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A two-dimensional incompressible smoothed particle hydrodynamics scheme is presented 
for simulation of rigid bodies moving through Newtonian fluids. The scheme relies on 
combined usage of the rigidity constraints and the viscous penalty method to simulate 
rigid body motion. Different viscosity ratios and interpolation schemes are tested by 
simulating a rigid disc descending in quiescent medium. A viscosity ratio of 100 coupled 
with weighted harmonic averaging scheme has been found to provide satisfactory results. 
The performance of the resulting scheme is systematically tested for cases with linear 
motion, rotational motion and their combination. The test cases include sedimentation of 
a single and a pair of circular discs, sedimentation of an elliptic disc and migration and 
rotation of a circular disc in linear shear flow. Comparison with previous results at various 
Reynolds numbers indicates that the proposed method captures the motion of rigid bodies 
driven by flow or external body forces accurately.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The interaction of a solid structure with a fluid environment is common in nature and industry. Such interaction occurs 
when solid objects move in a fluid environment. Examples include airfoils [1], flexible bodies [2,3], impacting solids [4–6], 
rigid and deformable particles [7–9] and blood cells [10,11]. Another type of fluid–solid interaction involves fluids moving 
in deformable solid boundaries such as blood vessels and heart chambers [12,13].

From a mathematical and numerical standpoint, computational fluid dynamics methods have conventionally employed 
an Eulerian perspective while computational solid mechanics are generally described in a Lagrangian framework. The cou-
pling schemes between the two may be loosely grouped as those that rely on specific boundary conditions and those that 
introduce external terms into Navier–Stokes (NS) equations [14]. An example of the former is Arbitrary Lagrangian-Eulerian 
(ALE) [15,16] method while Immersed Boundary (IB) and Fictitious Domain (FD) follow the latter approach. IB method satis-
fies the boundary conditions in the vicinity of the solid body by introducing a local forcing term near these boundaries [12,
17–20]. An extensive review of IB method has been provided in [21]. On the other hand, FD method imposes a constraint 
to recover solid-body motion in the entire region occupied by the solid. One such scheme is the Distributed Lagrangian 
Multiplier (DLM) method [2,3,22–24]. Another class of FD uses a penalization term to induce rigid motion. Such a penalty 
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may come as a new term added to the NS equations, as in the Brinkman penalization [25,26], or as a modification to an 
existing term, as in the Viscous Penalty (VP) method that augments the viscous dissipation in the NS equation [9,27,28].

The more established fluid–solid simulation methods mentioned above rely on an underlying fluid mesh that may be 
moved or refined to adapt to the moving boundaries of the solid. This typically produces complex algorithms. An alternative 
would be to discretize both fluid and solid using a particle-based scheme. These particles move in a Lagrangian fashion and 
the fluid–solid interaction is realized naturally. Such a meshless scheme has an inherent advantage over conventional mesh-
based methods. By proper initialization of particle positions, one may trace all the moving boundaries without additional 
treatment [29]. A review of different particle methods has been provided in [30]. One such Lagrangian method is Smoothed 
Particle Hydrodynamics (SPH), developed by Lucy [31] and Gingold and Monaghan [32]. SPH has been used extensively to 
study the fluid–solid interaction in the vicinity of a free surface and is known for its ability to capture intricate physics 
of the problem. Impact of rigid bodies [4–6,33], wave interaction of floating bodies [34] and sloshing motion [35,36] are 
examples of such flows.

In contrast, SPH has rarely been applied to an important class of fluid–solid coupling problems: particulate two-phase 
flows that involve motion of solid particles in a surrounding fluid medium. Two studies [37,38] have dealt with solid bodies 
with prescribed motion using Weakly Compressible SPH (WCSPH). Hashemi et al. [39] have used WCSPH to simulated 
particle sedimentation using a modified pressure boundary condition. Bian et al. [40] have applied WCSPH to concentrated 
particle suspensions. Implementing WCSPH requires subtle treatment of its various components. For instance, an artificial 
equation of state and a speed of sound need to be chosen to enforce incompressibility. Corrective numerical treatments 
such as density filtering may be necessary to alleviate oscillation in the pressure field, and numerical stability often dictates 
small time steps [41,42]. Thus, more extensive studies are needed in SPH simulation of particulate flows, and development 
of Incompressible SPH (ISPH) methods is of special interest in this area.

Given the scientific and practical significance of particulate flows, they have been among the first test cases for mesh-
based fluid–solid coupling methods in the past. Feng et al. have examined the sedimentation of circular and elliptical 
particles [43] and the motion said particles in Poiseuille and Couette flows [44]. These have been used as benchmark prob-
lems by many authors for FD/DLM, IB and lattice-Boltzmann methods, among others [22,45]. Yan et al. [46] studied the 
interaction of a pair of circular particles in simple shear flow while Pan et al. [24] focused on the migration of circular par-
ticles in the same flow pattern. Ding and Aidun [47] investigated the rotation of circular and elliptical particles in Couette 
flow. Xia et al. [48] focused on the sedimentation of an elliptic particle in vertical channel and its interaction with bounding 
walls.

The objective of this work is to develop an accurate and robust SPH scheme for simulating motion of solid particles in a 
Newtonian fluid. Our two-dimensional ISPH scheme is based on the projection method [49] and uses the VP approach [9,27]
to realize rigid-body motion in the solid regions. This avoids the complications in other forms of boundary implementation 
in SPH. Additionally, a rigidity constraint is imposed to preserve the relative position of the particles belonging to the solid 
phase [33,50], especially in the transition region between fluid and solid phases. In order to avoid contact between rigid 
bodies, a repulsive force is formulated based on the relative position of individual SPH particles. The resulting scheme 
is extensively tested in five cases involving the linear motion, rotational motion and their combinations for one or two 
particles in two dimensions. These problems were chosen because of comparable results in the literature. But the scheme 
can be generalized in a straightforward way to a multiphase SPH solver for many embedded solid particles.

The rest of the paper is structured as follows. Governing equations and numerical procedures are presented in Section 2, 
simulation results are shown in Section 3 and concluding remarks are drawn in Section 4. For distinction, the solid objects 
will be called discs while the SPH particles will be simply referred to as particles.

2. Mathematical formulation

2.1. Governing equations

Equations governing an incompressible flow may be written in dimensionless form as

∇ · u = 0, (1)

ρ
Du

Dt
= −∇p + 1

Re
∇ · τ , (2)

where ρ is density, u is the velocity vector, p is pressure, t is time and D/Dt = ∂/∂t + u · ∇ represents the material time 
derivative. Here, τ and Re are the viscous stress tensor and Reynolds number, respectively. The viscous stress tensor is 
defined as

τ = μ
[
∇u + (∇u)†

]
, (3)

where μ denotes the dynamic viscosity and superscript �† represents the transpose operation. Dimensionless values are 
formed using the following scales

x = x∗/lc, ρ = ρ∗/ρ f , μ = μ∗/μ f , u = u∗/uc, t = t∗ (uc/lc) ,

p = (
p∗ − ρ∗g · x∗)/0.5ρ f u2

c , D = ρs/ρ f , V = μs/μ f , (4)
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leading to a Reynolds number defined as

Re = ρ f uclc
μ f

, (5)

where x is the position vector, g is the constant gravitational acceleration vector and lc and uc denote characteristic length 
and velocity, respectively. An asterisk marks dimensional variables whereas subscripts �s and � f denote fluid and solid 
phases, respectively.

2.2. Fluid–solid coupling scheme

To distinguish between different phases, a color function ĉα is defined for each phase α such that it assumes a value of 
unity for phase α and zero for the others. The color function is then smoothed out across the phase boundaries over all 
neighboring particles Jn as

cα
i = 1

ψi

Jn∑
j=1

ĉα
j W ij (6)

to ensure smooth transition between the properties of each phase when used for their interpolation. W ij is a shortened 
notation for the interpolation kernel W (rij, h). The interpolation kernel is a function of the magnitude of distance vector, 
rij = ri − rj , between particle of interest i and its neighboring particles j and h, the smoothing length taken 1.6 times the 
initial particle spacing. Here ψi = ∑ Jn

j=1 W ij is the number density of particle i. Having a compact support of two smoothing 
lengths, a cubic spline kernel [51] is used to calculate the smoothed color function which results in a transition region 
covering four particle spacings across the interface.

Interpolation of phase properties for a single fluid phase, of color ci , and multiple solid phases may be carried out as 
Weighted Arithmetic Mean (WAM),

φi =
∑
α

φα
s cα

i + φ f ci, (7)

or Weighted Harmonic Mean (WHM),

1

φi
=

∑
α

cα
i

φα
s

+ ci

φ f
, (8)

where φ may denote viscosity or density, where appropriate.
All phases are treated as liquids and are evolved through Eqs. (1) and (2). In addition, the solid phase is assigned a 

much higher viscosity such that it approximates a rigid body [9]. However, due to the diffuse interface employed here, the 
solid particles that have fluid particles in their support domain will experience a deficit in viscosity. As a result, these solid 
particles will act in a fluid-like fashion and drift apart without further treatment. In this study, we implement an additional 
constraint derived from the conservation of momenta in a rigid body to treat the solid particles [50]. To impose these 
constraints, we use the current velocity of the solid particles to compute a center-of-mass velocity and an angular velocity 
for the solid object:

ut
s = 1

Ms

J s∑
j=1

uj

ψj
, (9)

ur
s = 1

Is

J s∑
j=1

uj × rjs

ψj
, (10)

and then assign an individual velocity to each solid particle according to rigid body motion:

ui = ut
s + ur

s × ris. (11)

Here, ris = ri − rs where rs denotes the solid object’s center of mass and J s is the total number of particles present in the 
solid phase. As density remains constant for particles of the solid phase, Ms and Is represent the rigid body’s volume and 
moment of inertia about its center of mass as

Ms =
J s∑

j=1

1

ψj
, Is =

J s∑
j=1

r2
js

ψj
. (12)

Coupling the viscous penalty and rigidity constraint in an SPH framework enables the particles to maintain rigid behavior 
inside the body through the increased viscosity. At the same time, the relative positions of the rigid body particles, especially 
in the transition region where the viscosity is smaller, are maintained using the rigidity constraints. As a result, the scheme 
proposed here imposes little computational overhead while circumventing explicit boundary condition implementations.
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2.3. Spatial and temporal discretization

Employing Taylor series expansion in conjunction with the properties of the kernel function, the first derivative of an 
arbitrary function may be put into discrete form as

∂ f m
i

∂xk
i

akl
i =

∑
j

1

ψj

(
f m
j − f m

i

) ∂W ij

∂xl
i

, (13)

while Laplace operators for vectorial and scalar quantities are approximated as

∂

∂xk
i

(
ϕi

∂ f m
i

∂xk
i

)
aml

i = 8
∑

j

ϕij

ψj

(
f m
i − f m

j

) rm
ij

r2
ij

∂W ij

∂xl
i

, (14)

∂

∂xk
i

(
ϕi

∂ f i

∂xk
i

)[
2 + akk

i

]
= 8

∑
j

ϕij

ψj

(
f i − f j

) rk
ij

r2
ij

∂W ij

∂xk
i

, (15)

respectively, where

ϕij = 2ϕiϕj

ϕi + ϕj
, (16)

aml
i =

∑
j

rm
ij

ψj

∂W ij

∂xl
i

. (17)

Here, ai is a corrective second rank tensor which serves to eliminate particle inconsistencies arising from discrete form of 
the kernel function [52]. A quintic spline kernel [53,54] has been used to ensure accurate calculation of derivatives and 
robustness of the scheme.

A predictor–correcter scheme [49] is employed to advance the discretized equations in time using a first-order Euler 
approach. The Courant–Friedrichs–Lewy (CFL) condition [55],

�t = γ min
1�j� Jd

(
h

uj
,

1

Re

h2ρj

2μj

)
, (18)

is used to determine the timestep of the simulation. Here γ is taken to be equal to 0.25 [56] while Jd denotes all particles 
within the computational domain. In the predictor step, particles are displaced to their intermediate positions using

r+
i = r(n)

i + u(n)

i �t + δr(n)

i , (19)

followed by an update in transport properties due to movement of the interface. Here, �+ represents an intermediate value 
and superscript (n) denotes values at the nth time step. Artificial particle displacement, applied only to particles within the 
fluid region of the flow, is implemented through δr(n)

i as

δr(n)

i = ζ

⎡
⎣ max

1�k� Jd

(uk)

Jn∑
j=1

(
rij

r3
ij

r2
av,i

)⎤
⎦

(n)

�t, (20)

which ensures orderly particle distribution, improving the robustness of the scheme [52,57]. Average particle spacing is 
found via rav,i = ∑

j rij/ Jn while a value of ζ = 0.06 is employed throughout this study to ensure satisfactory particle 
distribution and stabilizing effect [56].

Intermediate velocities are found by calculating the right-hand side of Eq. (2) excluding pressure gradients at the inter-
mediate particle locations as

u+
i = u(n)

i + 1

ρ
(n)

i Re
∇ · τ (n)

i �t, (21)

while intermediate densities are calculated employing the following relations

ψ+
i = ψ

(n)

i − �tψ(n)

i

(∇ · u+
i

)
, (22)

ρ+
i = miψ

+
i . (23)

In the corrector step, pressure at the next timestep is found by solving Poisson equation subject to zero gradient bound-
ary condition using intermediate values,

∇ ·
(

1
+ ∇p(n+1)

)
= ∇ · u+

, (24)

ρ �t
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Fig. 1. Schematics and coordinate axes of all test cases included in this study; (a) SDD (Single Disc Descent); (b) DDD (Double Disc Descent); (c) SDR (Single 
Disc Rotation); (d) SDM (Single Disc Migration); (e) SED (Single Ellipse Descent).

which is then employed to correct the velocity of the particles, hence advancing them to next timestep using the following 
relation,

u(n+1)

i = u+
i − 1

ρ+
i

∇p(n+1)

i �t. (25)

At this point, rigidity constraints of Eqs. (9)–(11) are imposed on the velocity vector values at the next time step. This 
temporarily violates the incompressibility condition at the transition region in the current time step as the effects of rigid 
body movement on the fluid phase are delayed until next time step [50]. Finally, particles are moved to their corrected 
positions using the following relation,

r(n+1)

i = r(n)

i + 1

2

(
u(n)

i + u(n+1)

i

)
�t + δr(n)

i , (26)

and number density values are restored to that of the previous timesteps.
All boundary conditions at stationary walls are applied using multiple boundary tangent method [58].

3. Results

This section reports numerical results for the five test cases, each given an acronym: SDD (Single Disc Descent), DDD 
(Double Disc Descent), SDR (Single Disc Rotation), SDM (Single Disc Migration) and SED (Single Ellipse Descent). Schematics 
and coordinate axes for all cases are presented in Fig. 1. The effects of spatial resolution Jd and γ constant in the CFL 
condition are studied for all test cases and sample results for SDD and SDR are provided. Unless otherwise noted, all results 
are presented in dimensionless forms obtained from characteristic scales provided in the respective section.

3.1. Single disc descent

The proposed scheme for simulation of motion of rigid bodies treats all phases as liquids of different viscosities initially, 
only to differentiate the solid phase by the rigid-body constraints (9)–(11) afterwards. As such, the viscosity ratio between 
the phases and the method of transition have significant effects on the results obtained [9,27]. To identify a suitable range 
for V and choose the appropriate interpolation scheme, several simulations of a rigid disc descending from rest under 
gravity in quiescent fluid have been conducted. Characteristic length and velocity are chosen as lc = d and uc = √

gd (refer 
to Fig. 1(a)) while dimensionless numbers governing this case are Rep = ρ f

√
gd3/μ f , h/d, D and V .

The computational domain consists of an 8 × 24 rectangle with no-slip and no penetration boundary conditions applied 
at bounding walls. Particles discretizing the rigid body conform to the boundaries and are positioned along concentric circles 
at uniform radial spacing around the rigid disc’s center. The radial spacing is chosen such that certain number of circles, 
depending on the target resolution, fit inside the disc while the number of particles along each of these circles vary to 
keep the overall inter-particle spacing roughly uniform. Fluid particles are arranged on a uniformly spaced Cartesian grid 
(Fig. 2(a)). It is evident that the particle arrangement in the vicinity of the rigid body is initially non-uniform, however, 



212 N. Tofighi et al. / Journal of Computational Physics 297 (2015) 207–220
Fig. 2. Closeup view of initial particle distribution in the vicinity of the solid disc. Black points denote solid particles whereas gray points are fluid particles. 
(a) Initial arrangement; (b) particle positions at y = 6.

Table 1
Vertical position and vertical velocity of the rigid disc’s center at t = 30 for different viscosity and interpolation schemes. WAM and WHM interpolation 
schemes are defined in Eqs. (7) and (8), respectively. (Refer to [59] for detailed discussion.)

V 1 3 10 30 100 300 1000 100
Int. WHM WHM WHM WHM WHM WHM WHM WAM
y 6.6035 6.8568 6.9818 7.0091 7.0217 7.0279 7.0262 7.8529
u y −0.3703 −0.3611 −0.3578 −0.3567 −0.3565 −0.3564 −0.3562 −0.3217

this deficiency is quickly remedied in the current scheme. A uniform particle spacing is achieved as artificial particle dis-
placement and incompressibility condition adapt the initial arrangement to the test case geometry (Fig. 2(b)) [57]. A fully 
uniform initial arrangement has also been simulated to test the possible effects of such initial defects and no significant 
differences in the results were observed between the two initial arrangements.

To test how V and the viscosity interpolation scheme affect the results, we tabulate in Table 1 the instantaneous vertical 
position y and vertical velocity u y of the disc at t = 30. Reynolds number is set to 39.1, h/d is equal to 16 and a density 
ratio of 1.25 is chosen. The solution is expected to converge to that of a solid disc with increasing viscosity ratio. When 
using WHM interpolation scheme, the results show such behavior after V > 30. As for WAM, viscosity ratios up to 100
are tested (not shown here), however, no convergence was observed. This is an expected outcome as WHM skews the 
transition region toward the interior of the rigid body, leaving the lower viscosity fluid region almost unaltered. Based on 
these observations, it may be inferred that a viscosity ratio of V = 100 along with WHM interpolation scheme produces 
satisfactory results. (Refer to [59] for detailed discussion.) These values along with the initial particle arrangement method 
are used throughout the simulations conducted in this study, unless noted otherwise.

Fig. 3 provides simulation results at different spatial resolutions Jd and γ constants of the CFL condition. When released 
from rest, all cases undergo an initial acceleration, followed by descent at more or less constant velocity, and finally a 
deceleration when approaching the bottom boundary. Figs. 3(a) and 3(b) show vertical position and vertical velocity of the 
rigid disc’s center of mass for total number of particles (in parentheses: number of concentric circles inside the rigid body) 
of 23 234 (5), 37 650 (7), 62 230 (10) and 119 986 (13) at γ = 0.25. While the difference in position increases at later stages 
of the simulation, the difference between the two cases of highest resolution remains below 1% of the maximum drop 
height till the end of simulation. Similarly, the velocity agrees within 2% of the maximum descent velocity between the 
three highest resolutions. Furthermore, the initial stages of the simulation (t < 10) for Jd = 119 986 and Jd = 62 230 show 
identical velocity profiles. As a result, we consider the solution converged with respect to spatial resolution for Jd = 62 230. 
The effects of γ on vertical position and vertical velocity of the disc’s center of mass for Jd = 62 230 are shown in Figs. 3(c) 
and 3(d). The difference between position and velocity for γ = 0.125 and γ = 0.25 is less than 1% while the disc descends 
slower when γ = 0.5.

Based on the differences observed for the resolutions tested above, the middle case is chosen for comparison with 
WCSPH results of Hashemi et al. [39] and DLM simulations of Glowinski et al. [22]. The results for vertical position and 
vertical velocity are presented in Fig. 4. There is excellent agreement overall. If we inspect their differences more closely, 
the current method overestimates the vertical position of the disc during the simulation. But the difference in the settling 
velocity is subtler. Simulations by Hashemi et al. and Glowinski et al. agree better during the acceleration stage while SDD 
predicts a slower descent. However, the terminal velocities predicted by SDD are in better agreement with DLM results while 
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Fig. 3. Comparison of simulation results for the rigid disc’s center of mass of case SDD; vertical position (a) and vertical velocity (b) for different Jd and 
γ = 0.25; vertical position (c) and vertical velocity (d) for different γ and Jd = 62 230.

Fig. 4. Comparison of simulation results with literature data; (a) vertical position; (b) vertical velocity.

WCSPH overestimates the terminal velocity. The final deceleration stage is the most varied stage as DLM starts to experience 
boundary effects before others while SDD shows such effects the last. Based on these results, the proposed method shows 
quantitative agreement with the numerical results provided by [22,39] for the overall duration of the simulation.
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Table 2
Minimum distance between disc surfaces for different cr . Negative values in distance denote crossover.

cr(×105) 40 16 8 5.33 4 0.8 0.4 0.04

min
(

c−d
d

)
0.0659 0.0524 0.0408 0.0321 0.0254 −0.0253 −0.0449 −0.656

Table 3
Dimensionless parameters for DDD cases.

Case Rep D Jd H × W c/d h/d

DDD1 56 1.1 62 226 30 × 10 2 25
DDD2 391.3 1.5 74 846 24 × 8 2 18

3.2. Double disc descent

In this section, the interaction between two rigid discs descending in quiescent fluid is studied. This test case will help 
measure the success of the proposed method in handling multiple bodies and the interaction of interpolation regions. To 
this end, two rigid discs with equal diameter are placed such that the line connecting the centers of the discs is parallel to 
the vertical walls and has a length c. A schematic of the test case is shown in Fig. 1(b) while initial particle positions are 
similar to SDD. The characteristic parameters are identical to SDD and the problem is fully described by specifying domain 
size, h/d, Rep , D and an additional parameter, c/d.

It is known that when released from rest, the discs will undergo Drafting–Kissing–Tumbling (DKT) motion [43]. The 
following disc catches up with the leading one and they attain a near-contact configuration. However, this configuration is 
unstable and a rotational motion will ensue which results in the pair breaking off and drifting apart. A repulsive force is 
employed in near-contact cases to ensure a safe distance between the rigid bodies and avoid crossover of solid particle of 
different phase. Such repulsive forces have been extensively used in literature and take different forms such as lubrication 
force [48,60] and spring force [22,45,48,61]. Here, an adapted form of the spring force benefiting from the Lagrangian nature 
of the discretization method is developed. It relies on the color and distance data available to individual particles without 
prior knowledge of the body geometry. Denoting the particle spacing by δp and the force coefficient by cr , the repulsive 
force applied to the particle i of rigid body α due to its proximity with rigid body β may be formulated as

f α
i(r) = cr

(
cβ

i

cα
i

)2 Jn∑
j=1

rijĉ
β

j

δp
, (27)

which will be added to the right-hand side of Eq. (21) as f α
i(r)�t/ρs . Note that this force is only non-zero when particle i of 

phase α has a particle of phase β in its support domain so that cβ

i > 0. As the distance between the two discs decreases, 
f α
i(r) increases due to larger cβ

i . In the above formulation cr should be chosen such that the minimum distance between 
the discs is limited to approximately one particle spacing. Here, cr is varied as shown in Table 2 to find the suitable value. 
The repulsive force is tested by simulating DDD with Rep = 56, D = 1.1, h/d = 25 and c/d = 2 in a 30 × 10 computational 
domain discretized by 62 226 particles. The minimum distance between disc surfaces provided in Table 2 shows that for 
the values of cr tested here, a crossover happens for cr � 8 × 104. To maintain a minimum separation comparable to the 
particle spacing δp/d = 0.0625 for this resolution, cr = 1.6 × 106 is chosen. Using the repulsive force described above, DDD 
at two different Rep are compared to numerical results provided by Hashemi et al. [39] and Glowinski et al. [22]. Simulation 
parameters for each case are presented in Table 3. DDD at low and high Rep are referred to as DDD1 and DDD2, respectively.

Fig. 5 compares the vertical position and vertical velocity of DDD1 with the WCSPH results of [39]. Kissing stage starts 
when velocities of the discs converge while onset of tumbling is when the velocities start to drift apart. Tumbling happens 
when the vertical positions of the discs cross. Prior to the tumbling stage, the two solutions agree closely. However, the 
onset of tumbling and the subsequent disc velocities differ somewhat from those found in [39]. It should be noted that 
in both numerical simulations the kissing and tumbling stages are highly sensitive to the repulsive force employed [62]. 
As a result, the difference in tumbling stage between DDD1 and [39] is to be expected. To assess the performance of the 
proposed scheme at higher Rep , simulation results of DDD2 are compared to those of [22] in Fig. 6. The current method 
slightly overestimates the position of the discs when compared to [22]. As for the velocity, the general features of the pair 
until kissing stage, such as the crossover between velocity curves of top and bottom discs at about t ≈ 6 or bouncing motion 
observed at t ≈ 10, are accurately captured. However, due to the same reason mentioned for DDD1, the quantitative values 
are different from [22] after t ≈ 10 when kissing and tumbling stages are in progress. Taken as a whole, the comparison 
above shows that the current method is able to capture the essential characteristics of DKT up to the Rep tested here.

3.3. Single disc rotation

In order to isolate the angular motion and assess the performance of the proposed method in the absence of linear mo-
tion, rotation of a neutrally buoyant, single rigid disc suspended in Couette flow is simulated and the results are compared 



N. Tofighi et al. / Journal of Computational Physics 297 (2015) 207–220 215
Fig. 5. Comparison of simulation results at Rep = 56; (a) vertical position; (b) vertical velocity.

Fig. 6. Comparison of simulation results at Rep = 391.3; (a) vertical position; (b) vertical velocity.

with the data available in literature. This test case has been subject to extensive experimental and numerical investigation, 
spanning a wide range of Reynolds numbers [24,46,47]. A schematic of this case is provided in Fig. 1(c). Denoting the shear 
rate of the undisturbed flow by G such that U w = G H , we define the bulk Reynolds number Reb = ρ f G H2/μ f , particle 
Reynolds number Rep = ρ f Gr2/μ f and confinement ratio H/r. A pair of these dimensionless numbers would suffice to 
define the test cases.

A series of simulations with increasing Rep have been conducted for H/r = 4. Horizontal walls are set to move at U w/2 in 
opposite directions while no slip and no penetration boundary conditions are applied. The computational domain extends up 
to 8r on both sides of the disc in streamwise direction ending in periodic boundaries. The rigid disc is placed at the center 
of the computational domain at rest while fluid particles are initialized with the analytical velocity of Couette flow with 
respect to their initial position. Initial particle arrangement is similar to case SDD. Fig. 7(a) depicts the dimensionless angular 
velocity ω/G at three different spatial resolutions with total number of particles (in parentheses: number of concentric 
circles inside the rigid body) of 6389 (10), 14 385 (15) and 32 435 (23) for γ = 0.25. The resolution is kept the same for all 
Rep . Considering consecutive levels of resolution, the simulation with lower resolution predicts larger ω/G at either end of 
the Rep spectrum. Comparing with Jd = 14 385, lowest resolution shows up to 3% difference while highest resolution agrees 
within 0.3%. Fig. 7(b) shows ω/G for γ = 0.5, 0.25 and 0.125 at a spatial resolution of 14 385 particles. While the results 
with γ = 0.5 and γ = 0.125 remain within 1% of those with γ = 0.25, the simulations with γ = 0.5 fail to converge for 
Re > 8. As a result, Jd = 14 385 and γ = 0.25 are chosen for this case.

When suspended in unbound linear shear, the disc is known to attain a dimensionless angular velocity of ω/G = 0.5. 
At higher values of Rep , ω/G decreases linearly with Rep with a slope of −0.5 [47,63]. This trend holds qualitatively for 
finite confinement ratios as well, where the general behavior of the angular velocity consists of an initial plateau followed 
by a gradual decline at higher Rep (Fig. 8(a)). Our simulations show excellent agreement with prior numerical results by 
Ding and Aidun [47], Yan et al. [46] and Pan et al. [24] and experimental data by Zettner and Yoda [7]. Fig. 8(b) provides 
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Fig. 7. Comparison of ω/G of case SDR for different spatial resolutions at γ = 0.25 (a) and different CFL condition constant at Jd = 62 230 (b).

Fig. 8. (a) Comparison of normalized angular velocity versus Rep ; (b) comparison of streamwise (blue) and normal (black) velocity profiles at 1.85 to the 
right of the rigid disc’s center at Rep = 20; refer to Ding and Aidun [47] for experimental data by Zettner and Yoda [7].

streamwise and normal components of the velocities at Rep = 20. Streamwise velocity is skewed toward y > 2 where the 
flow accelerates as it leaves the vicinity of the disc. The normal component is skewed toward y < 2 and represents a flow in 
the reverse direction of the linear velocity of the disc. Both profiles are in good agreement with numerical and experimental 
data provided by [47].

Fig. 9 shows the streamlines inside and outside of the rigid disc for Rep of 0.02 and 20. Particle positions are shown in the 
background while perceived boundary of the rigid body is shown by 0.5 level contour of the smoothed color function. The 
streamlines shown may be divided into three types. Those that travel across the periodic boundaries contribute a positive 
torque to rotate the disc by passing between the moving wall and rigid body. Reversing streamlines change direction in the 
vicinity of the disc and oppose its rotation while closed streamlines move around the disc. As Rep increases the streamlines 
become skewed in the direction of rotation and reversing and closing streamlines draw closer to one another. Similar 
patterns have been observed in numerical and experimental results as well [7,46,47].

3.4. Single disc migration

To assess the interaction of combined linear and angular motion in the absence of any body force, migration of a neutrally 
buoyant rigid disc in plane Couette flow is simulated. When released from a distance c from the middle of the channel, it is 
expected that the disc will migrate toward the centerline while moving with the flow. A schematic of this case is provided 
in Fig. 1(d). Dimensionless numbers governing this test case are similar to those of case SDR with an additional distance to 
radius ratio of c/r. Computational domain consists of an 8 × 32 rectangle discretized by 14 402 particles initially arranged 
similar to the case SDD such that 9 concentric circles cover inside the rigid disc. The confinement ratio is H/r = 8. Boundary 
and initial conditions are similar to case SDR.
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Fig. 9. Streamlines in the vicinity of the disc; particle positions inside the rigid body (dark) and fluid phase (light) are shown in the background. Rigid body 
boundary is defined as 0.5 level contour of the smoothed color function and is marked by the thicker line. (a) Rep = 0.02; (b) Rep = 20.

Fig. 10. Comparison of vertical position with respect to time (a) and normal velocity with respect to vertical position (b).

To compare with Feng et al. [44], Feng and Michaelides [45], Yan et al. [46] and Hashemi et al. [39], Rep and Reb are set 
equal to 0.625 and 40, respectively. The symmetry of the migration trajectories from either half of the channel are tested 
and the position and velocity of the discs were found to agree to within 10−3. The effect of initial slip velocity has also 
been examined and no significant changes were observed. As a result, the disc is released from c/r = 2 below channel 
centerline with zero initial velocity. Fig. 10 provides normal position and normal velocity of the disc during its migration 
toward the center of the channel. The positions are in excellent agreement with literature data. The normal velocity exhibits 
small-amplitude oscillation superimposed on a gradual decline, similar in magnitude to previous calculations in [44]. In 
contrast, [45] presents a smooth curve with slightly larger magnitude.

3.5. Single ellipse descent

A rigid ellipse sedimenting in a quiescent fluid may present drastically different patterns of motion depending on the 
channel width, initial angle and positioning of the elliptic disc [43,48]. In this study, two cases at moderate and low Re are 
simulated and compared to the results provided by Xia et al. [48] and Suzuki and Inamuro [20]. A schematic view of the test 
case is provided in Fig. 1(e). Dimensionless parameters governing this test case are Re, D, aspect ratio a/b, blockage ratio 
W /a and h/lc . Characteristic length and velocity scales are defined as lc = d = √

ab and uc = √
gd, resulting in a Reynolds 

number defined as Rep = ρ f

√
gd3/μ f . For comparison with literature data, we also define an alternative Reynolds number 

Ret = ρ f uta/μ f based on the major axis of the ellipse a and its terminal descent velocity ut . Simulation parameters are 
listed in Table 4. Density ratios covered in this study are low enough to achieve a steady terminal descent velocity until 
y∗/W = 3 [48]. The computational domain consists of a 45.25 × 5.65 rectangle discretized by 80 035 particles while the 
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Table 4
Simulation parameters and Ret for SED and numerical simulations of Xia et al. [48] and Suzuki and Inamuro [20].

Case D SED [48] [20]

Rep Ret Ret Ret

1 1.01 58.8 2.15 2.08 1.92
2 1.1 58.8 13.5 12.9 12.6

Fig. 11. Comparison of horizontal position (a) and orientation of the ellipse (b) versus vertical position for D = 1.01 (– –) and D = 1.1 (—).

center of the ellipse is placed at h/d = 40 with an angle of θ = π/4. The aspect ratio and blockage ratio are set to 2 and 4, 
respectively. Boundary conditions are similar to that of case SDD.

The rigid body is discretized such that a relatively uniform particle distribution is achieved in the transition region where 
the solid particles are within the support domain of the fluid particles. To this end, the rigid body is divided into concentric 
ellipses, each obtained by shrinking the vertices of the outer ellipse inward by the particle spacing δp . The innermost ellipse 
thus has a minor axis thinner than 2δp . Particles are placed along the perimeters of all the concentric ellipses at uniform 
spacing δp . If the minor axis of the innermost ellipse is smaller than δp , particles are placed along the major axis of this 
ellipse instead of its perimeter. The resolution given above results in 7 concentric ellipses. Fluid particles are arranged in an 
equally spaced Cartesian grid.

Fig. 11 plots the horizontal position and the orientation of the ellipse versus the vertical position of its center of mass. At 
D = 1.01, the three simulations agree quite well in general. But SED and [48] agree very closely, while [20] deviates more 
from the other two. All cases end up at the middle of the channel in a horizontal position. At D = 1.1, the ellipse tends 
to have an oscillatory motion that damps out at later stages, leaving the ellipse in a horizontal position at the center of 
the channel descending at constant velocity. While SED shows a slightly larger amplitude than the other two solutions, the 
difference is comparable to that between [48] and [20] for D = 1.01. Due to oscillatory nature of the flow, the error of the 
current solution is compounded at each extrema until the motion damps out. Despite this, the characteristic behavior and 
final configuration of the ellipse are captured accurately. Table 4 provides Ret for SED and reference simulations. In both D, 
SED predicts the largest Ret while [20] has the smallest.

4. Conclusions

A two-dimensional smoothed particle hydrodynamics method has been presented for simulation of motion of rigid bod-
ies in Newtonian fluids. The method treats all phases as liquids of different viscosity while applying rigidity constraints 
to particles within the solid body. As a result, the interpolation scheme and viscosity ratio may affect the accuracy and 
robustness of the scheme. Descent of a rigid disc in quiescent medium is simulated and weighed harmonic interpolation in 
conjunction with a viscosity ratio of 100 is found to provide consistently satisfactory results.

In order to fully measure the performance of the proposed method, several test cases involving linear motion, rotational 
motion and their combination are simulated. The sedimentation of a single disc and a pair of discs are used to measure 
the performance of the method in simulating linear motion and near contact situations where interpolation regions overlap. 
A repulsive force based on the color information available to the particles is developed and successfully tested. Rotation of a 
neutrally buoyant disc in Couette flow is tested to measure the performance of the method in rotational motion. The results 
within the test range are in quantitative agreement with the literature data. Combined linear and rotational motion is tested 
by simulating the migration of a neutrally buoyant circular disc placed off center in Couette flow and sedimentation of an 
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elliptic particle in quiescent medium under gravity. Results of both cases are found to be compatible with the findings of 
the literature.

The presented scheme aims to extend the simulation capabilities of ISPH for particulate flows. It provides a simple 
means of handling moving boundaries and is easily extended to multiple bodies using the repulsive force formulated. The 
agreement between simulation results and literature data shows the ability of our scheme in handling the complex motion 
of rigid particles in a variety of flow configurations.
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