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MOTIVATIONS ADAPTIVE VIGILANCE LABELING REGRESSION WITH DNNS

o Assessment of vigilance is critical in long BCI experiments, o Five-level Trial Vigilance Score (TVS) e As a subset of neural correlates of pre-trial EEG, phase synchrony indices bear meaningtul correlations with blockwise performance
ADHD diagnosis, air traffic monitoring, and long-haul driving. — TVS =4 tor correct double clicks and very fast and correct responses measures:

e Current vigilance labeling methods are usually subjective or (RT < 50 ms),
require facial videos. — TVS = 3 for correct responses (RT < lowerRT)
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— TVS =2 for correct responses with lowerRT < RT < upperRT
— TVS =1 for wrong clicks, slow responses (RT > upperRT), and for
double click trials followed by a missed response.

— TVS = 0 for single missed responses.

o lowerRT =250 ms, and upperRT = mean + 2 SD of RT from the
first 27 trials

e Cumulative Vigilance Score (CVS) obtained from a weighted
moving average of 4 sequences (~ 73 seconds).

o People demonstrate large differences in their response styles
(accuracy-speed tradeotf) and the ability to maintain their per-
formance levels.

e Spatial correlates of EEG signals are rarely used to predict con-
tinuous vigilance scores and response time in long experi-
ments.
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of overall performance scores in a long SART session from pre-
task, resting-state EEG features

temporal with midline parieto-occipital, and synchrony within
the right centro-tempo-parietal cortex are correlates of im-

e Automatic artifact removal, back-propagation, and reconstruc-
tion:
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exceeding + 9 SD from their mean. TS Results are in line with roles of alpha and beta coherence in e Modeling the temporal structures, prediction, and adaptation

alertness to fatigue transition, attentional processes, and motor

| . of vigilance scores using recurrent neural networks (RNNs)
earning.

e Dataset X: 2016 unique values and 113 SART blocks.
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