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MOTIVATIONS
• Assessment of vigilance is critical in long BCI experiments,

ADHD diagnosis, air traffic monitoring, and long-haul driving.
• Current vigilance labeling methods are usually subjective or

require facial videos.
• People demonstrate large differences in their response styles

(accuracy-speed tradeoff) and the ability to maintain their per-
formance levels.

• Spatial correlates of EEG signals are rarely used to predict con-
tinuous vigilance scores and response time in long experi-
ments.

CONTRIBUTIONS
1. Using Deep Neural Networks (DNNs) for modeling tonic vigi-

lance scores in long sustained attention tasks from spatial rela-
tionships of EEG signals, and

2. Introducing an objective performance-based measure for vigi-
lance labeling

ADAPTIVE VIGILANCE LABELING
• Five-level Trial Vigilance Score (TVS)

– TVS = 4 for correct double clicks and very fast and correct responses
(RT < 50 ms),

– TVS = 3 for correct responses (RT< lowerRT)
– TVS = 2 for correct responses with lowerRT < RT < upperRT
– TVS = 1 for wrong clicks, slow responses (RT > upperRT), and for

double click trials followed by a missed response.
– TVS = 0 for single missed responses.

• lowerRT = 250 ms, and upperRT = mean + 2 SD of RT from the
first 27 trials

• Cumulative Vigilance Score (CVS) obtained from a weighted
moving average of 4 sequences (∼ 73 seconds).

Comparison of CVS curves from different response styles

PHASE SYNCHRONY INDICES
• Digit-locked epochs, [-200, 1,600] ms, downsampled to 512 Hz.
• Epochs band-passed to alpha, lower beta-1 and 2, mid-beta, up-

per beta, wide-band beta, and wide-band gamma.
• Averaging pairwise phase differences for all N = 225 trials of a

single block using Hilbert transform:
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• Block-wise features extracted from samples 1 to 103 in the pre-
trial epochs, resulting in 64×64 images:

PSIbk =
1

T

T∑
t=1

PLVbk(t).

• Dataset X : 2016 unique values and 113 SART blocks.

EXPERIMENT DESIGN
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• Ten participants; average age 30.25 ± 6.95 years
• Fixed-sequence Sustained Attention to Response Task
• 12 blocks of 225 digits (trials) with varying inter-stimulus inter-

vals
• Task lasting for 105 to 110 minutes
• 64-channel EEG, Biosemi ActiveTwo system @ at 2048 Hz
• Automatic artifact removal, back-propagation, and reconstruc-

tion:
– Each block band-passed from 1 to 70 Hz,
– Ocular artifact removed using linear combination of simul-

taneously recorded EOG signals, and
– Using the Logistic infomax ICA algorithm, ICs removed if

exceeding ± 9 SD from their mean.
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REGRESSION WITH DNNS
• As a subset of neural correlates of pre-trial EEG, phase synchrony indices bear meaningful correlations with blockwise performance

measures:
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To predict block-wise CVS mean and hit response time mean from
7 frequency bands:
• Two cost functions utilized for regression: MSE and MAE
• Grid search for 20 learning rate values from 0.001 to 0.1 and

mini-batch sizes of 16, 32, 64, and 128
• Networks trained for 5 runs and 4-fold cross-validation with

stochastic gradient descent for 150 epochs

CONCLUSIONS
• Stronger asynchrony in frontal cortex and from left centro-

temporal with midline parieto-occipital, and synchrony within
the right centro-tempo-parietal cortex are correlates of im-
proved CVS.
• Alpha synchrony in the left fronto-central, with the right poste-

rior channels, and within the right parieto-occipital cortex are
strong correlates of delayed responses.
• Results are in line with roles of alpha and beta coherence in

alertness to fatigue transition, attentional processes, and motor
learning.

ONGOING RESEARCH
• Development of multivariable regression models for prediction

of overall performance scores in a long SART session from pre-
task, resting-state EEG features

• Classification of drowsy versus alert states from trial-based
spatio-spectro-temporal features using convolutional neural
networks (CNNs)

• Modeling the temporal structures, prediction, and adaptation
of vigilance scores using recurrent neural networks (RNNs)
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