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Abstract  

This work studies the strain monitoring of biaxial glass fiber reinforced epoxy matrix 

composites under a constant, high strain uniaxial fatigue loading using embedded Fiber 

Bragg Grating (FBG) optical sensors. Three consecutive FBG sensors written on a same fiber 

optic cable were embedded within the composite specimen along the gage length to study the 

distribution and evolution of local strains during the cyclic loading. Results show that local 

strains measured by FBG sensors under the global constant strain can experience 

considerable variations as the loading progress demonstrating the effect of local damage on 

the local strains. Autogeneous heating along the specimens were also monitored using 

thermocouples mounted on the location of the FBG sensors to investigate the effect of 

temperature variations on FBG measured strains and damage formation. 

 

Keywords: Polymer-matrix composites, Fatigue, Structural health monitoring, Fiber Bragg 

Grating. 

 

1. INTRODUCTION 

 

Fiber reinforced composites have outstanding properties such as high specific stiffness and 

strength among others. They have many applications in various industries ranging from 

aeronautics, automotive to civil infrastructure. During real life conditions, these materials are 

exposed to cyclic loads which can cause gradual damage. For the reliable application of 

composite materials, strain monitoring provides effective means to understand the material 

behavior during loading. Strain-gages or strain-gage based extensometers are commonly used 

sensors for strain monitoring. However, they have various drawbacks as they are sensitive to 

electromagnetic fields and not suitable to be embedded within composite materials. In 

addition, they have low fatigue resistance which cause unreliable strain monitoring in fatigue.  

One of the alternatives to strain gage based sensors for structural health monitoring is Fiber 

Bragg Grating (FBG) optical sensors. Being small and flexible, FBG sensors can be 

embedded discretely into composites at locations of interest thereby allowing for the 

investigation of local strain distribution and evolution without endangering the structural 

integrity of the host material [1-2]. Contrary to the strain-cased sensors, they are insensitive to 

the electromagnetic fields and can be readily embedded within composite materials. They also 

have additional important attributes such as light weight, multiplexing and absolute 

measurement capability and high corrosion resistance [1-2] which make them ideal for strain 

and structural health monitoring applications [3-4].  
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Composite materials experience different damage mechanisms during fatigue unlike metals. 

Stiffness degradation of fiber reinforced polymer matrix composites in response to cyclic 

loads is characterized by three distinct stages. Namely, in the first stage comprising the first 

15-25 % of fatigue life, the rapid formation and interconnection of matrix cracking causes a 

sharp, non-linear decrease in stiffness. The second stage accounts between 15-20 % to 90 % 

of the fatigue life where there is a gradual, and linear decrease in stiffness, which is attributed 

to crack propagations, fiber debonding and delamination. The final stage is differentiated by a 

sharp nonlinear decrease in stiffness due to the plurality of fiber breakages [5].  

 

Understanding FBG response under low-cycle fatigue conditions is important in terms of 

applicability of these sensors to monitor structures that are exposed to repetitive high strain 

amplitude dynamic loads. To this end, the performance of FBG sensors embedded inside fiber 

reinforced composites under globally constant high strain cyclic loading is investigated in this 

study. It is shown that strains from the FBG sensors located at different locations can decrease 

and significantly deviate from each other as low-cycle fatigue progress, notifying the 

distinction between the global and local response of the material.  

 

It is well documented in the literature that when a specimen is subjected to cyclic loading, the 

portion of the mechanical energy is dissipated as heat (also referred to as autogenous heating) 

causing a rise in the temperature of the specimen [6-8]. In order to investigate a possible 

correlation between FBG measured local strains and corresponding temperature variations, 

the autogenous heating of the specimens were also monitored using thermocouples mounted 

on the specimens for the corresponding locations of the FBG sensors. 

 

2. METHODOLOGY  

 

Resin Transfer Molding (RTM) was used to manufacture the composite specimens. 

Laboratory scale RTM apparatus with the capability to embed optical fibers into composite 

parts was used to produce flat panels with dimensions of 620mm x 320mm x 3.5mm. 

Composite laminates consisted of E-glass fiber and epoxy resin and had a stacking sequence 

of [90/0]6S. Metyx LT300 E10A 0/90 biaxial E-glass stitched fabric was used as the 

reinforcement with area density of 161 g/m
2
 in the 0

o
 orientation, that is aligned along the 

resin flow direction in the mold, and 142 g/m
2
 in the 90

o
 orientation, leading to the total area 

density of 313 g/m
2
. The resin is composed of Araldite LY 564 epoxy resin mixed with XB 

3403 hardener (manufactured by Huntsman Corporation) with the ratio of 100 and 36 parts by 

weight. The composite panels were exposed to an initial cure at 65 
o
C for 24 hours with a post 

cure at 80 
o
C for 24 hours.  

 

Three 1-mm long FBG sensors with Bragg wavelengths of 1540, 1550 and 1560 nm that are 

written on the same fiber optic cable with 4 cm intervals were acquired from Technica SA. 

Prior to manufacturing, the fiber optic cable was fixed onto the 0
o
 surface of a ply through 

passing it under fiber stitches. The plies were arranged such that the fiber optic cable was 

between the 6
th

 and 7
th

 layers of the laminate as shown in Figure 1a.  Mechanical test 

specimens were cut out from the composite panels using a water-cooled diamond circular 

blade into dimensions of 250 mm × 25 mm × 3.7 mm with a 150 mm gage length.  

 

The length and the loading axis of the specimen were aligned with the 0
o
 fiber orientation. In 

specimen with FBG sensors, the middle FBG (1550nm) was positioned at the center of the 

specimen’s gage length and the remaining two sensors were located towards the grips as 

shown in Figure 1b. All three sensors were oriented along the loading direction. Both ends of 
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As specimen 2 has a higher temperature at the end of the first fatigue loading than at the 

beginning of the second fatigue loading, portion of the applied strain in the former case is 

contributed by the thermal strains associated with the thermal expansion of the specimen. 

When the specimens cool down and the predefined displacement was applied again, 

contribution from the thermal strain diminishes and more force is needed to induce the desired 

strain onto the specimen. This results in an upward jump in the measured force and 

correspondingly the FBG strains.  

 

After the jump in the strain, the maximum strains start to drop down again until %90 of the 

fatigue life for all of the sensors. The rate of decreases in strain at this stage is significantly 

different compared to that corresponding to the end of the first fatigue loading for all the 

respective sensors. At this stage, the strains recorded by top and bottom FBG sensors continue 

to decrease whereas the strain of the middle FBG starts to increase pointing to significant 

deformations in the vicinity of the middle FBG sensor.  

 

Both specimen 1 and 2 failed at a location close to the middle FBG. The positions at which 

the specimens have failed are consistent with the abrupt variations in the strain close to the 

failure of the specimens as shown in both Figures 1b and 2b. This result indicates that FBG 

strain was able to provide information for the onset of the specimen failure.   

 

4. CONCLUSION 

 

Fiber reinforced composite specimens with three subsequent FBG sensors embedded along 

their gage length are exposed to constant, high strain cyclic loads. Considerable differences 

occurred among the individual FBG sensors and LVDT in the course of the fatigue test 

demonstrating the distinction between the local and global strain response of the material. 

This can be attributed to the heterogeneous micro structure of the material causing nonlinear 

strain distribution and relaxation of the strain in the sensor vicinity due to the formation of 

various damage mechanisms such as matrix cracking and fiber-matrix debonding. Results 

indicate that such damage mechanisms observed in fatigue causes FBG strains to follow a 

trend similar to the stages in stiffness degradation or mechanical energy. In addition, sudden 

variations in the strains were observed closer to the specimen failure which signals the onset 

of failure. 
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