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Abstract 

We estimate a canonical sovereign default model from Arellano (2008) for Argentina via 

maximum simulated likelihood estimation to understand how well it performs in terms of 

predicting default events. The estimated model accounts for the overall default patterns of 

Argentina and closely matches the default data. Out-of-sample forecasting shows that the 

model performs better than a logit model in predicting the onset of default events. In terms of 

the business cycle statistics, the findings of the model are consistent with the data and 

Arellano (2008), with some caveats.   
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1 Introduction 

How informative are default risks estimated from a stochastic general equilibrium sovereign 

default model? There is an extensive theoretical literature on sovereign debt crises that builds 

on the endogenous sovereign default model of Eaton and Gersovitz (1981). Aguiar and 

Gopinath (2006) and Arellano (2008) are the first studies to extend the Eaton-Gersovitz 

framework to quantitatively account for the patterns regarding default and business cycles in 

emerging market economies. While there is a large literature that quantitatively analyzes 

different aspects of default based on the endogenous sovereign default model, our paper is the 

first attempt to estimate this model. In this paper, we formally estimate the Arellano (2008) 

model for Argentina to analyze how well the estimated model explains the actual default 

events and what parameter values fit the data.  

To estimate the model, we apply a structural estimation method for discrete choice 

dynamic programming models (e.g., Keane and Wolpin, 2009, Train, 2009, and Keane, Todd, 

and Wolpin, 2011). This method is commonly used in empirical industrial organization and 

labor literature. To the best of our knowledge, this paper is the first to apply this method to a 

sovereign default model with an endogenous default decision in the international finance 

literature.1 The baseline model has a discrete default choice with two types of uncertainty: 

uncertainty with respect to the debtor country’s output and uncertainty with respect to the 

timing of regaining market access once the debtor country defaults. Our estimation uses only 

output and default data, allowing measurement (forecast) error in the observed default variable.  

The estimation of the model gives us the set of parameter estimates that has the best fit 

to the default and output data in Argentina. We find that the estimated value of risk aversion is 

quite high and the discount factor is on the lower end compared to the values used in the 

literature. We then estimate the model by fixing the risk aversion parameter and the discount 

                                                        

1 Bi and Traum (2012) estimate a sovereign default model, where default is not modeled as an endogenous 

decision but as a probabilistic event based on whether debt exceeds a stochastic fiscal limit.  
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factor at standard values used in the literature to see how the model predictions change 

depending on the parameter values. 

We find that the model-implied default decisions, with either set of estimates, account 

for the overall default patterns in Argentina, especially the onset of default events in 1982 and 

2001. The model-implied default probability continues to stay high during the periods in 

which Argentina was excluded from financial markets following the default events and 

decreases as the country regained access to markets, matching the default data closely. 

When compared to the logit-based models that have been commonly used in the early 

warning systems literature, the estimated sovereign default model performs better in predicting 

default occurrence. When the model-implied default probability is used as a regressor in a 

logit estimation, it has a high explanatory power for observed default events. Additionally, 

pseudo out-of-sample forecasting shows that the baseline model predicts the onset of the 2001 

default much better than a comparable logit model, when default forecasts are computed 

conditional on the current year’s output. On the other hand, neither model predicts the onset of 

the 2001 default when forecasts are computed conditional on previous year’s output. In other 

words, reliably updating output information prior to default is a key to forecast default events. 

We also find that the model-implied business cycle statistics are consistent with the 

data and Arellano’s (2008) findings, provided that we impose a parameter restriction on the 

risk aversion coefficient and the discount factor to equal their commonly calibrated values in 

the literature. Without such a restriction, the model fails to account for the higher volatility of 

consumption relative to output as well as the countercyclicality of the trade balance, and it 

gives a very high volatility for the spread. Hence, the set of estimates that best fit the data in 

terms of default and output patterns cannot fully account for the business cycle properties 

observed in the data. We believe that incorporating theoretical developments from the 

sovereign default literature, such as long-term bonds and debt renegotiation, is necessary to 

improve the model’s accountability for business cycle statistics, which we intend to address in 

future work.  
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There is a broad theoretical literature on sovereign default that extends Arellano (2008), 

and analyzes various aspects of sovereign default. Aguiar and Gopinath (2006) analyze the 

effects of using a productivity process characterized by a stochastic trend, Chatterjee and 

Eyigungor (2012) and Hatchondo and Martinez (2009) introduce long-term bonds to a 

sovereign default model, Yue (2010) incorporates debt renegotiation and endogenous debt 

recovery into a sovereign default model, Mendoza and Yue (2012) propose a model that 

endogenizes the output declines observed in sovereign default episodes and Na, Schmitt-

Grohe, Uribe, and Yue (2017) introduce downward nominal wage rigidity to explain the 

empirical regularity that sovereign defaults are accompanied by large devaluations of the 

nominal exchange rate. Our paper contributes to this literature by structurally estimating the 

basic endogenous sovereign default model to understand how well it performs in terms of 

predicting default events. The estimation results also enable us to compare the parameter 

estimates that fit the data with the values used in the existing literature. 

The rest of the paper is organized as follows. Section 2 describes the model. Section 3 

explains the data and estimation strategy, and Section 4 presents the estimated results. Section 

5 provides further discussion on parameter estimates and the model-implied business cycle 

properties. Section 6 concludes. 

2 Model 

This section explains the key features of Arellano (2008), which we use as the baseline model 

in our estimation. We first discuss the sequence of decisions in the model. We then explain 

how default decision and default risk are modeled. The details of this model are provided in 

Appendix A. 

2.1 Sequence of Decisions  

In period 𝑡, a country faces debt obligation −𝐵𝑡. It then observes output, 𝑦𝑡, the log of which 

follows an AR(1) process. If the country had repaid in the previous period, then it would be 

able to choose to repay or default in period 𝑡, denoted as 𝑑𝑡 = 0 and 𝑑𝑡 = 1 respectively. If 
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the country chooses to repay, then it also decides how much it borrows in that period 

(−𝑞(𝐵𝑡+1, 𝑦𝑡)𝐵𝑡+1), where 𝑞 is the price of asset 𝐵. If it chooses to default, it can write off its 

debt obligations at the expense of losing a fraction of output and being excluded from world 

financial markets for a stochastic number of periods. The state variables (𝑑, 𝐵, 𝑦) are thus 

sequentially determined by 

(𝑑𝑡−1, 𝐵𝑡) → 𝑦𝑡 → (𝑑𝑡, 𝐵𝑡+1). 

2.2 Default Probability and Default Decision 

The country decides whether to repay its debt or default by comparing the value function 

under default (𝑉𝐷) with the value function under repayment (𝑉𝑅). Thus, the default decision of 

the country is given by 

 
𝑑𝑡 = {

1,   if 𝑉𝐷(𝑦𝑡) > 𝑉
𝑅(𝐵𝑡, 𝑦𝑡)

0,                        otherwise
, 

(1) 

where 𝐵𝑡 is pinned down by the savings policy function of 𝐵(𝐵𝑡−1,𝑦𝑡−1). 

The country’s choice of 𝐵𝑡 in period 𝑡 − 1 implies a default probability for period 𝑡 

conditional on (𝑑𝑡−1, 𝐵𝑡−1, 𝑦𝑡−1), i.e., before 𝑦𝑡 is observed. The default probability is given 

by 

 Pr(𝑑𝑡 = 1|𝑑𝑡−1 = 0, 𝐵𝑡−1, 𝑦𝑡−1) = 𝛿(𝐵(𝐵𝑡−1, 𝑦𝑡−1), 𝑦𝑡−1),

Pr(𝑑𝑡 = 0|𝑑𝑡−1 = 0, 𝐵𝑡−1, 𝑦𝑡−1) = 1 − 𝛿(𝐵(𝐵𝑡−1, 𝑦𝑡−1), 𝑦𝑡−1),

Pr(𝑑𝑡 = 1|𝑑𝑡−1 = 1, 𝐵𝑡−1, 𝑦𝑡−1) = 1 − 𝜆,

Pr(𝑑𝑡 = 0|𝑑𝑡−1 = 1, 𝐵𝑡−1, 𝑦𝑡−1) = 𝜆,

 

(2) 

where 𝜆 is the exogenous probability of regaining access to financial markets for a country 

that has previously defaulted, and 𝛿 is defined by 

𝛿(𝐵𝑡, 𝑦𝑡−1) = Pr(𝑦𝑡 ∈ 𝐼(𝐵𝑡)). 

𝐼(𝐵𝑡) is the set of y’s for which default is optimal for 𝐵𝑡, defined as 
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𝐼(𝐵𝑡) = {𝑦𝑡 ∈ 𝒴: 𝑉
𝐷(𝑦𝑡) > 𝑉

𝑅(𝐵𝑡, 𝑦𝑡)}. 

The default decision is made after the current output, 𝑦𝑡, is realized. Thus, the model-implied 

default decision for 𝑑𝑡 is a nonlinear function of (𝑑𝑡−1, 𝐵𝑡, 𝑦𝑡), 

𝑑𝑡 = 𝑑(𝑑𝑡−1, 𝐵𝑡, 𝑦𝑡). 

If the country had defaulted in period 𝑡 − 1, it would not be able to borrow in period 𝑡. The 

country can regain market access with a fixed probability 𝜆 in period 𝑡. 

3 Data and Estimation Strategy 

3.1 Data 

We use annual data for Argentine output and default periods for our estimation. For output (𝑦), 

we use real GDP at constant national prices for Argentina from Penn World Table 9.0 

(Feenstra, Inklaar and Timmer, 2015).2 We remove a stochastic trend from the log of the real 

GDP series for 1950-2014 by applying the Hodrick-Prescott (HP) filter (with the smoothing 

parameter equal to 100) and then use the detrended component as ln(𝑦). 

For the default variable (𝑑), we construct a dummy variable that takes the value 1 

under default years and zero otherwise following the default years identified by Reinhart 

(2010) and Beers and Chambers (2006). Specifically, we set the default periods as 1951, 1956-

1965, 1982-1993, and 2001-2005.3 

The black solid line in Figure 1 plots output with default years in the shaded areas. 

Table 1 provides the summary statistics. We set the sample period as 1952-2010, which starts 

                                                        

2 We have obtained it through FRED, and its series ID is RGDPNAARA666NRUG. The series is available from 

1950. 
3 Reinhart (2010) covers the period 1819 to 2009 for Argentina. Beers and Chambers (2006) cover a more recent 

period starting in 1980 and identify the same default years as Reinhart (2010) for this period. Uribe and Schmitt-

Grohé (2017) provide a summary table (Table 13.19) on sovereign default dates. Since the output series we use 

starts in 1950, we use the defaults identified in the period after 1950. 
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after the first observed default of 1951 and excludes the last several years after HP filtering the 

data to address the end of sample problem. 

[Figure 1] 

[Table 1] 

We do not use debt data for our estimation because we can compute a model-implied 

debt path given the paths of default and output from the data.4 Further, publicly available 

aggregate debt stock data may lack accuracy if they fail to account for all publicly guaranteed 

debt outstanding, debt reductions, and reschedules. 

3.2 Estimation Strategy 

We introduce i.i.d. measurement errors into the regime variable to allow the model-implied 

default path to deviate from the observed default events. Specifically, we assume that Pr(𝑑𝑡
𝑜 =

0 | 𝑑𝑡 = 𝑖) = 𝑎𝑖  for 𝑖 = 1 𝑜𝑟 0 where 𝑑𝑡
𝑜  denotes the observed default behavior in the data 

with 𝑑𝑡
𝑜 = 1 corresponding to default and 𝑑𝑡

𝑜 = 0 corresponding to repayment in year 𝑡. The 

superscript “o” indicates that the corresponding variable is observed in the data. The state 

space representation is non-Gaussian and nonlinear as follows. 

 
ln(𝑦𝑡

𝑜) = ln(𝑦𝑡), 

𝑑𝑡
𝑜 = {

0     𝑖𝑓 𝑑𝑡 = 𝑖 & 𝑢𝑡 < 𝑎𝑖,  𝑓𝑜𝑟 𝑖 = 0, 1

1                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 , 

ln(𝑦𝑡) =  𝜌 ln(𝑦𝑡−1) + 𝜀𝑡 , 

𝑑𝑡 = 𝑑(𝑑𝑡−1, 𝐵𝑡 , 𝑦𝑡), 

𝐵𝑡 = {
𝐵(𝐵𝑡−1, 𝑦𝑡−1)     𝑖𝑓 𝑑𝑡 = 0

0                  𝑜/𝑤
 , 

𝑢𝑡 ∼  𝑖. 𝑖. 𝑑.  𝑢𝑛𝑖𝑓𝑜𝑟𝑚 (0,1), 

𝜀𝑡 ∼  𝑖. 𝑖. 𝑑. 𝑁(0, 𝜂), 

(3) 

                                                        

4 Specifically, the model implied debt path can be computed using the policy function and the lagged state 

variables as 𝐵𝑡 = 𝐵(𝐵𝑡−1, 𝑦𝑡−1) × 1{𝑑𝑡−1=0}. 
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where the first two equations are observation equations and the remaining three equations are 

the state equations. The functions f and g are highly nonlinear.  

We apply a maximum simulated likelihood method to estimate the model.5 Let 𝐷𝑜 ≡

{𝑑𝑡
𝑜}, 𝐷 ≡ {𝑑𝑡} and 𝑌 ≡ {𝑦𝑡}. The joint distribution of 𝐷𝑜 and Y implied by the model can be 

written as  

 
𝑃(𝐷𝑜, 𝑌; 𝜽) = 𝑃(𝐷𝑜|𝑌)𝑃(𝑌), 

= [∫𝑃(𝐷𝑜, 𝐷|𝑌)𝑑𝐷]𝑃(𝑌), 

= [∫𝑃(𝐷𝑜|𝐷, 𝑌)𝑃(𝐷|𝑌)𝑑𝐷]𝑃(𝑌), 

= [∫𝑃(𝐷𝑜|𝐷)𝑃(𝐷|𝑌)𝑑𝐷]𝑃(𝑌), 

≈ [∑𝑃(𝐷𝑜|𝐷𝑖)𝑃(𝐷𝑖|𝑌)

𝑖

] 𝑃(𝑌), 

(4) 

where 𝜽 is the set of model parameters: 𝜎 (risk aversion), 𝑟 (risk-free rate), 𝛽 (discount factor), 

𝜆 (reentry probability), 𝜌 and 𝜂 (coefficients in the output equation), 𝑦 (output cost), and  𝐵0 

(initial asset level). The log likelihood function is  

 ln 𝑃(𝐷𝑜, 𝑌; 𝜽) = ln∑ [𝑃(𝐷𝑜|𝐷𝑖)𝑃(𝐷𝑖|𝑌)]𝑖 + ln  𝑃(𝑌). (5) 

The difficulty is that there is no analytical representation of 𝑃(𝐷𝑖|𝑌) . However, we can 

simulate 𝐷𝑖 and compute 𝑃(𝐷𝑖|𝑌) from the model.6 Thanks to the parsimonious model feature 

that there are only eight parameters and many of them have specific ranges, we can carry out 

simulations for all possible parameter-value combinations with reasonably fine and widely 

ranged grids. 

                                                        

5 See Keane and Wolpin (2009), Train (2009), and Keane, Todd, and Wolpin (2011) for details. 

6 Specifically, the steps of calculation are as follows. Step 1: Given data Y and the model, simulate Di from 

distribution 𝑃(𝐷𝑖|𝑌) many times; Step 2: Given data Do, calculate forecast error probability P(Do|Di) for each 

simulation Di; Step 3: Sum up 𝑃(𝐷𝑜|𝐷𝑖)𝑃(𝐷𝑖|𝑌) over simulations. We further explain our numerical method in 

Appendix D. 
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In the estimation, for simplicity, we assume no measurement errors in the initial year 

(𝑑1952 = 𝑑1952
𝑜 ). Further, we fix 𝑟 = 0.025 (the historical average of real interest rate data 

series7) to make the estimated results comparable to observed levels of 𝑟. Lastly, the initial 

debt level -𝐵0 is set to zero assuming that there was no external borrowing during the 1951 

default. 

4 Estimated Results 

4.1 Parameter Estimates 

We find the unique parameter set that achieves the highest likelihood function value in our 

numerical maximization framework (see Appendix D for details). The estimated parameters 

are shown in the first column in Table 2 together with the asymptotic standard errors of the 

estimated parameters computed using the score vector for observations (see Proposition 7.9 in 

Hayashi (2000) for details). For comparison, we report the annualized calibrated parameter 

values used by Arellano (2008) in the last column.  

[Table 2] 

We find that the estimated risk aversion is quite high (𝜎 = 8) compared to the value 

commonly used in the literature (𝜎 = 2). As a result of this high 𝜎, the average of simulated 

consumption volatility turns out to be lower than that of simulated output volatility (see 

Section 4.4 for a discussion of the business cycle properties). Second, the estimated discount 

factor is quite low (𝛽 = 0.58).8 While the low 𝛽 is consistent with the values used in some 

                                                        

7 We measure the risk-free interest rate as the nominal interest rate (three-year US Treasury securities) minus the 

average inflation rate (using the GDP deflator) over the current and subsequent two years in the US. This series is 

available from 1954. 

8 We still obtain a low 𝛽 value even when we exclude the coup d’etat era of the 1950s and 60s from the sample 

period. 
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recent studies (Mendoza and Yue, 2012 and Na et al., 2017), it is lower than the value implied 

by the Euler equation9 at the steady state, 

 

𝛽 = [(1 + 𝑟) (
𝛿∗

1 − 𝛿∗
(
𝑐𝑅∗

𝑐𝐷∗
)

𝜎

+ 1)]

−1

, 
(6) 

where superscript ∗ indicates the steady state values. Suppose 𝑐𝑅∗/𝑐𝐷∗ = 1.03 (roughly in line 

with Arellano’s (2008) calibrated value of 𝑦), 𝑟 = 0.025 (the historical average of the real 

interest rate data series mentioned above), 𝜎 = 2 (the commonly used calibrated value), 𝛿∗ =

0.12 (an approximate default probability computed as the number of defaults divided by the 

number of years under the repayment state for our sample period). Then, the implied 𝛽 is 0.85, 

notably higher than the estimated value of 0.58.  

Another value that is quite different from the calibrated value used by Arellano 

(2008) is 𝜆 (probability of reentry). The average duration of observed default years is 9 

years10 in our sample, and the estimated value of 𝜆 (0.12) gives a 9-year default duration on 

average. Arellano (2008) sets this value to a much higher value, 0.73, to match the volatility of 

the trade balance. 

The value of 𝑦  (output cost, 0.99 ) is consistent with the calibrated values in the 

literature. The estimated coefficients for the output dynamics (𝜌 and 𝜂) are consistent with the 

simple AR(1) estimates. The relatively low value of 𝜌 (0.55) reflects the low persistency of 

                                                        

9 The Euler equation is given by, 

1 =
𝛽

𝑞𝑡
𝐸𝑡 [𝑑𝑡+1

𝑢′(𝑐𝑡+1
𝐷 )

𝑢′(𝑐𝑡
𝑅)
+ (1 − 𝑑𝑡+1)

𝑢′(𝑐𝑡+1
𝑅 )

𝑢′(𝑐𝑡
𝑅)
] = 

𝛽(1+𝑟)

1−𝛿𝑡
𝐸𝑡 [𝑑𝑡+1 (

𝑐𝑡
𝑅

𝑐𝑡+1
𝐷 )

𝜎

+ (1 − 𝑑𝑡+1) (
𝑐𝑡
𝑅

𝑐𝑡+1
𝑅 )

𝜎

] 

where the second equality holds by the CRRA utility and bond pricing equation with risk neutral lenders. If 𝑐𝑅 

and 𝑐𝐷 are constant at the steady state, the above equation reduces to 𝛽 = [(1 + 𝑟) (
𝛿∗

1−𝛿∗
(
𝑐𝑅∗

𝑐𝐷∗
)
𝜎

+ 1)]
−1

, where 

the superscript * indicates the steady state values. 

10 Uribe and Schmitt-Grohé (2017) review the existing estimates of years of exclusion from credit markets after 

default and find that, on average, countries regain full access to credit markets 8.4 years after emerging from 

default. 
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output at annual frequency obtained via HP filtering. The estimate of 𝑎1 (the probability that 

the repayment is observed in the data, given that the model implies default) is 0. Thus, we 

observe defaults whenever the country chooses to default in the model. The estimate of 𝑎0 (the 

probability that the observed default variable is repayment given that the model-implied 

default variable also indicates repayment) is 0.90. This value being lower than 1 reflects that 

the model fails to predict the 1956 default. These two measurement error-related parameters 

are not needed in our simulations, as discussed below. 

Given that the estimates of 𝜎 and 𝛽 are quite far from the values commonly used in the 

literature, we also estimate the model by fixing 𝜎 = 2 and 𝛽 = 0.8 (the calibrated values used 

by Aguiar and Gopinath, 2006). 11  We call this the restricted estimation and report the 

estimated parameters in the second column of Table 2. The parameter value that is mainly 

affected by this restriction is the value of 𝜆 (probability of reentry). In the restricted estimation, 

𝜆 equals 0.49, which is higher than the value of 𝜆 that we get in the unrestricted estimation but 

still lower than the value used by Arellano (2008).  

Why do the unrestricted estimates give such a high σ and a low β? The unrestricted 

estimate for λ (probability of reentry) is consistent with the observed duration of default years 

but is much lower than the restricted estimate. The lower λ implies a higher penalty upon 

default; as a result, the country has less incentive to default. To offset this diminished 

incentive, the model parameters adjust and give a combination of high σ and low β. The higher 

the σ or the lower the β is, the greater is the incentive for the country to default. 

4.2 Default Probability Function 

Figure 2 shows the estimated default probability function, 𝛿(𝐵𝑡, 𝑦𝑡−1), computed with the 

restricted estimates. The figure plots the default probability as a function of lagged output, 

𝑦𝑡−1, for three different levels of 𝐵𝑡−1. For a given 𝐵𝑡−1, the figure shows that the relationship 

                                                        

11 A reasonable value of σ for a small open economy might be higher than 2 (Reinhart and Végh, 1995). When 

we re-estimate the model fixing σ=5, the implied default probabilities turn out to be very similar to those of the 

unrestricted estimates, and thus, they are not reported here. 
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between the default probability and lagged output is non-monotonic. The default probability 

first decreases with increasing output, but then it jumps up as the country chooses to borrow 

more, i.e., -𝐵𝑡 increases, which leads to a jump in the probability of default. The spikes in the 

default probability correspond to output levels at which the country increases its debt level. 

The figure also shows that the default probability increases with a higher level of the initial 

debt (-𝐵𝑡−1), holding output constant, since the new debt level increases with the starting 

value of debt. 

[Figure 2] 

 

4.3 Default Probabilities 

We call the probability of the default outcome after 𝑦𝑡 (the current output) is realized the ex-

post default probability and the probability of default conditional on 𝑦𝑡−1 the ex-ante default 

probability. Figure 3 plots the ex-post default probabilities, which are computed as averages of 

10,000 simulations, for the unrestricted and restricted parameter estimates. The ex-post default 

probability equals either 0 or 1 for a country that has access to financial markets. Since the 

default decision is made after 𝑦𝑡  is observed, the default outcome becomes a certain event 

given the default decision. Thus, for a country that has access to financial markets, the 

probability of default equals 1 if the country chooses to default and zero if repayment is 

chosen. For a country in autarky, on the other hand, the probability of remaining in the default 

state or not depends on the exogenous probability of regaining access to markets, λ. Therefore, 

the simulated ex-post default probability fluctuates between zero and one after the decision to 

default due to the exogenous probability of reentry, as seen in the figure. 

[Figure 3] 

 

With either set of estimates, the timing of the default decisions is quite similar as seen 

by the comovement of the two lines. The model matches the observed default events in 1982 

and 2001 with the ex-post default probability equaling 1 in these years. The default probability 
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continues to remain high in the years following the default events, identified as default years 

in the data, even though it fluctuates due to the exogenous reentry probability. The unrestricted 

estimation gives a higher default probability throughout the default years since the value of 𝜆 

(probability of reentry) is much lower in the unrestricted estimation than in the restricted 

estimation (0.12 versus 0.49). With a low 𝜆 value, the probability of staying in autarky after 

the decision to default remains higher, as shown by the smaller swings in the blue line. The 

low 𝜆 value also leads to a slower decline in the probability of default once it increases. As a 

result, the default probability predicted by the unrestricted estimates in the years of repayment 

(the white areas) is higher than the restricted estimates. With the restricted estimates, the ex-

post default probability falls close to zero in 1994 and 2006, when Argentina regained access 

to financial markets, matching the data very closely. During the repayment years, it does not 

fluctuate with changes in output and stays close to zero since the country remains below the 

model-implied endogenous debt ceiling. Hence, the restricted estimation matches the default 

status of the country better than the unrestricted estimation during the repayment years, as 

shown by the lower values of the default probability in the repayment years. The unrestricted 

estimates, on the other hand, fit the data better during the default years, with the probability of 

default remaining high during these periods. 

In the case of the default in 1956, the model does not predict a default since output 

does not decline before or during the default year (see Figure 1). Instead, the model predicts a 

default with some lag in 1958, when we see a decline in output. The default in 1956 follows a 

political crisis and a coup d’état, after which the new government reached an agreement with 

the lending nations to reschedule its debt. In this sense, the 1956 default seems to be different 

from the other defaults, and it does not coincide with an output decline. 

Figure 4 compares the ex-post and ex-ante default probabilities for the restricted set of 

parameter estimates. The red solid line shows the ex-post default probability, and the blue 

dashed line shows the ex-ante default probability. The ex-ante default probability, which is the 

probability of default conditional on 𝑦𝑡−1, moves similarly to the ex-post default probability in 

the default years and reaches its highest values during these periods, which is consistent with 
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the data. However, it usually follows the ex-post default probability with a lag. This lagged 

pattern suggests that the decline in output observed at the time of default events is important 

for the model to predict a default. It is also the case that the ex-ante default probability 

increases during some years in the repayment periods, showing a heightened risk of default 

based on the previous period’s output. 

 [Figure 4] 

 

4.4 Business Cycle Properties 

Table 3 compares the moments related to consumption, interest rate spread and net exports 

with those from the data and Arellano (2008). For each of these variables, we compute the 

average of 10,000 simulated paths given the output data series and the restricted and 

unrestricted parameter estimates. We report the moments for both the whole period and the 

repayment periods. 

[Table 3] 

The statistics computed with the restricted estimates (𝜎 = 2 and 𝛽 = 0.8) are broadly 

consistent with the data and Arellano (2008). Specifically, consumption is more volatile than 

output, the volatility of the spread is very close to the data in the repayment subsample and the 

trade balance is countercyclical, which is again stronger in the repayment subsample. Figure 5 

shows the spread for Argentina and the model-implied spread computed with the restricted 

estimates. As shown in the figure, the spread increases substantially with default, which leads 

to the much higher volatility of the spread in the sample that includes the default periods. The 

figure also shows that the model-implied spread moves very close to its data counterpart in the 

period when the two series overlap. 

 [Figure 5] 

With the unrestricted estimates, the match between the model and the data deteriorates. 

The high estimate of the risk aversion coefficient leads to the consumption volatility being 
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lower than the data. Additionally, the volatility of the spread increases substantially, and the 

trade balance becomes procyclical with this set of estimates. The increase in the volatility of 

the spread can be explained by the lower value of the reentry probability. The lower reentry 

probability leads to the spread remaining high for a much longer period after the default. 

The model produces a countercyclical spread with both set of estimates only when all 

periods are considered, which shows that the increase in spread coinciding with the decline in 

output during the default periods is important for the model to match this statistic. Arellano 

(2008) obtains a countercyclical spread even though she uses only the repayment periods in 

her computation. The difference between her results and ours comes from the persistence 

parameter in the AR(1) process for output. The persistence of output in the longer sample we 

use is much lower than the value she uses. With a lower persistence, the model gives a 

procyclical spread when only the repayment periods are considered. A lower persistence 

makes the default incentive and the spread less sensitive to a decline in output since it is more 

likely that the output will recover in the next period, which reduces the negative correlation of 

output and spread. 

Overall, the moments obtained from the model show that the parameter estimates that 

give the best fit between the data and the model in terms of default and output patterns fail to 

match the business cycle statistics observed in the data in terms of consumption, trade balance 

and spread. The restricted set of estimates, which are closer to the calibrated values commonly 

used in the literature, improve the model predictions in terms of business cycle statistics. 

5 Does the Model Help Predict Default Events? 

The literature on early warning systems that has developed since Kaminsky, Lizondo, and 

Reinhart (1998) uses model-free methods to predict different types of crises, including debt 

crises. These papers typically use a probit or logit estimation that regresses a crisis indicator 

on variables that measure the solvency and liquidity of the country as well as the strength of 

its macroeconomic fundamentals, such as the ratio of current account to GDP, the ratio of 
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short-term debt to reserves, exchange rate overvaluation, reserve losses, real GDP growth rate, 

export growth and yield spread (see Catao and Sutton, 2002, Manasse, Roubini, and 

Schimmelpfennig, 2003, Berg, Borensztein, and Pattillo, 2005, Bussiere and Fratzscher, 2006, 

Candelon, Demitrescu, and Hurlin, 2012, and Kaminsky and Vega-Garcia, 2016, among 

others). In this section, we examine whether the model-implied default probability is a useful 

additional regressor in the reduced-form logit models (Section 5.1). We then compute pseudo 

out-of-sample forecasts and compare them with those based on a comparable logit model 

(Section 5.2).  

5.1 Logit Estimation 

We add the ex-ante default probability (the blue dashed line in Figure 4) as an additional 

regressor in the logit model that regresses the observed default variable (𝑑𝑜) on a constant and 

other control variables commonly used in the literature. Table 4 shows that the corresponding 

coefficient is statistically significantly positive in all specifications, indicating that it has 

additional predictive power for default events.12 The other variables used in the literature for 

predicting crises in general remain mostly insignificant, suggesting that they are not very 

useful at predicting sovereign default events. 

[Table 4] 

5.2 Pseudo Out-of-Sample Forecasting: A comparison with logit models 

To formally compare the forecasting performance of our model with a logit-based estimation, 

we compute the default probability for the observed default events, based on our assumption 

that there is measurement error in the repayment regime variable. Formally, we are interested 

in computing the following probability: 

                                                        

12 To check reverse causality, we regress the current output on its lag and the current and lagged observed default 

variables for on the whole sample period (from 1950 to 2010). The coefficient for the current observed default 

variable (𝑑𝑡) turned out to be not statistically significant from zero. 
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 Pr(𝑑𝑡
𝑜|𝐷𝑡−1

𝑜 , 𝑌𝑡), (7) 

where 𝐷𝑡−1
𝑜 = {𝑑𝑡−1

𝑜 , . . . , 𝑑0
𝑜} and 𝑌𝑡 = {𝑦𝑡, . . . , 𝑦0}. This is the probability that the observed 

default variable in period 𝑡 (𝑑𝑡
𝑜) takes a particular value given its past values (𝐷𝑡−1

𝑜 ) and the 

output data information up to that period (𝑌𝑡). In Appendix C, we show that this probability 

can be rewritten as a function of the measurement error and model-implied components using 

a part of the likelihood function derivation. We estimate this probability using the baseline 

model as well as the logit model that regresses 𝑑𝑡
𝑜 on a constant, 𝑑𝑡−1

𝑜  and 𝑦𝑡. We then use it to 

compute our default decision forecasts. 

Figure 6 plots pseudo out-of-sample default decision forecasts under the baseline 

model (black solid line) and the logit model (black dashed line).13 For period t, we re-estimate 

model parameters using output and default data from period t+1-40 to period t. Using the 

updated parameter values, we then compute out-of-sample default decision forecasts for each 

year. The figure demonstrates that the baseline model can predict the timing of the onset of the 

2001 default better than the logit model. Further, the baseline model forecasts do not fluctuate 

under the repayment regime, though the level of the forecasts is higher than the logit-based 

forecasts. This is because in the baseline model, repayment decisions are projected in a stable 

manner due to the endogenous debt ceiling, whereas in the logit model, there is a monotonic 

relationship between output and default decisions. However, neither model forecasts the 

default duration well. Specifically, they fail to predict the timing of return to the repayment 

regime in 2006. Going forward, explicit modeling of default duration via debt negotiation may 

be useful in addressing this problem. 

[Figure 6] 

                                                        

13 The logit and baseline models have similar fit to the data with the corresponding log likelihood value being -16 

for the logit model and -19 for the baseline model with unrestricted parameter estimates. The value implied by 

the baseline model with the restricted parameter estimates, however, is significantly lower (-29) because of the 

poor performance of the model under the restricted estimation during the default years and relatively low value of 

𝑎0 (0.72).  
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 Lastly, we have also computed out-of-sample forecasts conditioned on the previous 

period’s output. We find that neither model predicts the onset of default events or the timing 

of getting out of default when conditioned on the previous period’s output. 

6 Conclusion 

By formally estimating the Arellano (2008) model, we find that the canonical sovereign 

default model is a useful indicator for Argentine default decisions. Despite the use of only 

output and default data in our estimation, the model accounts for overall default patterns of 

Argentina. The estimated sovereign default model also performs better than a comparable logit 

model that has been commonly used in the literature for predicting crises.  

An important caveat on the model-implied business cycle properties is that if we use 

the unrestricted parameter estimates for model simulation, the moments from the model in 

terms of consumption, trade balance and interest rate spread cannot match the data. Going 

forward, following the developments in the theoretical literature, incorporating long-term debt 

and a more explicit modeling of default duration via debt negotiation and restructuring may 

help improve the estimated model performance in accounting for business cycle properties.  
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Table 1. Summary statistics. 

 

  

 

 

 

 

 

 

 

 

 

 

y (output) s (regime)

mean 1.02 0

std. dev. 0.04 0

min 1.11 0

max 0.96 0

Default regime (1951, 1956-1965, 1982-1993, 2001-2005)

mean 0.98 1

std. dev. 0.05 0

min 1.05 1

max 0.84 1

Repayment regime (1950, 1952-1955, 1966-1981, 1994-2000, 2006-2010)



23 

 

Table 2. Estimated parameters. 

 

In annualized values. The numbers in parentheses are standard errors. We pre-fix the risk-

free rate, and we do not report the standard error of a1 and the initial asset level since they 

are estimated at the lower boundary of zero. 

  

Baseline model

(unrestricted)

Baseline model

(restricted)

Arellano (2008)

(annualized)

σ (risk aversion) 8.0 2 2

(0.02)

β (discount factor) 0.58 0.80 0.82
(0.04)

1+r (risk-free rate) 1.03 1.03 1.07

B 0 (initial asset level) 0.00 0.00 ー

    (output cost) 0.99 0.99 0.97

(0.48) (0.10)

λ (reentry probability) 0.12 0.49 0.73
(0.05) (0.03)

ρ 0.55 0.56 0.85

(0.13) (0.10)

η 0.04 0.04 0.04

(0.01) (0.002)

a 1 0 0 ー

a 0 0.90 0.72 ー
(0.02) (0.02)

𝑦 
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Table 3. Business cycle statistics. 

 

Net exports are exports minus imports; the spread is in percentages. All series except net 

exports and the spread are in logs. All series have been HP filtered. Standard deviations are 

reported as percentages. All statistics are based on annual data. Sample periods are 1950-2010 

for output and consumption, 1960-2010 for net exports, and 1983-2010 for the spread. 

 

  

All periods Repayment periods All periods Repayment periods All periods

σ(c )/σ(y ) 1.19 0.97 0.93 1.09 1.02 1.10

σ(nx/y ) 2.58 1.86 1.75 0.72 0.82 1.50

σ(spread ) 12.30 275.11 357.05 12.22 37.45 6.36

corr(c,y ) 0.90 0.78 0.92 0.98 0.98 0.97

corr(nx/y,y ) -0.81 0.20 0.33 -0.34 -0.04 -0.25

corr(spread,y ) -0.81 0.03 -0.29 0.12 -0.33 -0.29

Arellano's 

(2008) quarterly 

stat.

Data Model (unrestricted estimates) Model (restricted estimates)
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Table 4. Logit model estimation with ex-ante default probability. 

 

This table reports the estimated results of logit models that regresses the observed 

default variable on a constant, the model-implied ex-ante default probability 

simulated with restricted parameter estimates (delta), and other control variables. 

Data on exports of goods and services at constant 2005 US$ (NE.EXP.GNFS.KD), the 

ratio of short-term debt to reserves (DT.DOD.DSTC.IR.ZS) and the ratio of debt 

service to exports (DT.TDS.DECT.EX.ZS) are taken from the World Bank’s 

International Debt Statistics. Data on total reserves in current US$ (FI.RES.TOTL.CD) 

and domestic credit to the private sector over GDP (FS.AST.PRVT.GD.ZS) are 

taken from the International Monetary Fund’s International Financial Statistics. The 

spread data is the one shown in Figure 5. The growth variables are the log 

differences. The other variables are in decimals. Numbers in brackets are t-values. 

***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 

 

  

Variable (1) (2) (3) (4)

Intercept -3.58*** -4.279*** -7.004** -13.329*

[-3.69] [-3.28] [-2.25] [-1.75]

Delta 20.51*** 22.33*** 34.19** 40.22*

[3.76] [3.35] [2.07] [1.68]

RGDP growth 6.51 16.11

[0.74] [0.79]

Export growth 0.27 -11.14

[0.06] [-0.93]

Reserve growth -0.63 0.62

[-0.71] [0.17]

Credit growth -0.82 -7.4

[-0.37] [-1.10]

Short-term debt/Reserves 4.28*

[1.88]

Debt service/Exports -6.78

[-0.91]

Spread 71.52

[1.49]

Sample size 58 50 35 28

McFadden R
2 0.42 0.45 0.65 0.81
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Figure 1. Output and default data series 

 

The solid line is the detrended output series for Argentina from 1950 to 2010. The shaded 

areas are default years.  
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Figure 2. Default probability function 

 

 

This figure plots the numerical default probability (delta) function against lagged output.   
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Figure 3. Simulated ex-post default probabilities  

 

 

This figure plots the averages of 10,000 simulated ex-post default probabilities given the output 

data series and either the restricted or unrestricted parameter estimates. The red solid line and the 

blue dashed line are the simulated default decisions with the restricted and the unrestricted 

estimates, respectively. In the figure, the initial default decision is set equal to the observed 

default variable. The shaded areas are default years.  
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Figure 4. Simulated ex-ante and ex-post default probabilities 

 

 

This figure plots the averages of 10,000 simulated ex-ante (blue dashed line) and ex-post (red 

solid line) default probabilities given the output data series and the restricted parameter 

estimates. In the figure, the initial default state is set equal to the observed default variable. 

The shaded areas are default years.  
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Figure 5. Simulated spread  

 

 

In annualized rate in percent. The solid line shows the averages of 10,000 simulations of the 

interest rate spread, computed as (1/q)-(1+r), for the observed repayment years and the first years 

of default years given the output data series and the restricted parameter estimates. The red dashed 

line shows the spread data for Argentina. The spread data between 1983-1993 are taken from the 

dataset by Neumeyer and Perri (2005). The data for 1994-2010 are from EMBI Global Argentina 

(stripped spread). The shaded areas are default years. 
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Figure 6. Pseudo out-of-sample forecasts  

 

This figure plots pseudo out-of-sample default decision forecasts using the baseline model and 

the logit model. Each year’s default decision forecasts are computed conditional on the current 

year’s output and the previous year’s observed default decision. 
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Appendix A: The model 

Arellano (2008) 

This appendix summarizes the Arellano (2008) model. There are two regimes (𝑑𝑡): default 

regime (𝑑𝑡 = 1) and repayment regime (𝑑𝑡 = 0). The model is set up as a planner’s problem 

with the resource constraint given by 

𝑐𝑡 = 𝑦𝑡 − 𝑞(𝐵𝑡+1, 𝑦𝑡)𝐵𝑡+1 + 𝐵𝑡,  under repayment,

𝑐𝑡 = ℎ(𝑦𝑡),  under default,
 

where 𝑦 is output and ℎ(𝑦𝑡) = 𝑦 if 𝑦𝑡 > 𝑦 and ℎ(𝑦𝑡) = 𝑦𝑡 if 𝑦𝑡 ≤ 𝑦.14 𝑐 is consumption and 𝑞 

is the price of the asset. The log of output is assumed to follow the AR(1) process, i.e., 

 ln(𝑦𝑡) = 𝜌 ln (𝑦𝑡−1) + 𝜀𝑡 ,  𝜀𝑡 ∼ 𝑁(0, 𝜂). (8) 

Denoting period 𝑡 + 1 variables with prime and period 𝑡 variables with no time subscript, the 

value functions are given by 

𝑉𝐷(𝑦) = 𝑢(ℎ(𝑦)) + 𝛽𝐸[𝜆𝑉𝑅(0, 𝑦′) + (1 − 𝜆)𝑉𝐷(𝑦′)],

𝑉𝑅(𝐵, 𝑦) = max
𝐵′
 𝑢(𝑦 − 𝑞(𝐵′, 𝑦)𝐵′ + 𝐵) + 𝛽𝐸[max{𝑉𝐷(𝑦′), 𝑉𝑅(𝐵′, 𝑦′)}],

= 𝑢(𝑦 − 𝑞(𝐵(𝐵, 𝑦), 𝑦)𝐵(𝐵, 𝑦) + 𝐵) + 𝛽𝐸[max{𝑉𝐷(𝑦′), 𝑉𝑅(𝐵(𝐵, 𝑦), 𝑦′)}],

 

where 𝐵(. , . )  is the savings policy function, 𝜆  is the reentry probability, and ln(𝑦′) =

𝜌 ln (𝑦) + 𝜀′.. 

With risk-neutral lenders, the bond price satisfies 

 
𝑞(𝐵(𝐵, 𝑦), 𝑦) =

1 − 𝛿(𝐵(𝐵, 𝑦), 𝑦)

1 + 𝑟
, 

(9) 

                                                        

14 Aguiar and Gopinath (2006) point out that the sovereign debt model of Arellano (2008) cannot match the 

countercyclicality of interest rates, the positive correlation of interest rates, and the trade balance without an 

asymmetric output cost for a country in default. Without such a cost, the probability of default, the volatilities of 

interest rate and trade balance, and the maximum spread that the model generates decrease considerably. 
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where 𝛿 is the endogenous default probability given by 

𝛿(𝐵(𝐵, 𝑦), 𝑦) = Pr(𝑦′ ∈ 𝐼(𝐵′)), 

with 𝐼(𝐵) = {𝑦 ∈ 𝒴: 𝑉𝐷(y) > 𝑉𝑅(𝐵, 𝑦)}. 

Appendix B: The Likelihood Function 

This appendix derives the likelihood function for the baseline model. Data on output and 

default variables are used in the estimation, allowing measurement error on the observed 

default variables. 

The likelihood function for Arellano (2008) 

The likelihood function of the data is given by 

ℒ = 𝑝(𝑑1
𝑜 , . . . , 𝑑𝑇

𝑜 , 𝑦1, . . . , 𝑦𝑇|𝑑0
𝑜 , 𝑦0), 

where the superscript o indicates observed default variable. ℒ can be rewritten as 

ℒ = 𝑝(𝐷̃𝑇
𝑜
|𝑑0
𝑜 , 𝑌𝑡)⏟        

ℒ𝐴

𝑝(𝑌̃𝑇 |𝑑0
𝑜 , 𝑦0)⏟        

ℒ𝐵

 

where 𝑌𝑡 ≡ {𝑦𝑡, . . . , 𝑦0}, 𝑌̃𝑡 ≡ {𝑦𝑡, . . . , 𝑦1}, and 𝐷̃𝑡
𝑜
≡ {𝑑𝑡

𝑜 , . . . , 𝑑1
𝑜}. 

ℒ𝐵 can be rewritten as 

𝑝(𝑌̃𝑇 |𝑑0
𝑜 , 𝑦0) =∏𝑓

𝑇

𝑖=1

(𝑦𝑡|𝑑0
𝑜 , 𝑌𝑡−1), (by seq. factorization)

=∏𝑓

𝑇

𝑖=1

(𝑦𝑡|𝑦𝑡−1), (the log of 𝑦 follows the AR(1))

=∏𝜙

𝑇

𝑖=1

(
ln𝑦𝑡 − 𝜌ln𝑦𝑡−1

𝜂
) ,

 

where 𝜙(. ) is the pdf of the standard normal distribution. 
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ℒ𝐴 can be rewritten as 

 𝑝(𝐷̃𝑇
𝑜
|𝑑0
𝑜, 𝑌𝑇) = ∑ 𝑝

(𝑑𝑇,...,𝑑0)

(𝐷̃𝑇
𝑜
, 𝐷𝑇|𝑑0

𝑜, 𝑌𝑇),where 𝐷𝑡 ≡ {𝑑𝑡 , . . . , 𝑑0},

= ∑ 𝑝
(𝑑𝑇,...,𝑑0)

(𝑑𝑇
𝑜 , 𝐷̃𝑇−1

𝑜
, 𝐷𝑇|𝑑0

𝑜, 𝑌𝑇),

= ∑ 𝑝
(𝑑𝑇,...,𝑑0)

(𝑑𝑇
𝑜| 𝐷̃𝑇−1

𝑜
, 𝐷𝑇 , 𝑑0

𝑜, 𝑌𝑇)𝑝(𝐷̃𝑇−1
𝑜

, 𝐷𝑇|𝑑0
𝑜, 𝑌𝑇),

= ∑ 𝑝

(𝑑𝑇,...,𝑑0)

(𝑑𝑇
𝑜|𝑑𝑇)𝑝(𝐷̃𝑇−1

𝑜
, 𝐷𝑇|𝑑0

𝑜, 𝑌𝑇), (meas. error asm. )

= ∑ 𝑝
(𝑑𝑇,...,𝑑0)

(𝑑𝑇
𝑜|𝑑𝑇)𝑝(𝑑𝑇−1

𝑜 | 𝐷̃𝑇−2
𝑜

, 𝐷𝑇 , 𝑑0
𝑜, 𝑌𝑇)𝑝(𝐷̃𝑇−2

𝑜
, 𝐷𝑇|𝑑0

𝑜, 𝑌𝑇),

= ∑ 𝑝
(𝑑𝑇,...,𝑑0)

(𝑑𝑇
𝑜|𝑑𝑇)𝑝(𝑑𝑇−1

𝑜 |𝑑𝑇−1)𝑝(𝐷̃𝑇−2
𝑜

, 𝐷𝑇|𝑑0
𝑜, 𝑌𝑇),

= ∑ [∏𝑝

𝑇

𝑖=1

(𝑑𝑖
𝑜|𝑑𝑖)]

(𝑑𝑇,...,𝑑0)

𝑝(𝐷𝑇|𝑑0
𝑜, 𝑌𝑇).

 

 

 

 

 

 

 

 

 

 

 

(10) 

By the model, 𝑝(𝐷𝑇|𝑑0
𝑜 , 𝑌𝑇) can be further rewritten as 

 

𝑝(𝐷𝑇|𝑑0
𝑜, 𝑌𝑇) = 𝐴∏Pr

𝑇

𝑖=1

(𝑑𝑖|𝐷𝑖−1, 𝑑0
𝑜, 𝑌𝑇),

= 𝐴∏Pr

𝑇

𝑖=1

(𝑑𝑖|𝑑𝑖−1, 𝐵𝑖 , 𝑦𝑖; 𝐵0),

= 𝐴∏Pr

𝑇

𝑖=1

(𝑑𝑖|𝑑𝑖−1, 𝐵(𝐵𝑖−1, 𝑦𝑖), 𝑦𝑖; 𝐵0),

 

 

 

 

 

(11) 

where 𝐴 ≡ Pr(𝑑0|𝑑0
𝑜 , 𝑌𝑇) . Pr(𝑑𝑖|𝑑𝑖−1, 𝐵𝑖, 𝑦𝑖; 𝐵0)  in the second equality corresponds to the 

model-implied default decision rule which can be expressed as 

Pr(𝑑𝑡 = 𝑑(𝑑𝑡−1, 𝐵𝑡, 𝑦𝑡)|𝑑𝑡−1 = 0, 𝐵𝑡, 𝑦𝑡) = 1,

Pr(𝑑𝑡 = 1|𝑑𝑡−1 = 1, 𝐵𝑡, 𝑦𝑡) = 1 − 𝜆,

Pr(𝑑𝑡 = 0|𝑑𝑡−1 = 1, 𝐵𝑡, 𝑦𝑡) = 𝜆,
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where uncertainty arises only through the exogenous reentry probability 𝜆  if the country 

defaulted in the previous period. The last equality holds by the saving policy function. The 

constant, 𝐴 in eq. (11) can be further rewritten as 

Pr(𝑑0|𝑑0
𝑜 , 𝑌𝑡) =

Pr(𝑑0
𝑜|𝑑0, 𝑌𝑡)Pr(𝑑0)

Pr(𝑑0
𝑜)

, (by the Bayes rule)

= Pr(𝑑0
𝑜|𝑑0 = 1)Pr(𝑑0 = 1) + Pr(𝑑0

𝑜|𝑑0 = 0)Pr(𝑑0 = 0).

 

By eqs. (8) and (10), the log likelihood function is given by 

𝐿 = ln [ ∑ 𝐴
(𝑑𝑇,...,𝑑0)

{∏𝑝

𝑇

𝑖=1

(𝑑𝑖
𝑜|𝑑𝑖)}∏Pr

𝑇

𝑖=1

(𝑑𝑖|𝑑𝑖−1, 𝐵(𝐵𝑖−1, 𝑦𝑖), 𝑦𝑖; 𝐵0)]

+∑ln

𝑇

𝑡=1

[𝜙 (
ln𝑦𝑡 − 𝜌ln𝑦𝑡−1

𝜂
)] ,

 

where the parameter vector includes 𝜎, 𝑟, 𝛽, 𝜆, 𝜌, 𝜂, 𝑦, 𝐵0, 𝑎
𝐷 , 𝑎𝑅. 
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Appendix C: Estimated Default Probability 

This appendix shows that the estimated default probability discussed in the text (eq. (5)) can 

be rewritten as a function of the model-implied and measurement-error components. 

Ex-post 

Pr(𝑑𝑡
𝑜|𝐷𝑡−1

𝑜 , 𝑌𝑡) =
Pr(𝐷̃𝑡

𝑜
|𝑑0
𝑜 , 𝑌𝑡)

Pr(𝐷̃𝑡−1
𝑜

|𝑑0
𝑜 , 𝑌𝑡)

,

≈
∑ [∏ 𝑝𝑡

𝑖=1 (𝑑𝑖
𝑜|𝑑𝑖)](𝑑𝑡,...,𝑑0) 𝑝(𝐷𝑡|𝑑0

𝑜 , 𝑌𝑡)

∑ [∏ 𝑝𝑡−1
𝑖=1 (𝑑𝑖

𝑜|𝑑𝑖)](𝑑𝑡−1,...,𝑑0) 𝑝(𝐷𝑡−1|𝑑0
𝑜, 𝑌𝑡)

.

 

Appendix D: Numerical Maximization 

The solution algorithm for the baseline model is as follows: 

1. Start with an initial guess for the bond price function 𝑞(𝐵′, 𝑦) that corresponds to a 

default probability of zero for each point in the state space. 

2. Using this initial price and initial guesses for 𝑉𝑅(𝐵, 𝑦)  and 𝑉𝐷(𝐵, 𝑦) , iterate on the 

Bellman equations to solve for the optimal value and policy functions. 

3. Given the optimal default decision, update the price of bonds using eq. (9)). Repeat steps 

2 and 3 until the bond price converges, i.e., until |𝑞𝑖+1 − 𝑞𝑖| < 𝜀, where 𝑖 represents the 

iteration number and 𝜀 is a very small number. 

There are only ten parameters (𝜎, 𝑟, 𝛽, 𝜆, 𝜌, 𝜂, 𝑦, 𝐵0, 𝑎0, 𝑎1) in the baseline model, and many of 

these parameter values have restrictions on their ranges. For example, the ranges of 𝛽, 𝜆, 𝑦, 𝑎0, 

and 𝑎1 are between 0 and 1. The values of 𝜌 and 𝜂 should not be very different from the OLS 

estimates of the 𝑦 equation alone. These restrictions enable us to compute likelihood values of 

all possible combinations of parameter values with reasonably fine grids. Specifically, for 

unrestricted parameter estimation, we set the upper and lower bounds of y-grid at 1.2 and 0.7 

respectively with the grid width of 0.0025, and the upper and lower bounds of B-grid at 0 and 
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-0.5 with the grid width of 0.002. The parameter grid widths are set at 0.2 (𝜎), 0.02 (𝛽), 0.01 

for 𝜆, 𝜆, 𝑎0, 𝑎1. Once we obtain the parameter set that maximizes the value of simulated 

likelihood function with the above grid setting (i.e., 𝜎=8, 𝛽=0.58, 𝜆=0.12, 𝑦=0.99, 𝜌=0.55, 

𝜂=0.04, 𝑎1=0, and 𝑎0=0.90), we examine values around the estimated parameters to compute 

the score function. For restricted parameter estimation, we fix the values of 𝜎 and 𝛽 at 2 and 

0.8 respectively. 

 


