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A coupled Weakly Compressible (WC) and Total Lagrangian (TL) Smoothed Particle Hydrodynamics

(SPH) method is developed for simulating hydroelastic problems. The fluid phase is simulated using

WCSPH method while the structural dynamics are solved using TLSPH method. Fluid and solid compo-

nents of the method are introduced and validated separately. A sloshing water tank problem is solved to

test the WCSPH method while oscillation of a thin plate and large deformation of a cantilever beam are

simulated to test TLSPH method. After validating each component, the coupled WC-TL SPH scheme

is introduced and two benchmark hydroelastic problems are simulated. The first test case shows the

evolution of water column with an elastic boundary gate, and the second one investigates the breaking

water column impact on elastic structures. The agreement between WC-TL SPH results and literature

data shows the ability of the proposed method in simulating hydroelastic phenomena.
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1. Introduction

Structures interacting with free surface flows are of great interest in many engineering applications
such as ship dynamics, marine hydrodynamics and offshore structure design. In some cases, the
deformation of the solid phase is small enough to be neglected and the structure is modeled as a
rigid body. However, when the deformation in the solid phase is comparable to the scale of the
system, the structure has to be fully resolved to capture the correct behavior of the system. One
such case, referred to as hydroelastic problem, is the interaction of elastic bodies with free surface
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flows. Some experimental studies in hydroelastic problems are conducted by Hermundstad (1995),
Stenius et al. (2013), Panciroli and Porfiri (2015) and Wang et al. (2016).
Developing robust and efficient numerical methods to simulate the hydroelastic problem has

been the focus of many works. A large number of these methods are grid-based schemes, relying
on body-fitted meshes (Bathe, Zhang, and Ji 1999; Lu, He, and Wu 2000; Czygan and von Estorff
2002; Hubner, Walhorn, and Dinkler 2004; Liao and Hu 2013). However, body-fitted grid-based
methods require complicated remeshing and mesh movement schemes to track large deformations.
Lagrangian meshless methods provide alternatives that capture such deformations naturally, mak-
ing them suitable for simulating free surface flows and interactions with highly deformable struc-
tures. Smoothed particle hydrodynamics (SPH), first proposed by Gingold and Monaghan (1977)
and Lucy (1977), is one of the most popular meshless methods.
SPH has been successfully used to simulate free surface flow problems, including dam-break

(Monaghan 1994; Colagrossi and Landrini 2003; Adami, Hu, and Adams 2012) and sloshing motion
(Faltinsen et al. 2000). Rigid body motion has also been the subject of many studies (Oger et al.
2006; Shao 2009; Skillen et al. 2013; Sun, Ming, and Zhang 2015; Tofighi et al. 2015). Oger et al.
(2006) and Shao (2009) studied the slamming motion of a rigid wedge on a quiescent free surface.
Interaction of rigid bodies with quiescent and wavy flow surfaces (Skillen et al. 2013; Sun, Ming,
and Zhang 2015) as well as their sedimentation (Sun, Ming, and Zhang 2015; Tofighi et al. 2015)
have also been studied.
SPH method is also employed in elastic dynamic problems (Libersky et al. 1993; Gray, Monaghan,

and Swift 2001; Maurel and Combescure 2008; Potapov et al. 2009; Caleyron et al. 2013). Antoci,
Gallati, and Sibilla (2007) used a Weakly Compressible SPH (WCSPH) based numerical algorithm
for solving hydroelastic problems. In their work, both fluid and solid phases are simulated using
WCSPH. However, tensile instability limits the application of WCSPH in elastic dynamic problems
(Swegle, Hicks, and Attaway 1995; Swegle 2000). While tensile instability is encountered in both
fluid and solid phases, the effect is much more pronounced for elastic bodies (Gray, Monaghan,
and Swift 2001). Many remedies, including normalizing interpolation kernels (Johnson and Beissel
1996) and applying artificial stress (Antoci, Gallati, and Sibilla 2007), were used to reduce the
effects of tensile instability. However, these techniques add additional model parameters that have
to be chosen carefully (Morris 1996). On the other hand, SPH-FEM was used as an alternative
approach (Fourey et al. 2010; Groenenboom and Cartwright 2010; Panciroli et al. 2012; Yang,
Jones, and McCue 2012; Panciroli, Abrate, and Minak 2013; Li et al. 2015). In SPH-FEM, SPH
method is only used to simulate the fluid domain while the solid domain is simulated using Finite
Element Method (FEM). SPH-FEM is a highly regarded method and has been successfully used to
simulate several cases in hydroelasticity. However, the different requirements of its solid and fluid
solver modules result in complex coupling procedures. A method fully based on SPH discretization
is less complex as the modules share common routines and particles have similar meaning across
both solid and fluid solver modules.
In their stability analysis of meshless particle methods, Belytschko et al. (2000) suggested a Total

Lagrangian Formulation of SPH (TLSPH) for elastic dynamic problems. In this method, the initial
configuration is used as a reference and kernel function and its derivatives are calculated based
on the initial particle distribution (Bonet and Kulasegaram 2001; Vidal, Bonet, and Huerta 2007).
Unlike WCSPH method used by Gray, Monaghan, and Swift (2001) and Antoci, Gallati, and Sibilla
(2007), Hook’s law relates stress to strain directly in TLSPH and no artificial equation of state
is required. Results show that TLSPH method alleviates the tensile instability problem without
additional treatments (Lin et al. 2014, 2015).
The motivation behind this work is to develop a Weakly Compressible and Total Lagrangian

SPH (WC-TL SPH) framework to simulate hydroelastic problems. To this end, we base our fluid
solver on WCSPH method by Monaghan (2005) while the elastic dynamic problem is solved using
TLSPH method proposed by Lin et al. (2014). The boundary conditions on fluid boundaries are
imposed via dummy particles (Adami, Hu, and Adams 2012). These boundary particles double
as solid particles inside the elastic bodies, providing seamless transition between fluid and solid
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regions. The combination provides an easy to implement and efficient method with natural coupling
between fluid and solid solvers.
In order to validate the proposed method, individual elements of the scheme are tested separately

first. A sloshing water tank problem is used to test the WCSPH implementation while oscillation
of a thin plate and large deformation of a cantilever beam are used to validate the TLSPH scheme.
Two test cases, an elastic plate subject to transient water pressure and breaking water column
impact on an elastic obstacle, are then considered for the validation of the coupled WC-TL SPH
scheme. The results are in good agreement with experimental and numerical data available in
literature, showing the ability of the proposed method in simulating hydroelastic problems. The
rest of the paper is arranged as follows. WCSPH and TLSPH schemes are presented in sections
2 and 3, respectively, while the coupling method is outlined in section 4. Simulation results are
validated in section 5 and concluding remarks are drawn in section 6.

2. WCSPH formulation for free surface flows

2.1. Governing equations

In this paper, we assume the fluid to be non-viscous. The shear stresses are neglected, and we
reduce the Navier-Stokes equations into Euler equations,

dρ

dt
= ρ∇ · v, (1)

dv

dt
= −1

ρ
∇p+ g, (2)

with ρ, v, p, t and g denoting density, velocity vector, pressure, time and gravity. In all cases
considered here, g points downward and has a magnitude of 9.8m/s2.
Following the WCSPH scheme to simulate incompressible fluids (Monaghan 1994), a state equa-

tion of the form

p = p0

[(
ρ

ρ0

)γ

− 1

]
(3)

is employed, where γ = 7 for water while p0 and ρ0 are reference pressure and density, with
p0 = ρ0gH and H is the maximum depth the of fluid.

2.2. Numerical scheme

The fundamental concept of SPH is an interpolation process (Gingold and Monaghan 1977; Lucy
1977) and spatial derivatives are determined by relating the particle of interest and the neighboring
particles through a kernel function.
The discretized form of continuity equation and momentum equations (Monaghan 2005) for a

fluid particle i may be written as

dρi
dt

= ρi
∑
j

mj

ρj
(vj − vi)∇Wij, (4)
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dvi

dt
= −

∑
j

mj

(
pi
ρ2i

+
pj
ρ2j

+Πij

)
∇Wij + g, (5)

where m denotes particle mass and Wij is the shorthand notation for the kernel function
W (|rj − ri| , h). Here ri is the position vector of particle i while h is the smoothing length, taken
1.33 times of the particle spacing δp. In this paper, we use a Gaussian kernel with a compact
support of 3h (Monaghan 1994).
To maintain the numerical stability of the scheme, an additional artificial viscosity term Πij is

introduced in the momentum equation. Among various formulations of this term in literature, we
choose the following form (Monaghan and Gingold 1983)

Πij =

−α
µijcf
ρ̄ij

, (vj − vi) · (rj − ri) < 0

0, (vj − vi) · (rj − ri) ≥ 0

(6)

µij =
h (vj − vi) · (rj − ri)

|rj − ri|2 + 0.01h2
, (7)

where ρ̄ij is the average density of particles i and j. Dissipation coefficient α and sound speed in
fluid cf are set to 0.1 and 10

√
gH, respectively. A similar stabilizing term based on Πij is used for

solid particles and will be detailed in section 3.2.
The boundary conditions are imposed through the dummy particle approach given by Adami,

Hu, and Adams (2012). The pressure of dummy particles, coinciding with either rigid walls or
elastic bodies, may be interpolated using the neighboring fluid particle values through

pd =
1∑
f Wdf

[∑
f

pfWdf + (g − as) ·
∑
f

ρf (rf − rd)Wdf

]
, (8)

where subscripts d and f denote dummy and fluid particles while as is the acceleration of the solid
particles. The density of dummy particles may be calculated from their pressure by

ρd = ρ0

(
pd
p0

+ 1

) 1

γ

. (9)

In this paper, free-slip boundary condition is implemented in all test cases and the velocity of
dummy particles are set equal to the solid particle velocity vs.

3. TLSPH formulation for elastic dynamics

3.1. Governing equations

The governing equations for elastic dynamics are

dρ

dt
= −ρ∇ · v, (10)
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dv

dt
=

1

ρ
∇ · σ + g, (11)

where ρ, v, σ and g denote the density, velocity vector, Cauchy stress tensor and gravity.

3.2. Numerical scheme

In this study, the TLSPH method is used to simulate the elastic dynamic problem. This method
eliminates the tensile instability problem observed in direct application of SPH for simulation of
elastic bodies (Vidal, Bonet, and Huerta 2007; Bonet and Kulasegaram 2001). TLSPH method is
more efficient than conventional SPH as kernel function and its gradients are only computed at the
beginning of the simulation (Lin et al. 2014). Density is assumed to be constant, eliminating the
need for solving the continuity equation (Eq. (10)). To solve the momentum equation (Eq. (11)) in
the reference frame, Cauchy stress tensor σ is replaced with the first Piola-Kirchhoff stress tensor
P, resulting in the following form

dv

dt
=

1

ρ0
∇0 ·P+ g, (12)

where a subscript �0 denotes values in initial configuration. The relation between P and σ may
be written as

P = det (F)σF−1, (13)

where F is the deformation gradient tensor, approximated as

Fi =

(
dx

dX

)
i

=
∑
j

(xj − xi)∇0WijA0j. (14)

Here x and X denote the current and original coordinate vectors, respectively, while ∇0Wij is
kernel gradient corresponding to particle i and j in their original configuration. A0j denotes the
original area of particle j for a 2D problem.
Cauchy stress tensor σ may be computed from Euler strain tensor ε according to Hooke’s law

for isotropic elastic materials in two dimensions asσ11

σ22

σ12

 =
E

1− ν2

1 ν 0
ν 1 0
0 0 1− ν

ε11ε22

ε12

 (15)

for a plane stress problem and asσ11

σ22

σ12

 =
E

(1 + ν) (1− 2ν)

1− ν ν 0
ν 1− ν 0
0 0 1− 2ν

ε11ε22

ε12

 (16)

for a plane strain problem. Here, ν and E denote Poisson’s ratio and Young’s modulus, respectively,
while Euler strains may be defined using the deformation gradient as

ε = F−TEFT . (17)
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Here, E is Green-Lagrange strain tensor expressed as

E =
1

2

[
L+ LT + LTL

]
, (18)

where the third term on the right hand side takes the geometrical non-linear effects into consider-
ation. In the above equation, displacement gradient tensor L at particle i is defined according to
displacement vector u as

Li =

(
du

dX

)
i

=
∑
j

(uj − ui)∇0WijA0j. (19)

The momentum equation in reference configuration (Eq. (12)) may be rewritten in its discretized
form as (Lin et al. 2014, 2015)

dvi

dt
= −

∑
j

(
Pi

ρ20i
+

Pj

ρ20j
+Pνij

)
∇0W0ijρ0jA0j + g. (20)

Here, Pν is the artificial viscous term Πij between particles i and j (Eq. (6)) transformed to reference
coordinates as

Pνij = det (F)ΠijF
−1, (21)

where the sound speed in fluid cf is replaced with sound speed in solid cs =
√

E/ρ0.

4. WC-TL SPH coupling scheme

In sections 2 and 3, the WCSPH algorithm for free surface flow simulations and TLSPH algorithm
for solving elastic dynamic problems were introduced separately. In this section, we present the
coupled WC-TL SPH scheme employed in solving hydroelastic problems. A typical particle ar-
rangement for a hydroelastic simulation using the coupled WC-TL SPH method is illustrated in
Fig. 1. The figure shows fluid particles, dummy particles and solid particles. The solid particles
shown in the figure also act as dummy particles for imposing boundary conditions on the fluid
particles in the vicinity of the solid body. The dummy particles residing at the outer layer of the
solid body, referred to as interface particles and shown by the solid line in Fig. 1, are used to
transfer the fluid pressure force to the solid.
Fig. 2 specifies the details of the proposed WC-TL SPH scheme. At the beginning, particle coor-

dinates, properties and velocities are initialized. Then the main computational routine is executed.
Assuming the routine is executing the time step (n + 1), WCSPH solver is used to update the
fluid particle coordinates, velocities and pressures explicitly using the values of (n)th time step.
Boundary conditions are applied through dummy particles where their pressure and velocity are
computed through Eqs. (8) and (9). At this stage both interface and solid particles as well as
wall boundary particles function as dummy particles. Denoting the pressure computed at interface
particle k as pk, an equivalent interfacial force f(i)k may be defined as

f
(n)
(i)k = [pk∆skn̂k]

(n) . (22)

Here, �(n) denotes (n)th time step while n̂k is unit normal at particle k, excluding corner particles.
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Figure 1. Schematic diagram of the coupled WC-TL SPH scheme. The inset shows the interface particle positions.

For adjacent interface particles k− 1, k and k + 1, ∆sk is approximated as

∆s
(n)
k =

[
1

2
|xk − xk−1|+

1

2
|xk+1 − xk|

](n)
. (23)

The interfacial force f(i) is applied to the solid body as a boundary condition while calculating the
elastic dynamic problem using TLSPH method. This concludes one routine of the WC-TL SPH
method at the current time step. While executing the fluid solver at the next time step (n + 2),
the updated accelerations, velocities and coordinates of the solid and interface particles at the time
step (n+ 1) are used in dummy particle calculations.
The force balance of interface particles is fulfilled through Eq. (8). For a detailed derivation and

extensive validation of this boundary condition, the reader is referred to the work by Adami, Hu,
and Adams (2012). The above mentioned routine is a one-way coupling and thus imposes strict
time stepping requirements. To ensure the accuracy of the solution across solid and fluid solvers,
the time step is chosen according to Courant-Friedrichs-Lewy condition (Lin et al. 2015; Adami,
Hu, and Adams 2012),

∆t(n) = min

(
0.8

h

cs
, 0.25

h

cf + v
(n)
max

, 0.25

√
h

g

)
(24)

where vmax is the magnitude of maximum fluid velocity inside the domain. Sound speed in fluid
cf = 10

√
gH and sound speed in solid cs =

√
E/ρ0 are defined in sections 2.2 and 3.2, respectively.

5. Results

In this section, the results of the proposed WC-TL SPH scheme are validate against numerical
and experimental data available in the literature. First, a sloshing water tank problem is solved to
test the WCSPH implementation. Then the TLSPH implementation is validated by simulating the
oscillation of a thin plate and large deformation of a cantilever beam and comparing the results
with analytical and numerical data. Finally, the coupled WC-TL SPH is used to simulate two cases,
an elastic plate subject to transient water pressure and breaking water column impact on an elastic
obstacle, and the results are compared to those available in the literature.
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Figure 2. Flowchart of the coupled WC-TL SPH scheme.

5.1. Sloshing water tank under horizontal excitation

In this example, we simulated the water’s movement in a sloshing rectangular tank. The length
and height of the tank are L = 1.73m and H = 1.15m, respectively, while the water depth is
hw = 0.6m. The tank moves in horizontal direction according to S = A cos (2πt/T ), where S is the
location of the tank, and A is the amplitude and T is the period. The velocity and acceleration
of the wall dummy particles are computed from S. Following Faltinsen et al. (2000), we choose
A = 0.032m and T = 1.3s. Fig. 3 shows the initial particle distribution for this case with an initial
particle spacing of δp = 0.01m, which leads to 10380 fluid particles and 1644 dummy particles. Fig.
4 shows nine snapshots of pressure contours and surface profiles from t = 1.0s to t = 9.0s at 1.0s
intervals.
Fig. 5 plots the wave height 0.05m away from the left wall inside the tank versus time against

experimental data by Faltinsen et al. (2000). We simulated this case with particle spacings of
δp = 0.02m, 0.01m and 0.005m which leads to 30, 60 and 120 particles in vertical direction. The
results converge for δp ≤ 0.01 and show good agreement with the experimental data.

5.2. Oscillating plate

In order to validate the accuracy of TLSPH algorithm in solving transient linear elastic dynamic
problems, the oscillation of a thin cantilever plate is simulated. Fig. 6 shows the geometry of the
plate. The plate length is L = 0.2m and the height is H = 0.02m. When initialized with a velocity
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Figure 3. Initial particle distribution of a water tank.

Figure 4. Contours of pressure and free surface profiles for sloshing motion. Snapshots are taken at 1.0s intervals from t = 1.0s

(top-left) to t = 9.0s (bottom-right).
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Figure 5. Comparison of wave heights between WCSPH and experimental results.

Figure 6. Initial geometry of the plate.

of the form

vy (x) = vLc0
f (x)

f (L)
, (25)

where

f (x) = (cos kL+ cosh kL) (cosh kx− cos kx)

+ (sin kl − sinh kl) (sinh kx− sin kx) , (26)

a thin plate with one clamped end and one free end will oscillate with a fundamental frequency of
ω (Gray, Monaghan, and Swift 2001), given as

ω2 =
EH2k4

12ρ (1− ν2)
, (27)

where kL = 1.875. The initial velocity of the free end is set to vL = 0.01 and the speed of sound
is c0 =

√
K/ρ. Here K is the bulk modulus of the plate. Following Gray, Monaghan, and Swift

(2001), Antoci, Gallati, and Sibilla (2007) and Rafiee and Thiagarajan (2009), the properties of
the plate are set to ρ = 1000kg/m3, K = 3.25× 106N/m2, ν = 0.3975 and E = 1.998× 106N/m2

for comparison.
For resolution test, we choose particle spacings of δp = 0.002m, 0.001m and 0.0005m which

correspond to 10, 20 and 40 particles in vertical direction. The simulation results are compared
with analytical and numerical data of Gray, Monaghan, and Swift (2001), Antoci, Gallati, and
Sibilla (2007) and Rafiee and Thiagarajan (2009) in Fig. 7 and Tab. 1. The plate tip’s vertical
displacement in Fig. 7 shows that our simulation is well-resolved for H/δp ≥ 20. The difference
between TLSPH results and analytical data shown in Tab. 1, especially for oscillation period, is
smaller than numerical simulations given in the literature.
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Figure 7. Comparison of non-dimensional vertical displacement versus non-dimensional time.

Table 1. Comparison of non-dimensional period and amplitude for H = 0.02m. Error

column shows the difference between the given value and the analytical result.

Period Amplitude

tc/L Error A/L Error

Analytical Solution 72.39 – 0.115 –

TLSPH (H/δp = 10) 70.68 2.36% 0.111 3.48%

TLSPH (H/δp = 20) 68.4 5.51% 0.108 6.09%

TLSPH (H/δp = 40) 67.64 6.56% 0.107 6.96%

Antoci, Gallati, and Sibilla (2007) 81.5 12.58% 0.124 7.83%

Gray, Monaghan, and Swift (2001) 82 13.27% 0.125 8.7%

Rafiee and Thiagarajan (2009) 82.2 13.55% 0.126 9.57%

5.3. Large deformation of a cantilever beam

In order to validate our TLSPH code in simulating geometrically nonlinear problems, we studied
the large deflection of a cantilever beam under vertical end load (Lin et al. 2014). Unlike the plane
strain problem of section 5.2, the cantilever beam studied here is a plane stress problem. The beam
has a length of L = 0.1m, a height of H = 0.01m and a thickness of b = 0.001m. The tip load on
the center of the free end is increased linearly from F = 0 at t = 0s to F = −17.5kN at t = 1.0s
and kept constant until t = 2.0s. The beam’s Young’s modulus E, Poisson’s ratio ν and density ρ
are set to 210GPa, 0.3 and 7800kg/m3, respectively.
Due to highly nonlinear nature of this problem, analytical solutions are not readily available. As

such, we compare our results with those obtained from Abaqus software. Figs. 8 and 9 show the
deformed configurations where our results and Abaqus data are in close agreement. Fig. 10 plots
the time history of horizontal and vertical displacements obtained by TLSPH method and Abaqus.
It is seen that both solutions reach a steady state at t = 1.0s, producing similar horizontal and
vertical displacements.
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Figure 8. Comparison of TLSPH and FEM results of the deformed beam at t = 0.5s (colored by vertical displacement).

5.4. An elastic plate subjected to transient water pressure

The deformation of an elastic plate under water pressure was studied by Antoci, Gallati, and Sibilla
(2007) experimentally and numerically. Fig. 11 shows the initial configuration of the system. The
water column has a width of 0.1m and a height of 0.14m where the top side is a free surface
at ambient conditions. All other sides are walls where an elastic plate covers the lower portion
of the right wall. The elastic plate, with a width of 0.005m and a height of 0.079m, is fixed at
the top and is initially straight. The density of water is set to ρf = 1000kg/m3. The material
of the elastic plate is rubber with density ρs = 1100kg/m3, Young’s modulus E = 106Pa and
Poisson’s ratio ν = 0.4. Simulations are carried out with particle spacings of 0.001m, 0.0005m and
0.00033m corresponding to 31374, 62744 and 94120 particles in total, including fluid, solid and
dummy particles. The CPU-times on an Intel Core i5-4460/3.2GHz computer are 7, 55.5 and 169.7
hours to reach 0.4s simulation time for the above cases. The results (not shown here) indicate that
an initial particle spacing of 0.0005m provides sufficient accuracy and further comparison with
literature data is carried on using this resolution.
Fig. 12 shows contours of water pressure and σyy in elastic plate at 0.04s intervals starting

from t = 0.04s. Similar behavior has been observed by Antoci, Gallati, and Sibilla (2007) in their
experimental work. To quantify our results, we compare the time history of both horizontal and
vertical displacements at the free end of the rubber plate with the experimental and other numerical
results (Antoci, Gallati, and Sibilla 2007; Yang, Jones, and McCue 2012; Li et al. 2015) in Fig.
13. Antoci, Gallati, and Sibilla (2007) use a hypoelastic material model for the solid while Yang,
Jones, and McCue (2012) and Li et al. (2015) use a hyperelastic model. When compared to SPH
results by Antoci, Gallati, and Sibilla (2007) and SPH-FEM results by Yang, Jones, and McCue
(2012), our results show better agreement with the experimental data and SPH-FEM simulations
by Li et al. (2015), especially when the plate reaches its maximum displacement at t ≈ 0.15s.
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Figure 9. Comparison of TLSPH and FEM results of the deformed beam at t = 1.0s (colored by vertical displacement).

Figure 10. Time history of horizontal (a) and vertical (b) displacements at the free end of the beam.

Figure 11. Initial configuration of water column with an elastic plate.
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Figure 12. Contours of water pressure and σyy in the elastic plate. Snapshots are taken at 0.04s intervals from t = 0.04s to

0.4s. Time increases from left to right and top to bottom.

14



April 20, 2017 International Journal of Computational Fluid Dynamics FSI˙WCTL˙v01

Figure 13. Time history of horizontal (a) and vertical (b) displacements at the free end of the elastic plate.

Figure 14. Initial configuration of water column with an elastic obstacle.

5.5. Breaking water column impact on elastic plate

The collapse of a water column on an elastic obstacle, a typical hydroelastic problem, is studied
in this section. The initial configuration of the system is shown in Fig. 14. A water column with a
width of 0.146m and a height of 0.292m is placed at the left end of a 0.584m× 0.292m container.
The 0.08m× 0.012m elastic obstacle is placed in the middle of the container, fixed to the bottom
wall at one end and free to move at the other end. The density of water and elastic obstacle are
set to ρf = 1000kg/m3 and ρs = 2500kg/m3. Three test cases with Young’s modulus E set to
5× 105N/m2, 106N/m2 and 2× 106N/m2 are simulated here. For E = 106N/m2, simulations are
carried out with particle spacings of 0.0024m, 0.0012m and 0.0008m corresponding to 17312, 34640
and 51970 particles. The CPU-times on an Intel Core i5-4460/3.2GHz computer are 5.1, 20.4 and
90.3 hours to reach 0.5s simulation time for the above cases. Comparing the results (not shown
here), an initial particle spacing of 0.0012m is found to be sufficiently accurate and is used for all
other cases in this section.
Fig. 15 shows snapshots of water interface and obstacle profiles as well as water pressure for

every 0.1s starting from t = 0.1s for E = 106N/m2. After its release, the water column collapses
and reaches the elastic obstacle. Initially the fluid pressure near the obstacle increases drastically,
causing it to deform under the impact of water. Then, as water passes over the obstacle and
pressure drops, the obstacle rebounds. Similar behavior is reported in numerical simulations by Hu
et al. (2014) and Rafiee and Thiagarajan (2009). Fig. 16 compares the surface profiles for different
Young’s moduli. At t = 0.2s when the obstacle undergoes considerable deformation, larger Young’s
modulus results in wider high pressure region. The arc of water passing over the obstacle touches
the right wall at a higher point for cases with larger Young’s modulus. The lower surface of this
arc of water has a wavy pattern for E = 5× 106N/m2 at t = 0.4s.
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Figure 15. Contours of water pressure, surface profile and σyy in elastic obstacle. Snapshots are taken at 0.1s intervals from

t = 0.1s (top-left) to 0.4s (bottom-right).

Fig. 17-a plots the time history of displacement of the upper left corner of the obstacle with
E = 106N/m2 against numerical results given by Walhorn et al. (2005), Marti et al. (2006), Rafiee
and Thiagarajan (2009) and Li et al. (2015). While Walhorn et al. (2005) and Li et al. (2015) use
linear elastic solids, Marti et al. (2006) and Rafiee and Thiagarajan (2009) employ a hypoelastic
model for their solid material. All simulations follow the same trend, however, the values show some
differences. The initial response to the impact starts at t ≈ 0.15s and our results are comparable to
those of Marti et al. (2006), Rafiee and Thiagarajan (2009) and Li et al. (2015) while the response
is slightly delayed in data given by Walhorn et al. (2005). The maximum deflection (t ≈ 0.25s)
and the subsequent rebounding profile of the obstacle are different for all simulations. Our results
get closer to the position given by Marti et al. (2006) and Rafiee and Thiagarajan (2009) at later
simulation times. In short, the results of the current method are within the range of the data
provided in the literature. Fig. 17-b compares the horizontal displacement for different values of
Young’s modulus. As expected, the cases with lower Young’s modulus show larger deformation.
The obstacle with E = 5×105N/m2 exhibits an oscillatory motion while rebounding. This behavior
is in agreement with the wavy pattern of the lower surface of water arc seen in Fig. 16.
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Figure 16. Contours of water pressure, surface profile and von Mises stress in elastic obstacle at t = 0.2s and t = 0.4s. (left

column) E = 5× 105N/m2; (middle column) E = 106N/m2; (right column) E = 2× 106N/m2.

Figure 17. Horizontal displacement history of the upper left corner of the elastic obstacle. (a) comparison with literature data

for E = 106N/m2; (b) comparison between cases with different Young’s moduli.

6. Conclusion

A coupled Weakly Compressible and Total Lagrangian SPH (WC-TL SPH) method has been
developed to simulate the interactions of elastic bodies with free surface flows, known as hydroelastic
problems. The fluid phase was simulated by the conventional WCSPH algorithm and the dummy
particle method was used to enforce the boundary condition. The solid phase was simulated using
the TLSPH method to reduce the tensile instability effect. The particles discretizing the solid phase
are used as dummy particles to impose the boundary conditions when fluid particles are close to
the elastic body.
The method was validated through five test cases by comparing the numerical result with ana-

lytical, experimental and other numerical results available in literature. Our results show that the
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WCSPH algorithm can accurately predict the free surface flows and the TLSPH method works
well in simulating the transient geometrical nonlinear elastic dynamic problems. The combination,
WC-TL SPH, was tested for deformation of an elastic element under different pressure conditions
and the results are found to be in agreement with literature data.
The fluid and solid solvers of the WC-TL SPHmethod are easy to implement and computationally

efficient while they couple naturally. The agreement between our results and literature data shows
the ability of the proposed method in solving hydroelastic problems.
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