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This study presents an analytical solution, for fully developed non-Newtonian fluid flows in circular channels
under isoflux thermal boundary conditions based on perturbation techniques. Since the physical properties are
generally a function of temperature and may not be assumed constant under certain circumstances, the change
in viscosity and thermal conductivitywith temperaturewas taken into account. Viscous dissipation termwas also
included in the performed analysis. In this study, first closed form expressions for velocity, temperature distribu-
tions, and Nusselt numbers corresponding to constant thermophysical properties were given in terms of
governing parameters. Then, numerical calculation was performed to obtain the values of Nusselt number and
global entropy generation for variable thermophysical properties. The results revealed that neglecting the prop-
erty variation significantly affects heat transfer characteristics and entropy generation, in which the deviation
from the constant physical property assumption may reach up to about 32.6%.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Being interdisciplinary and having a wide range of application in in-
dustry, non-Newtonian fluid flows require a thorough study in terms of
experimental, numerical and analytical aspects to find applications in
emerging fields. In contrast to Newtonian fluids, the viscosity of non-
Newtonian fluids, which are typically involved in complex material
structures such as foams, polymer melts, emulsions, slurries, and solu-
tions, shows a different trend when exposed to variations in shear
rate. Therefore, an appropriate viscosity model should be implemented
for their analysis. Non-Newtonian fluids offer an attractive subject for
scientists and engineers fromdifferent disciplines to exploremathemat-
ical models for relating stress, deformation and heat transfer behaviors
[1–4].

A large number of experimental and numerical studies regarding
non-Newtonian fluids have been reported in the literature. However,
few experimental studies have been conducted to investigate convec-
tive heat transfer characteristics of non-Newtonian fluids [5–10]. On
the other hand, many numerical investigations on heat transfer of
non-Newtonian fluids have been reported in the literature including a
wide range of different cases such as forced convection [11–15], natural
convection [16–19] and mixed convection [20–23] in addition to the
consideration of fluids exposed to external fields such as magnetic
2

field (known as MHD flow [24–26]) and electric field (electroosmosis
[27–29]).

Many researchers concentrated on an analytical approach to exam-
ine heat and fluidflow characteristics of non-Newtonianfluids for inter-
nal convection, which is important for giving an insight into a better
design for devices involving non-Newtonian fluids. As a result of such
efforts, many studies are present in the literature. For example, Chiba
et al. [30] analytically studied convective heat transfer in a pipe exposed
to non-axisymmetric heat loads with constant properties including the
viscous heating term. Their analysis of heat transfer was performed by
using an integral transform technique, ‘Vodicka's method’, at which
Brinkman number and rheological properties effects on local Nusselt
number were exhibited. Pinho and Coelho [31] presented an analytical
solution for thermally and hydrodynamically fully developed viscoelas-
tic fluid flows inside a concentric annulus by simplification of the Phan-
Thien–Tanner constitutive equation subject to both constant wall heat
fluxes and constant wall temperatures under the consideration of vis-
cous dissipation term. They obtained some expressions for the inner
and outer Nusselt number in terms of appropriate dimensionless pa-
rameters. Manglik and Ding [32] analytically solved the fully developed
laminar power-law fluid flows based on theGalerkin integralmethod in
double-sine shaped channels for constant temperature and heat flux
thermal boundary conditions and obtained results for friction factor
and Nusselt number. Thayalan and Hung [33] presented a theoretical
solution based on the Brinkman-extended Darcy model for power-law
fluid flows in porous media. They derived an expression for the overall
Nusselt number based on a proposed parabolic model and did their
analysis on convective heat transfer characteristics relevant to porous
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Nomenclature

A constant defined by Eqs. (22) or (23)
A′ constant defined by Eqs. (24) or (25)
b A coefficient in Eq. (4)
Br Brinkman number
C1,…, C6 constant defined in Eq. (34)
CP constant property
cp specific heat at constant pressure
D hydraulic diameter
k thermal conductivity of fluid
m• mass flow rate
n power-law index
Ns dimensionless entropy generation number
bNsN global entropy generation rate
Nu Nusselt number
p pressure
Pe Peclet number
q″ heat flux
R dimensional radial position in coordinate system
r dimensionless radial position in coordinate system
Re Reynolds number
S cross-section area
S• entropy generation
T temperature
U dimensional velocity component in the X direction
u dimensionless velocity component in the X direction
Um mean velocity
VP variable property
X dimensional axial position in the coordinate system
x dimensionless axial position in the coordinate system

Greek symbols
Λ perimeter
τ shear stress
γ specific heat ratio of fluid
μ dynamic viscosity of fluid
ρ density of fluid
θ dimensionless temperature
ϕ consistency factor
φ source term (here, viscous dissipation)
Ω defined as q"r0/Tik
ε defined by Eq. (7)
εk defined by Eq. (8)
Γ εk/ε

Subscripts
i fluid properties at the inlet
m mean or bulk
s reference value
w wall

Fig. 1. Isoflux heating applied to a circular channel.

22 M. Shojaeian et al. / International Communications in Heat and Mass Transfer 60 (2015) 21–31
media. Chen [34] presented an analytical solution for convective
heat transfer in electroosmotic power-law fluid flows between two
parallel-plates by obtaining some expressions for velocity and temper-
ature distributions, and fully developed Nusselt number. Similar studies
for a circular channel, based on the linearized Poisson–Boltzmann distri-
bution equation, and for viscoelastic fluids related to Phan-Thien–Tanner
(PTT) and Finitely-Extensible-Nonlinear-Elastic (FENE-P) models were
also carried out [35,36]. Tso et al. [37] did a theoretical analysis on heat
transfer of hydrodynamically and thermally fully developed laminar
non-Newtonian fluids between parallel-plateswhile considering viscous
dissipation effects for asymmetric heating and presented a Nusselt num-
ber expression in terms of Brinkman number and power-law index.
Mahmud and Fraser [38] used the first and second laws of thermody-
namics to derive some expressions for asymptotic Nusselt and entropy
generation for flows of a power-law fluid in circular channels and be-
tween parallel-plates. In our previouswork [39], convective heat transfer
and entropy generation characteristics of both hydrodynamically and
thermally fully developed laminar Newtonian and non-Newtonian
fluid flows in parallel-plate microchannels were analytically investigat-
ed, and Nusselt number, global entropy generation, and Bejan number
expressions were presented.

In all the above-mentioned studies, the constant thermophysical
property assumption was used. However, this assumption may not be
reasonable if there is a significant variation in thermophysical proper-
ties with temperature. To the authors' best knowledge, there are only
a few studies in the literature related to convective heat transfer of
non-Newtonian fluids, which consider the change in thermophysical
properties as a function of temperature [40–42]. Molaei-Dehkordi and
Memari [43] also carried out a numerical investigation on the transient,
hydrodynamically fully developed, laminar power-lawfluidsflow in the
thermally developing entrance region of circular tube, while taking the
viscous dissipation, axial conduction, and temperature-dependent vis-
cosity into account. To address the gap in the literature, this study pre-
sents an analytical model for convective heat transfer of power-law
fluids in circular channels subjected to isoflux thermal wall boundary
conditions, while accounting for the effect of viscous dissipation. The
presented analysis, based on perturbation method, focuses on Nusselt
number and global entropy generation in the case of the presence of
thermophysical property variations in both the viscosity and thermal
conductivity.
2. Analysis

In this study, hydrodynamically and thermally fully developed, steady state, incompressible and laminar flows of power-law fluids with constant
and variable thermophysical properties are analyzed for circular channels under the isoflux thermal boundary condition applied to the tube wall
(Fig. 1).
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For a power-law fluid, the following shear-stress power-law relationship is valid:

τ ¼ ϕ
∂U
∂R

����
����n−1 ∂U

∂R

� �
ð1Þ

where ϕ ∂U
∂R

��� ���n−1
is viscosity with the consistency factor, ϕ, and the power-law index, n. The governing equations are x-momentum and energy

equations, which can be formulated respectively as
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R

∂
∂R μR

∂U
∂R

� �
−∂P

∂X ¼ 0 ð2Þ

ρcpU
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where ρ is the density, P is the pressure, T is the temperature, cp is the specific heat at constant pressure, k is the thermal conductivity, andU is velocity
component in the X direction.

In order to proceed with a solution, viscosity and thermal conductivity must be defined as a function of temperature. Reynolds [44] proposed an
exponential model for the temperature-dependence of viscosity as:

μ ¼ μs exp −bTð Þ ð4Þ

where T is temperature, and μs and b are coefficients. Using a truncated Taylor series for exp(−bT) similar to Hooman and Ejlali [45], viscosity is
expressed as:

μ ¼ μs exp −bTð Þ ¼ μs 1−ΔT
μs

dμ
dT

T−Tw

ΔT

 !
¼ μs 1−εθð Þ ¼ ϕ 1−εθð Þ ∂U∂R

����
����n−1

ð5Þ

where

k ¼ ks 1þ ΔT
μs

dk
dT

T−Tw

ΔT

 !
¼ ks 1þ εkθð Þ ð6Þ

ε ¼ dμ
dT

����
Ts

ΔT
μs

ð7Þ

εk ¼
dk
dT

����
Ts

ΔT
ks

ð8Þ

Here T−Tw
ΔT is the dimensionless temperature, θ. εk is defined to be a coefficient of ε, i.e. εk= Γε, in which Γ can be obtained through computational

simulation.
The governing equations for the x-momentum and energy equations can be stated as:

1
R

∂
∂R μs 1−εθð ÞR ∂U

∂R

� �
−∂P

∂X ¼ 0 ð9Þ

or

1
R

∂
∂R Rϕ 1−εθð Þ ∂U∂R
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����n−1 ∂U
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 !
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To facilitate an analytical solution, the governing equations are non-dimensionalized by using the following non-dimensional parameters and
Reynolds number, Re, as:

u ¼ U
Um

r ¼ R
ro

x ¼ X
ro

p ¼ P
ρU2

m
Re ¼ ρU2−n

m Dn

ϕ

The dimensionless governing equations are analytically solved to obtain Nusselt number (Nu), as well as the velocity and temperature distribu-
tions. The closed form expressions for Nu corresponding to Newtonian liquid flow characteristics can also obtained by setting n = 1.
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The first step is to derive the velocity distribution. With the introduction of Reynolds number, the non-dimensionalized x-momentum equation
becomes:

1
r
∂
∂r 1−εθð Þr ∂u

∂r

� �n� �
¼ Re

∂p
∂x ð12Þ

The above equation can be solved using the no-slip boundary condition at wall along with the symmetry condition at the center (via setting the
axial velocity gradient at the center to zero (i.e., ∂u/∂r (at r = 0) = 0)).

After implementing the symmetry condition, and using Taylor series with the first order approximation, one can write:

∂u
∂r ¼ Re

∂p
∂x

r
2

� �1
n

1þ 1
n
θε

� �
ð13Þ

For most practical cases, the viscosity variation number is small compared to unity, i.e. ε bb 1. This allows for a regular asymptotic expansion as-
sumption (for dependent variables u and θ) in the following form

u ¼ u0 þ εu1
θ ¼ θ0 þ εθ1

ð14Þ

As a result, Eq. (13) takes the following form:

∂u0

∂r þ ε
∂u1

∂r ¼ Re
∂p
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r
2

� �1
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1þ 1
n
θ0ε

� �
ð15Þ

Splitting the above equation into two following equations

∂u0

∂r ¼ Re
2

∂p
∂x

� �1
n

r
1
n ð16Þ

ε
∂u1

∂r ¼ ε
Re
2
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n 1

n
θ0

� �
r
1
n ð17Þ

the dimensionless fully developed axial velocity profile, u0, under the no-slip boundary condition (i.e., u (at r = 1) = 0) is obtained as:

u0 ¼ −1þ 3n
1þ n

r1þ
1
n−1

� �
ð18Þ

In order to find u1, it is required to proceed with θ0. For the constant heat flux case, the energy equation containing viscous heating term (viscous
dissipation term) should be solved under the no temperature-jump condition, while a constant heat flux is applied at the walls. In the energy
equation, the longitudinal temperature gradient, ∂T/∂X, can be obtained with the application of the first law of thermodynamics to an elemental
control volume as [46,47]:

m
•
cp

∂T
∂X ¼ q}Λ þ

Z
μφdS ð19Þ

For a circular cross-section, it can be written as:

ρUmR
2cp

∂T
∂X ¼ 2q} Rþ ϕ

q}

Z r0

0

∂U
∂R

����
����nþ1

RdR

 !
ð20Þ

The above equation can be solved by introducing Brinkman number, defined as Br ¼ ϕUnþ1
m

q″Dn , and by performing the integral on the right side as:

∂T
∂X ¼ q} Aþ εA0� �

ρUmRcp
ð21Þ

where the parameter A is expressed as:

A ¼ 2 1þ Br
Z 1

0

∂u
∂r

����
����nþ1

rdr

 !
ð22Þ

or

A ¼ 2þ Br
n

1þ 3n
−1þ 3n

n

����
����1þn

ð23Þ
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A0 ¼ 2
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Brinkman number, Br, is a dimensionless parameter representing viscous dissipation term. Its positive and negative values refer to wall heating
(fluid is being heated) and wall cooling (fluid is being cooled), respectively.

Upon using the dimensionless temperature defined as θ ¼ T−Tw
r0q″=k

, the energy equation takes the following dimensionless form:
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Splitting the above equation, the following equations are obtained:

u0A ¼ 1
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∂r r

∂θ0
∂r

� �
þ Br −1þ 3n

n

����
����1þn

r
1þn
n ð28Þ

u0A
0 þ u1A ¼ 1

r
∂
∂r r

∂θ1
∂r þ Γrθ0

∂θ0
∂r

� �
þ Br 1þ nð Þ −1þ 3n

n

����
����n ∂u1

∂r

� �
r−Brθ0 −1þ 3n

n

����
����1þn

r
1þn
n

	 

ð29Þ

These equations must be solved subject to the following boundary conditions

Atr ¼ 1 θ0 ¼ θ1 ¼ 0

Atr ¼ 0
∂θ0
∂r ¼ ∂θ1

∂r ¼ 0
ð30Þ

By substituting u0, the dimensionless temperature distribution θ0 is derived as:

θ0 ¼
− 1þ 3nð ÞA
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Accordingly, the dimensionless fully developed axial velocity profile, u1, is obtained as:

u1 ¼

−2n−26n2−132n3−324n4−378n5−162n6
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After substituting u0, u1, and θ0 into Eq. (29) and performing several tedious manipulations, a long and complex expression is derived for θ1 as
follows:

θ1 ¼ C1 r2−1
� �

þ C2 r4−1
� �

þ C3 r3þ
1
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þ C4 r5þ
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where

C1 ¼

−2þ A0 þ −12þ 8A0� �
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Determined velocities (u0, u1) and temperatures (θ0 and θ1) are utilized to find the dimensionless bulk or mean temperature given as:

θm ¼

Z
uθdSZ
udS

¼ 2
Z 1

0
u0θ0 þ ε u0θ1 þ u1θ0ð Þ½ �rdr ð35Þ

Nusselt number is defined as Nu ¼ Dq″

k Tw−Tmð Þ and can be also written in terms of the dimensionless temperature as:

Nu ¼ −2
θm

ð36Þ

In the case of constant properties, Nusselt number can be expressed in the following form as:

Nu ¼ 8 1þ 3nð Þ 1þ 5nð Þ
1þ 12nþ 31n2 þ Br 1þ 3nð Þ 1þ 5nð Þ − 1þ3n

n

�� ��n ð37Þ

To the authors' best knowledge, there are no other studies in the literature, in which the viscous dissipation term is present. However, the results
of Eq. (37) are in excellent agreementwith those of Barkhordari and Etemad [48] in the absence of viscous heating andwith those of Hooman [46] in
the presence of viscous heating and n = 1.

For the variable property case, it is not possible to give an explicit expression for Nusselt number. Therefore, a numerical analysis is needed. In
order to have a better design and improvement in thermo-fluidic systems, the second law analysis constitutes an important part of analysis. In
this point of view, the entropy generation, which is dependent on irreversibilities in fluid friction and heat transfer due to existence of gradients
in velocity and temperature, plays a significant role in such systems. Therefore, minimization of entropy generation through reducing the irrevers-
ibilitieswould be a desirable goal for thermo-fluid researchers to augment the systemefficiency. In this regard, the second law analysis is investigated
in the current study to provide some insight on how the governing parameters affect the entropy generation rate. The volumetric rate of entropy
generation can be expressed as [49]:

S
� ¼ k

T2 ∇T:∇Tð Þ þ μφ
T

ð38Þ

where the first and second terms on the right side are (volumetric) Heat Transfer Irreversibility and Fluid Friction Irreversibility, respectively.
For the case of non-Newtonian fluids, entropy generation rate is derived as:

S
� ¼ ks 1þ εkθð Þ

T2
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In non-dimensional form, it can be expressed as:

Ns ¼S
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After simplifications and rearrangements, and neglecting higher-order terms o(ε2), it becomes:
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where Ω= q"r0/Tik and Pe is Peclet number. The temperature and velocity gradients are as follows:
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The main aim of second law analysis is to find parameters minimizing global entropy generation rate, denoted by b Ns N , which is related to the
whole dissipations generated by irreversibilities in the channel. Therefore, it is required to integrateNs across the cross-sectional area occupied by the
fluid through b Ns N = ∫NsdS/S, and can be written as:

b NsN ¼
Z 1

0
2Nsrdr ð43Þ

Again, it is needed to perform numerical analysis to obtain the global entropy generation.
3. Results and discussion

As pointed out earlier, viscosity and thermal conductivity vary with
temperature so that a rise in temperature leads to a decrease in viscosity
and an increase in thermal conductivity. This section includes the effect
of variable properties and viscous dissipation on the entropy generation
rate and heat transfer characteristics of hydrodynamically and thermal-
ly fully developed non-Newtonian flows in tubes at isoflux boundary
condition while assuming a power-law fluid model.

Shear-thinning (or pseudoplastic) fluids having power-law index
in the range 0 b n b 1 behaves in such a way that their viscosity de-
creases with shear rate, while this behavior is otherwise for shear-
thickening (or dilatants) fluids having power-law index larger than
unity (n N 1).

In order to verify the analytical results in the case of variable proper-
ty, a numerical simulationwas carried out by employing ANSYS FLUENT
14.0 software that compares the numerical and analytical results of fully
developed dimensionless velocity profile. The temperature-dependent
viscosity equation based on the experimental data expression given in
Ref. [50] was implemented in the software through a User-Defined
Function (UDS) as following

μ Tð Þ ¼ 0:00002414� 10
247:8
T−140 ð44Þ

where T has units of Kelvin, and μ has units of N·s/m2.
Fig. 2 demonstrates the comparison between numerical (at Re=10)

and analytical solutions, which shows a good agreement. It is notable
that analytical results correspond to ε = 0.064, which was acquired by
Eq. (7) from the numerical analysis. The value of Γ can be also obtained
by the numerical simulation, which is dependent on the applied heat
flux. For example, for water as a working fluid under heat flux of
50,000 W/m2 the value of Γ is 0.076. For the sake of simplicity and
consistency, throughout this study it is taken to be Γ = 0.2.

Fig. 3 illustrates the dimensionless velocity distribution at various
power-law indices, n, for both constant and variable properties at
Br = 0.01. As seen, regardless of the property, the core velocity of the
flowmoves faster when the power-law index increases, while its veloc-
ity near the walls takes smaller values to keep the flow rate constant.



Fig. 4. Dimensionless fully developed temperature profiles for different values of n for
constant and variable property cases at Br= 0.01.

Fig. 2. Comparison between numerical results of temperature-dependent viscosity of
water given in Ref. [50] and analytical result corresponding to ε = 0.064.

28 M. Shojaeian et al. / International Communications in Heat and Mass Transfer 60 (2015) 21–31
Generally, the parabolic profile regarding to Newtonian fluid (n = 1)
deforms to a more uniform profile compared to shear-thinning fluids
and to amore non-uniform profile compared to shear-thickening fluids.
Furthermore, the consideration of temperature-dependent properties
slightly decreases the velocity values at the core region. This trend is
due to the decreasing viscosity with temperature hence giving rise to
lower pressure drop and accordingly lower velocities.

Fig. 4 shows the dimensionless temperature distribution of the flow
for different values of n in the cases of ε = 0 and ε = 0.1 at Br= 0.01.
Similar to velocity profiles, the temperature develops in the core region
for increasing power-law index. It was also observed that a slight
increase in the fluid temperature exists for all types of the fluids, but
more effectively for shear-thinning fluid, at the core region by taking
the variable properties. The temperature increment may be ascribed
Fig. 3.Dimensionless fully developed velocity profiles for different values of n for constant
and variable property case at Br= 0.01.
to the enhancing effect of thermal conductivity of the fluid owing to
the temperature variation.

Fig. 5 shows the variation of Nusselt number as a function of power-
law index for different Brinkman numbers in the case of both constant
(ε = 0) and variable property (ε = 0.1) cases. It can be observed
that Nusselt number decreases with both the power-law index and
Brinkman number, regardless of the property. However, this decreasing
trend is more significantly seen at higher Brinkman numbers, which is
because Brinkman number appearing as a coefficient in the viscous dis-
sipation term leads to viscous heating, and accordingly, it gives rise to an
increase in the mean temperature of the fluid through the internal
heating and ultimately to the decrease in Nusselt number. It is also
noticeable that the effect of Brinkman number on Nu becomes more
significant for shear-thickening fluids, which is attributed to higher
mean temperatures. In the case of the variable thermophysical property
Fig. 5.Nusselt number as a function of n for different values of Br at the constant (at ε=0)
and variable property (at ε = 0.1) cases.
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Table 1
The values of global entropy generation rate at Ω = 0.1, Pe= ∞ for different Br and n.

Constant property Variable property (ε = 0.1)

Br Br

0 0.01 0.05 0.1 0 0.01 0.05 0.1

n
0.2 0.725 0.526 0.986 2.373 0.636 0.45 0.954 2.273
0.4 0.815 0.806 1.906 3.767 0.745 0.739 1.82 3.61
0.6 0.864 1.15 2.982 5.5 0.808 1.085 2.861 5.286
0.8 0.895 1.49 4.09 7.41 0.849 1.426 3.945 7.148
1 0.917 1.757 5.13 9.37 0.877 1.696 4.971 9.07
1.2 0.932 1.889 6.031 11.293 0.898 1.833 5.871 10.974
1.4 0.944 1.837 6.789 13.181 0.914 1.791 6.643 12.874
1.6 0.954 1.591 7.537 15.214 0.927 1.561 7.422 14.96
1.8 0.961 1.267 8.619 17.847 0.938 1.259 8.545 17.679
2 0.968 1.355 10.551 21.83 0.947 1.361 10.497 21.724
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case, the values of Nusselt number are larger compared to the constant
property case. However, the effect of property variation on the heat
transfer rate becomes less significant when the power-law index goes
higher in the shear-thickening fluid range for low Br. For example, for
n = 2 and Br = 0.1, the change in Nusselt number is about 8% due
to the consideration of the variable properties. For shear-thinning
fluid, the values of Nusselt number are more underestimated by
neglecting the temperature-variation effect. For instance, at n = 0.2
and Br = 0.1, the deviation becomes more and reaches about 13%.
Indeed, the viscosity decreases with temperature, which causes an
increase in Reynolds number and consequently has a positive effect on
heat transfer and Nusselt number. On the other hand, the thermal con-
ductivity has an increasing trend with temperature, and has a negative
effect on Nusselt number (Nu= hd/k). As a result, there is an interplay
between viscosity and thermal conductivity effects, where the viscosity
dominates giving rise to an increase in Nusselt number.

The effect of property variation (perturbation parameter) on the
heat transfer rate for different n and Br = 0.01 is displayed in Fig. 6.
As mentioned earlier, heat transfer is reduced when the power-law
index is increased. It can be seen that heat transfer rate (Nusselt number
value) increases for the variable thermophysical property case andwith
ε at which the deviation from constant properties might reach about
32.6%. However, the effect of property diminishes as the power-law
index becomes larger, in particular for shear-thickening fluids, where
a relatively smaller change is observed for n = 2.

Table 1 presents the global entropy generation rate, bNsN, versus
power-law index at ε= 0.1 and various Brinkman numbers in absence
of axial heat conduction term corresponding to Pe→ ∞. As can be seen
from the table, except for Br=0.01 (which will be depicted in the next
figure), the global entropy generation rate increases with power-law
index for both constant property and variable property cases particular-
ly for higher Br. Since lower value of entropy generation would imply a
better working performance, the fluidic system with smaller Br (or
smaller viscous heating) is desirable, which leads to a more efficient
convective heat transfer aswell. Furthermore, lower values of the global
entropy generation rate are obtained for lower n (i.e. shear-thining
fluids), which is due to smaller velocity and temperature gradients at
the walls, where the entropy generation is more pronounced. Entropy
generation rate reaches its maximum and minimum values at the wall
and center, respectively, where the maximum and minimum (zero for
this case) velocity and temperature gradients are present. From this
table, it can be also understood that the property variationwith temper-
ature causes a decrease in bNsN for all values of Br. Indeed, the perturbed
Fig. 6. Nusselt number as a function of n for different values of ε at Br= 0.01.
term contributes to the reduction of the global entropy generation by
decreasing the irreversibility caused by viscous heating through the
velocity gradient portion.

The variation in the global entropy generation as a function of
power-law index at Br = 0.01, Ω = 0.1, and different values of ε is
depicted in Fig. 7. The global entropy generation increases with n to its
maximum value around n = 1.2 and then starts decreasing until n =
1.8. An unexpected trend after this point is seen where the value of
bNsN again increaseswith n. Additionally, one can observe that an incre-
ment in ε leads to a decrease in bNsN, except for very high values of n
which are insensitive to property variation.

Table 2 exhibits the values of the global entropy generation rate,
bNsN, as a function of power-law index at Br=0.01,Ω=0.1 and differ-
ent values of Peclet number, Pe, which represents the axial heat conduc-
tion effect on the entropy generation. It is worthwhile noting that Peclet
number does not play any role in the heat transfer analysis of fully
developed flows due to the constant axial temperature gradient. The re-
sults in the table also reveal that the increase in Pe (axial heat conduc-
tion portion) generally leads a decrease in the values of bNsN. For very
low values of Pe (here Pe= 0.1) the global entropy generation rate in-
creases with n, which means that shear-thickening fluids generate
more irreversibilities compared to shear-thinning ones. However, for
other Pe values, the trend is very similar to that of Fig. 7. Furthermore,
the values of bNsN decrease with inclusion of temperature-dependent
properties, except for very high values of n. This means that irreversibil-
ities due to heat transfer and fluid friction are lowered by inserting
Fig. 7. Global entropy generation rate as a function of n for different values of ε at Ω =
0.1and Br = 0.01.
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Table 2
The values of global entropy generation rate at Ω = 0.1, Br= 0.01 for different n and ε.

n ε = 0,
Pe = 0.1

ε = 0,
Pe = 10

ε = 0,
Pe = 100

ε = 0.1,
Pe = 0.1

ε = 0.1,
Pe = 10

ε = 0.1,
Pe = 100

0.2 412.713 0.565 0.526 410.834 0.489 0.451
0.4 416.69 0.843 0.806 414.599 0.776 0.739
0.6 421.46 1.188 1.15 419.259 1.123 1.086
0.8 427.304 1.531 1.49 425.041 1.467 1.426
1 434.397 1.8 1.758 432.098 1.739 1.696
1.2 442.923 1.931 1.89 440.607 1.875 1.834
1.4 453.199 1.872 1.838 450.881 1.826 1.792
1.6 465.82 1.608 1.591 463.51 1.577 1.561
1.8 481.799 1.248 1.267 479.5 1.239 1.259
2 502.647 1.305 1.355 500.356 1.311 1.36
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variable properties. Therefore, the results suggest that if thermophysical
properties are not considered as variable there will be an overestima-
tion of bNsN.

4. Conclusion

Convective heat transfer analysis and second law analysis were per-
formed to reveal the effects of variable thermophysical properties,
namely viscosity and thermal conductivity, power-law index and vis-
cous dissipation on heat transfer characteristics of hydrodynamically
and thermally fully developed power-law fluid flows in tubes under
uniform heat flux thermal boundary conditions. Aside from deriving
the velocity and temperature distributions, Nusselt number and entropy
generation rate have been examined along with their trends with key
parameters being power-law index, Brinkman number, and property
variation. Major conclusions of this study are as follows:

• Nusselt number decreases with increasing both power-law index and
Brinkman number, regardless of the change in thermophysical prop-
erties with temperature.

• The variation in thermophysical properties with temperature has an
increasing effect onNusselt number compared to the constant proper-
ty case.

• Except for few cases, the rate of global entropy generation, bNsN,
increases with power-law index, Brinkman number, whereas
thermophysical property variation effect causes a decrease in bNsN.
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