
Augmented Lagrangain SPH Method for

Incompressible Flows

Rouhollah Fatehi

Department of Mechanical Engineering

Persian Gulf University

Bushehr, Iran

fatehi@pgu.ac.ir

Mehmet Yildiz

Faculty of Engineering and Natural Sciences

Sabanci University

Istanbul, Turkey

meyildiz@sabanciuniv.edu

Mostafa Safdari Shadloo

CNRS-University & INSA of Rouen

France

msshadloo@coria.fr

Abstract—Incompressibility is a challenge in the context of
Smoothed Particle Hydrodynamics (SPH). There are two major
approaches to handle the Incompressibility; weakly compressible
and fully incompressible SPH methods. In the present work, a
SPH method based on the augmented Lagrangian method is pro-
posed. In this method, it is assumed that the density is constant.
However, the pressure is obtained from an equation of state.
To achieve the divergence-free velocity field, the calculation of
velocity and pressure are repeated iteratively. So, it is categorized
as density-based method. Here, a new augmented Lagrangian
SPH method is developed and the results are compared with
those of a recent modified version of the weakly compressible
SPH method in two illustrative 1D and 2D incompressible
flow problems. It has been observed that the results of the
proposed method overcome the pressure oscillations much better
in comparison with those of the weakly compressible method.

I. INTRODUCTION

As it is well known, the weakly compressible Smoothed

Particle Hydrodynamics (WCSPH) method suffers from some

difficulties especially in simulation of incompresible flows.

One of them is non-physical oscillations especially in the

pressure field. This is known as the checker-board problem

and may arise in collocated methods [1]. High frequency

(short wave length) spurious oscillations are preventable using

suitable spatial discretization schemes [2]–[4].

In the present work, a new augmented Lagrangian SPH

methods is proposed and compared with a recent modified

version of the WCSPH method for unsteady incompressible

flows. The proposed SPH method is based on the Augmented

Lagrangian method [5], [6], an alternative to the aforemen-

tioned approaches, which is situated between the two others. In

this method, it is assumed that the density is constant, however,

the pressure is obtained from an equation of state. To achieve

the divergence-free velocity field, the calculation of velocity

and pressure are repeated iteratively [7].

In the following, the proposed augmented Lagrangian SPH

method is introduced and the results are compared in two

illustrative 1D and 2D incompressible flow problems.

II. SPH METHODS

In this paper, the first derivative of an arbitrary field function

u at particle (point) i is approximated using

〈∇u〉i =
∑

j

ωjBi · ∇Wij (uj − ui) , (1)

where j denotes the neighboring particles (points) including

the particle i, uj is the (estimated) value of u at particle j,
and ωj is the infinitesimally small volume for particle j. Also,

Wij =W (rij , h) is the smoothing or kernel function which is

a smoothed version of the Dirac delta function and is positive

for rij = |rij | < h with a compact support of radius h [8].

Further,

Bi = −





∑

j

ωj∇Wijrij





−1

, (2)

is the (first derivative) renormalization tensor introduced by

Randles and Libersky [9].

Here, also, the second derivative is approximated by the

scheme proposed in [10] i.e.

〈∇ · ∇u〉i =
∑

j

ψij (uj − ui) , (3)

where,

ψij = 2B̂i : Ψij , (4)

and

Ψij = ωj

(

eij

rij
∇Wij + Se2 · Bi · ∇Wij

)

, (5)

in which eij =
rij
rij

and Se2 =
∑

j ωjeijeij∇Wij . Also, B̂ is

the Laplacian renormalization tensor given by

B̂i : Zi = I, (6)

where

Zi =
∑

j

Ψijrijrij . (7)
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A. Weakly compressible method

Here, we uses a modified form of the algorithm in [3] which

also resolves the checker-board problem. The procedure is as

follows.

First, estimate an intermediate velocity field V∗ by omitting

the pressure term

ρ

(

V∗ − Vn

∆t

)

= µ 〈∇ · ∇Vn〉+ ρg, (8)

where, g is the acceleration due to a body force, and ρ, µ,

and V are density, viscosity, and velocity vector of the fluid,

respectively.

Then, find the new pressure

Pn+1 − Pn

∆t
= −ρc2

(

〈∇ · V∗〉 −∆t
〈∇ · ∇Pn〉

ρ

)

, (9)

where, P and c are fluid pressure and speed of sound.

Next, the new velocity is calculated using

Vn+1 = V∗ −∆t

〈

∇Pn+1
〉

ρ
. (10)

Finally, update the positions

rn+1 − rn

∆t
=

1

2

(

Vn + Vn+1
)

. (11)

Although the above formulation resolves the difficulties of

the standard form of weakly compressible method, however,

there is still non-physical oscillations in the results because of

the acoustic waves propagating at a velocity higher than the

speed of sound. The next method is proposed to resolve this

issue.

B. Augmented Lagrangian method

The augmented Lagrangian approach [5], [6] may be also

used in the Lagrangian particle-based methods. In this method,

At each time step, assuming constant density, beginning from

Vn+1,0 = Vn, Pn+1,0 = Pn, and rn+1,0 = rn, at each

iteration m, first, estimate the intermediate velocity V∗ by

V∗ − Vn =rAL∆t
〈

∇
(

∇ · Vn+1,m
)〉

+
∆t

ρ

(

µ
〈

∇ · ∇Vn+1,m
〉

+ ρg
)

.
(12)

The firs term in the right-hand side of (12) is a penalty term

and rAL is the augmented Lagrangian parameter. This term in

physical sense, acts like the bulk viscosity term.

Then, find the new pressure from

Pn+1,m+1 − Pn+1,m =

−rALρ

(

〈∇ · V∗〉 −∆t

〈

∇ · ∇Pn+1,m
〉

ρ

)

,
(13)

and the new velocity from

Vn+1,m+1 = V∗ −∆t

〈

∇Pn+1,m+1
〉

ρ
. (14)

It is noteworthy that in (13) despite of the WCSPH method

the speed of sound c did not appear.

TABLE I
SUMMARY OF THE AUGMENTED LAGRANGIAN SPH ALGORITHM.

for each time-step n do

for each pseudo-time-step m do

find the neighboring particles;
for each internal particle i do

compute V∗

i using (12);
end for

for each internal particle i do

compute Pn+1

i
using (13);

end for

update the pressure for wall particles
for each internal particle i do

compute Vn+1

i
using (14);

end for

for each internal particle i do

update r
n+1,m

i
using (15);

end for

check for convergence by (16) or (17)
end for

for each internal particle i do

shift the position by ∆ri evaluated from (18);
correct the velocities and pressures using (19) and (20);

end for

end for

At the end of each iteration, calculate the new position using

rn+1,m+1 − rn

∆t
=

1

2

(

Vn + Vn+1,m
)

. (15)

The iteration converges at each time-step when the tolerance

is less than a threshold ǫ, i.e.

‖ Pn+1,m+1 − Pn+1,m ‖6 ǫ, (16)

or

‖
〈

∇ · Vn+1,m+1
〉

‖6 ǫ. (17)

The above method may be treated as an iterated form of

the method described in the previous section II-A. However,

it costs more computations than the WCSPH method because

of repeating all operations such as searching for neighbours

and updating ∇Wij , Bi, B̂i, and other computations at each

iteration.

Summary of the above algorithm is shown in Table I.

Based on the idea of by Xu et al. [11] and also Shadloo

et al. [12] especially for WCSPH, at the end of each time-

step, all internal particles are shifted slightly by ∆ri which is

defined by

∆ri = ǫVi∆t
∑

j

(

d0
rij

)3

eij , (18)

where d0 is the initial particles’ spacing and ǫ is a constant

which ranges from 0 to 0.1. Then, the velocity and pressure of

the particles are interpolated at the modified position according

to

∆Vi = ∆ri · 〈∇V〉i , (19)

∆P i = ∆ri · 〈∇P 〉i , (20)
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III. RESULTS AND DISCUSSIONS

To compare the behavior and the performance of the dif-

ferent methods described in the previous section, carefully

determined illustrative test problems have been solved and

here, their numerical results are presented.

A. 1D problem

First, a simple but stiff problem is considered, which is a

1D tank filled by a single phase fluid with ρ = 1kg/m3 and

µ = 0.001Pa.s initially at rest i.e. u = 0 and P = 0 where

u is the x-component of the fluid velocity. The tank extends

from x = 0 to x = 1m. At t > 0, a constant acceleration

g = −1m/s2 in x-direction is applied on the tank.

For this problem, assuming that the fluid is incompressible,

the momentum and mass conservations can be written as

ρ
du

dt
= −

∂P

∂x
+ µ

∂2u

∂x2
+ ρg, (21)

and
∂u

∂t
= 0, (22)

with boundary conditions

@x = 0, 1

{

u = 0
∂P
∂x

= ρg
(23)

Combining boundary condition for velocity with continuity

(22) leads to u ≡ 0 for every t > 0. Thus,

P = PL + ρgx, (24)

where PL is an integration constant. Since both conditions

for the pressure are of Neumann type, here, the value of PL

is arbitrary.

This is a stiff problem because the exact solution of the

velocity is zero while for a weakly compressible method, the

speed of sound c has a finite value. So, the method described

in II-A is expected to encounter major difficulties. To asses the

performance of the methods, a set of 101 SPH particles with

equidistant initial arrangement is considered. The first and the

last particles are fixed (wall particles) and the other 99 (fluid)

particles move with the flow. Here, the quintic Wendland [13]

kernel function with h = 3∆x is used. In all methods, the

density is assumed constant.

1) Weakly compressible SPH: The results of the problem

obtained by the weakly compressible SPH method of the

section II-A with c = 3m/s and µ = 0.001Pa.s are shown

in Fig. 1. The time-step size is limited to ∆t = 3.3e− 4s for

the sake of stability.

In Fig. 1 (a), at early times, two pressure waves initiate

from wall boundaries and propagate in the domain in apposite

directions. At about t = 0.18s, the waves reach each other

and continue to move to the other boundary. After this time,

some asymmetry appear in the velocity field (see Fig. 1

(b)). This is related to the non-linearity of the convection

term in the momentum equation. Although the convection

term does not exist explicitly in the Lagrangian form of the

(a)

(b)

Fig. 1. Results of weakly compressible SPH method of the section II-A
with c = 3m/s and µ = 0.001Pa.s for selected times; (a) pressure and (b)
velocity distributions.

momentum equation ((21)), its effect is present implicitly due

to the motion of particles. Nonetheless, the asymmetry is not

significant in the pressure profile of Fig. 1 (a). After t = 0.34s,
the waves arrive at the walls and are reflected back.

It is observed that after a relatively long time (t = 4s), there

is still a strong wave moving in the domain. Otherwise stated,

there is a pressure oscillation at each point with a period of

approximately T = L/c = 1/3s where L is the length of

the tank. Since the viscosity coefficient is relatively low, this

oscillation damps very slowly. Here, a non-dimensional group

equivalent to the Reynolds number is ρ
√

gL3/µ = 1000. Also,
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(a)

(b)

Fig. 2. Pressure results of weakly compressible SPH method of the
section II-A for selected times with different viscosity coefficients; (a)
µ = 0.1Pa.s and (b) µ = 1.0Pa.s.

based on the maximum velocity in Fig. 1 (b), the maximum

Mach number is abut 0.05.

The damping effect of the viscosity coefficient on the results

of the weakly compressible SPH method in this problem is

shown in Fig. 2. In this figure, the results of pressure obtained

by three different viscosity coefficients and c = 3m/s are

plotted. For µ = 0.1Pa.s, the same time-step size ∆t = 3.3e−
4s is used. However, for µ = 1.0Pa.s, ∆t is set to 4.5e −
5s because of the dominant effect of viscosity. In this case,

the stability condition is ∆t < 0.5∆x2/ν instead of the CFL

condition. The comparison of Fig. 1 (a) with Fig. 2 (a) shows

a significant reduction in the amplitude of the oscillation, and

it is obviously converging with time to the linear pressure

profile solution. This damping effect is manifested clearly in

Fig. 2 (b) with µ = 1.0Pa.s. In this case, the linear profile is

achieved after just t = 0.3s.
It should be noted that in physical sense, indeed, damping is

caused by the bulk viscosity not by the shear viscosity. In this

special 1D case, since ∇2V and ∇ (∇ · V) are both simplified

to ∂2u
∂x2 , the two aforementioned terms are the same.

2) Augmented Lagrangian SPH: Here, the results of aug-

mented Lagrangian SPH based on the explicit iterative method

in section II-B is presented. In this method, the Lagrange

coefficient rAL is uniformly set to CBV U
2
r,max∆t where

Ur,max = max
(

Vmax,
ν
∆x

)

is the reference velocity similar

to the previous method. Also, CBV is a tuning constant

between 1 and 100. Although non-uniform rAL may increase

the convergence rate, however the algebraic adaptive method

suggested in [7] is suited to the implicit method.

The results of the method with two different values of CBV

for early and late times are shown in Fig. 3 respectively. In

these cases, the number of iterations per time-step Niter is set to

103. By increasing CBV from 1 to 10, the solution converges

more rapidly. However, for CBV > 15 the iteration diverges.

The reason is that the increase of CBV is equivalent to a

greater viscosity coefficient as discussed in section III-A1. So,

the time-step size may no longer satisfy the stability condition.

B. 2D pressure jump

To evaluate the performance of the methods in two dimen-

sions, here, a pressure-jump in a fluid container is considered.

The container is a 1m× 1m square with periodic boundaries,

which in this problem, may also considered as symmetric

conditions. At initial time, the fluid is at rest and has uniform

-1 Pa pressure except for a circle of radius 0.17 m in which

the pressure is 10 Pa.

As discussed in the previous test case, at any time after

the initial condition, the solution of pressure is expected to

be uniform due to the incompressibility of the fluid. However,

for the density-based solvers, this is impossible. Thus, any

deviations in the results from the uniform solution can be

regarded as numerical errors.

The pressure contours of the numerical results of the

aforementioned methods are shown in Fig. 4. In this figure,

two first rows belong to the results of the presented weakly

compressible SPH method with two different speeds of sound.

For the upper row (a) the speed of sound is c=10 m/s at which

the maximum Mach number during the simulation is slightly

less than 0.1. For the next row (b) the speed of sound is set to

be c=35 m/s. At this condition, the value of ∆P/ρc2 is less

than 0.01 where ∆P is the magnitude of the initial pressure

jump i.e. 11 Pa. This guaranties that the relative changes of

the density are less than one percent during the simulation.

The next row (c) in Fig. 4 show the pressure evolution

results of the augmented Lagrangian SPH method. Noting the

scale of pressure in the different times, it can be seen that the

384



11th international SPHERIC workshop Munich, Germany, June, 14-16 2016

(a)

(b)

Fig. 3. Pressure results of the 1D problem with µ = 0.001Pa.s using the
augmented Lagrangian SPH method of the section II-B for selected times; (a)
CBV = 1 and (b) CBV = 10.

results of this method overcome the pressure oscillations much

better in comparison with those of the weakly compressible

method.

IV. CONCLUSION

In this paper, a new density-based SPH method for in-

compressible flows was introduced and compared with a

modified version of the well-known weakly compressible

SPH method. The proposed method is based on a successful

iterative density-based formulation which is in use in the grid-

based method to handle the stiffness of the nearly incom-

pressible problem. In the augmented Lagrangian method, the

divergence-free velocity field is produced by adding a penalty

term to the momentum equation. This term acts like a bulk

viscosity term.

The performance of the proposed method was investigated

in two incompressible flow problems. The cases were 1D and

2D stiff problems in which the exact solutions of the pressure

field at any time after the initial condition are smooth distri-

bution that are not reachable for a density based method. The

augmented Lagrangian SPH method gives smooth pressure re-

sults that converge to the exact solution after some reasonable

time-steps while at the same conditions, the pressure results

of the weakly compressible SPH method oscillates even after

long time. For the WCSPH method, the increase of the speed

of sound dose not have significant effect on the magnitude

of the pressure oscillation. However, the time-period of these

oscillations changes.

Nevertheless, the smooth results of the proposed iterative

methods need more than 1000 iteration per time-step. In these

problems, increasing the number of iteration in each time-step

has significant effect on the results.
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