BIO 580

Overview, history & types of biosensors

Introductory Week

Faculty: Dr. Javed H. Niazi KM Faculty of Engineering & Natural Sciences Sabanci University

Topics that will be covered in the course

History of biosensor development, applications and requirements of biosensors and classification

Principles of molecular recognition and transduction signal acquisition

✓ Sources of Biological Recognition elements – enzymes/proteins, ssDNAs, antibody and Others

- ✓ Design considerations for use of recognition elements in biosensors
- ✓ Modeling of reactions for various biosensor applications- electrochemical, optical, piezoelectric, colorimetric, fluorometric and others.
- □ Modification of sensor surfaces and immobilization techniques

✓ Covalent modification of surfaces using surface chemistry

✓ Self Assembled Monolayers (SAM) and adsorptions

- ✓ Other ways to immobilize biological macromolecules on various solid surfaces
- Detection methods and Physical Sensors
 - ✓ Electrodes/transducers electrochemical (amperometric, potentiometric, and conductimetric transductions)
 - ✓ Other sensors for e.g., optical sensors (colorimetric/fluorimetric/luminometric sensors), Surface Plasmon Resonance (SPR)
 - sensors, and piezoelectric resonators.

□ Fabrication of biosensors

✓ Miniaturization-application of nano-materials, nanoparticles, carbon nanotubes (CNTs) and others

✓ Biocompatibility – stability, reproducibility and repeatability of biomolecules on transducer surfaces

Data acquisition, statistical and error analysis

✓ Inter and Intra-assays and Coefficient of variation (CV)

✓ Signal to noise ratio

✓ Normalization/optimization and signal retrieval

Examples of commercial biosensors

Biosensors - combines multiple disciplines

Bio-Chem

Bio-Electronics

Micro-Electronics

Biosensensing

History of biosensors

Clark-type electrode: (A) Pt- (B) Ag/AgCl-electrode (C) KCl electrolyte (D) Teflon membrane (E) rubber ring (F) voltage supply (G) galvanometer

History of biosensors

Sl. No.	Year	Events			
1	1916	First report on the immobilization of proteins: adsorption of invertase on activated charcoal -Nelson and Griffin			
2	1922	First glass pH electrode			
3	1956	Invention of the oxygen electrode (Clark)			
4	1962	First description of a biosensor: an amperometric enzyme electrode for glucose (Clark)			
5	1969	First potentiometric biosensor: urease immobilized on an ammonia electrode to detect urea			
6	1970	Invention of the Ion-Selective Field-Effect Transistor (ISFET) (Bergveld)			
7	1972/5	First commercial biosensor: Yellow Springs Instruments glucose biosensor (pen shaped single use electrode)			
8	1975	First microbe-based biosensor			
		First immunosensor: ovalbumin on a platinum wire			
		Invention of the pO2/pCO2 optode (fluorescence signal & gas permeable membrane usage)			
9	1976	First bedside artificial pancreas (Miles)			
10	1980	First fibre optic pH sensor for in vivo blood gases			
		(Peterson)			
11	1982	First fibre optic-based biosensor for glucose			
12	1983	First surface plasmon resonance (SPR) immunosensor			
13	1984	First mediated amperometric biosensor: ferrocene used with glucose oxidase for the detection of glucose			
14	1987	Launch of the MediSense ExacTech [™] blood glucose biosensor (strips/pen model and disposable)			
15	1990	Launch of the Pharmacia BIACore SPR-based biosensor system			
16	1992	i-STAT launches hand-held blood analyser			
17	1996	Glucocard launched			
18	1996	Abbott acquires MediSense for \$867 million			
19	1998	Launch of LifeScan FastTake blood glucose biosensor			
20	1998	Merger of Roche and Boehringer Mannheim to form Roche Diagnostics			
21	2001	LifeScan purchases Inverness Medical's glucose testing business for \$1.3billion			
22	1999 to	BioNMES, Quantum dots, Nanoparticles, Nanocantilever, Nanowire and Nanotube			
	now				

Status of merging interdisciplinary areas toward miniaturization

Working principle of biosensors

An overview of a biosensor components

Classification

Electrochemical Biosensor

Where there is oxidation, there is reduction

Substance oxidized loses electron(s)

Substance reduced gains electron(s)

Conventional current flow is opposite to electron flow

eecs.oregonstate.edu/~traylor/ece112/.../elect_flow_vs_conv_l.pdf

To be continued...

Table 2. Mass sensitive sensor formats

Method	Schematic representation	Signal output	Principle
Mass sensitive aptasensors	A Flow channel Gold film Polanzed light Prism Renected light	Reflectivity	A: Surface Plasmon Resonance based aptasensors – capable of registering mass changes by the associated change in refractive index at the surface ^[14] .
	B Quartz Quartz	Lanalyte]	B: Quartz crystal microbalance (QCM)-based aptasensors – The frequency of the quartz crystal is controlled by changes in the mass associated with the crystal, thus the association of a target onto aptamer-modified crystals increases the mass on the transducer, resulting in a decrease in the resonance frequency of the crystal ^[15] .
	Quartz Quartz	Hitles analyte]	C: Surface acoustic wave (SAW)-based aptasensors – When mass is loaded onto the surface of these sensors, the propagation velocity of acoustic waves decreases, resulting in a reduction of resonance frequency or in alteration of the phase shift between output and input signal ^[16] .
	D Cantalever Cantalever	Erequency [analyte]	D: Micromechanical cantilever-based aptasensors – binding of target to aptamer immobilized cantilever induces a change in surface stress that causes a differential cantilever bending in the range 3–32 nm, depending on aptamer concentration ^[17] .