by 10

display the class average



Counter-controlled loop code
// initialization

total = 0; // initialize the total

gradeCounter = 1; // initialize the loop counter

while ( gradeCounter <= 10 ) // test

{

Console.Write( "Enter grade: " ); // prompt the user

grade = Convert.ToInt32( Console.ReadLine() ); // read grade

total = total + grade; // add the grade to total

gradeCounter = gradeCounter + 1;   // update

}

// termination phase

average = total / 10; // integer division yields integer result



Sentinel-controlled loop example

Consider the following problem:

Develop a class-averaging application that processes grades 
for an arbitrary number of students each time it is run.

 In this example, no indication is given of how many 
grades the user will enter during the application’s 
execution. 



Sentinel-controlled algorithm

initialize total to zero

initialize counter to zero

prompt the user to enter the first grade

input the first grade (possibly the sentinel)

while the user has not yet entered the sentinel

add this grade into the running total

add one to the grade counter

prompt the user to enter the next grade

input the next grade (possibly the sentinel)

if the counter is not equal to zero

set the average to the total divided by the counter

display the average

else

display “No grades were entered”



Let’s see Sentinel_While.sln
// initialization phase

total = 0; // initialize total

gradeCounter = 0; // initialize loop counter

// prompt for and read a grade from the user

Console.Write("Enter grade or -1 to quit: ");

grade = Convert.ToInt32(Console.ReadLine());

// loop until sentinel value is read from the user

while (grade != -1)

{

total = total + grade; // add grade to total

gradeCounter = gradeCounter + 1; // increment counter

// prompt for and read the next grade from the user

Console.Write("Enter grade or -1 to quit: ");

grade = Convert.ToInt32(Console.ReadLine());

}



for loop syntax compared with while

<initialization>

while (<test>) 

{

<statement1>;

...

<statementN>;

<update>

}

for (<initialization>; 

<test>; 

<update> ) 

{

<statement1>;

...

<statementN>;

}



Example

 Calculate the sum of the integer numbers between 1 and 10

int sum = 0; // this program piece

int i = 1; // calculates the sum of 

while (i <= 10) // integers between and

{ // including 1 and 10

sum = sum + i;

i = i + 1;    

}



Same example with for loop

int sum = 0;

int i = 1;

while (i <= 10)

{

sum = sum + i;

i = i + 1;

}

int sum = 0;

for (int i=1; i <= 10; i=i+1)

{

sum = sum + i;

}



Scope of the counter variable in for

for (int i=1; i <= 10; i=i+1)

 If the initialization expression declares the control variable, 
the control variable will not exist outside the for statement.

 This restriction is known as the variable’s scope.

 Similarly, a local variable can be used only in the method that 
declares the variable and only from the point of declaration.

int i;

for (i=1; i <= 10; i=i+1)



for loop syntax

 Comma-separated lists that enable you to use multiple 
initialization expressions or multiple increment expressions:

for ( int i = 2; i <= 20; total += i, i += 2 )

; // empty statement



38

 Operator Called Sample 
expression 

Explanation 

 ++  prefix 

increment 

++a  Increments a by 1, then uses the 
new value of a in the expression. 

 ++  postfix 

increment 

a++  Uses the current value of a, then 
increments a by 1. 

 --  prefix 

decrement 

--b  Decrements b by 1, then uses the 
new value of b. 

 --  postfix 

decrement 

b--  Uses the current value of b, then 
decrements b by 1. 

 

Increment and Decrement Operators

 C# provides operators for adding or subtracting 1 from a 
numeric variable
 The unary increment operator, ++

 The unary decrement operator, --.



Bad loops

1. for (int i = 10; i < 5; i=i+1) 

{

Console.WriteLine("How many times do I print?");

}

2. for (int i = 10; i >= 1; i=i+1) 

{

Console.WriteLine("How many times do I print?");

}

3. int i = 1;

while (i < 20) 

{

Console.WriteLine("How many times do I print?");

}



 What is the problem with the code below?

 cannot say infinite loop for sure, depends on input number

 for example, if num is an odd number, then the loop is infinite

int num = Convert.ToInt32(Console.ReadLine());

int start = 0;

while (start != num)

{   

start += 2;

Console.WriteLine(start);

}

 How to fix? 
 You can check whether num is even before starting the loop.

if (num % 2 == 0)

{    while (start != num)

{  start += 2;

Console.WriteLine(start);

}

}

Infinite loops



Other Common Problems

 Easy to iterate one more or one less times

 Test each loop with the inputs that cause:

 zero iterations of the loop body

 one iteration of the loop body

 maximum number of iterations

 one less than the maximum number of iterations

 Use the debugger  and watch the variables.



The do-while loop
 Similar to while loop, but the test is after the execution of the loop body

 The while loop may never execute, do-while loop executes at least once

<initialization>

do 

{

<statement1>;

...

<statementN>;

<update>

} while (<condition>);

 Example: Prompt for a number between 0 and 100, loop until such a number 
is entered (user should enter at least one number)

do
{   

Console.WriteLine("enter number in range [0..100]");
num = Convert.ToInt32(Console.ReadLine());

} while (num < 0 || num > 100 );

Don’t 

forget



foreach

 Good with arrays or collections, we will revisit



Nested loops – Example

 Write a function to display a perpendicular isosceles triangle of 
stars (perpendicular side length is parameter)
 e.g. if side length is 6 , the output should look like

*

**

***

****

*****

******

 See drawtriangle.cs



45

 1 // Fig. 6.12: BreakTest.cs 

 2 // break statement exiting a for statement. 

 3 using System; 

 4  

 5 public class BreakTest 

 6 { 

 7    public static void Main( string[] args ) 

 8    { 

 9       int count; // control variable also used after loop terminates 

10  

11       for ( count = 1; count <= 10; count++ ) // loop 10 times 

12       { 

13          if ( count == 5 ) // if count is 5,  

14             break; // terminate loop 

15  

16          Console.Write( "{0} ", count ); 

17       } // end for 

18  

19       Console.WriteLine( "\nBroke out of loop at count = {0}", count ); 

20    } // end Main 

21 } // end class BreakTest 

1 2 3 4  

Broke out of loop at count = 5 

 

• The break statement causes immediate exit from a 
statement.

When count is 5, the 

break statement 

terminates the for
statement.

break



46

break and continue

• The continue statement skips the remaining statements in the 
loop body and tests whether to proceed with the next iteration 
of the loop.

• In a for statement, the increment expression executes, then 
the application evaluates the loop-continuation test. 

Software Engineering
Some programmers feel that break and continue statements 

violate structured programming, since the same effects are 

achievable with structured programming techniques. 



47

 1 // Fig. 6.13: ContinueTest.cs 

 2 // continue statement terminating an iteration of a for statement. 

 3 using System; 

 4  

 5 public class ContinueTest 

 6 { 

 7    public static void Main( string[] args ) 

 8    { 

 9       for ( int count = 1; count <= 10; count++ ) // loop 10 times 

10       { 

11          if ( count == 5 ) // if count is 5,  

12             continue; // skip remaining code in loop 

13  

14          Console.Write( "{0} ", count ); 

15       } // end for 

16  

17       Console.WriteLine( "\nUsed continue to skip displaying 5" ); 

18    } // end Main 

19 } // end class ContinueTest 

1 2 3 4 6 7 8 9 10  

Used continue to skip displaying 5 

 

Skipping to the next iteration 

when count is 5. 

Console.Write skips 5
because of the continue
statement.

continue


