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a b s t r a c t 

In this work, the combined effect of electrohydrodynamic forces and domain confinement on the for- 

mation of a toroidal bubble is numerically studied. The numerical scheme is the Volume of Fluid (VOF) 

method and the surface tension and electric forces are implemented using the Continuum Surface Force 

(CSF) and leaky dielectric models, respectively. It is found that both domain confinement and electric 

forces are influential on the formation of a toroidal bubble. For smaller confinement ratios, larger electric 

forces are required to pierce the bubble. Moreover, the influence of both electric forces and confinement 

ratio are presented and discussed for bubble vertical velocity, terminal Reynolds number, velocity stream- 

lines and side-wall shear stress. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

The motion of a lighter fluid with a continuous interface in an-

ther heavier fluid due to the gravitational force is known as the

ubble rising. In addition to numerous natural phenomena, there

re plenty of industrial applications such as liquid separation and

aste-water treatments ( Takahashi et al., 1979; Al-Shamrani et al.,

002 ), nucleate pool boiling ( Yoon et al., 2001 ) and chemical reac-

ions ( Pigeonneau, 2009 ) where the bubble rising is frequently ob-

erved. In most of these applications, the bubble rising is normally

ccompanied by the deformation of the bubble due to external, en-

ironmental and geometrical parameters. Numerous studies have

een carried out to investigate the effect of various parameters on

he regimes of bubble rising. Clift ( Clift et al., 1978 ) reviewed the

ubble rising and illustrated that the motion of the bubble can be

ategorized by three dimensionless numbers, namely the Reynolds,

orton, and Eotvos numbers which the later can also be referred

o as the Bond number. He showed that in small Reynolds and

ond numbers, the bubble remains spherical, but increments of

oth Reynolds and Bond numbers yield different bubble regimes

uch as elliptical and spherical caps, as well as ellipsoidal and wob-

ling shapes. Further investigations ( Chen et al., 1999; Bonometti
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nd Magnaudet, 2006; Han et al., 2010; Hua and Lou, 2007 ) re-

ealed that bubbles may deform to a toroid under sufficiently large

agnitudes of Reynolds and Bond numbers. 

Chen et al. (1999) studied the bubble deformation and its rise

or variations of Reynolds, Bond, density and viscosity ratios, and

bserved that the transition from an elliptical cap to a toroid is fa-

ilitated by means of a jet at the wake of the bubble. They con-

luded that such a transition occurs in density ratios of greater

han 5, but the viscosity ratio does not have a significant effect on

he bubble shape and velocity. They also realized that a toroidal

ubble always travels slower than an elliptical or mushroom-

haped bubble. Bonometti and Magnaudet (2006) investigated the

ransition from a spherical cap to a toroidal bubble and realized

hat the transition takes place by means of two different scenar-

os. In the first scenario, they mentioned that for large Reynolds

umbers, an upward liquid jet is driven by the hydrostatic pressure

ifference between the two poles of the bubble. If surface tension

an not compete with the force due to the upward jet current, the

ubble is pierced. The piercing occurs at the Bond number 32 ≤
o ≤ 35. The piercing due to the second scenario occurs in the

bsence of surface tension force. If the viscous effects are not suf-

ciently strong to sustain the local pressure maximum at the bub-

le front, a toroidal bubble is formed. The second scenario is found

o take place in Reynold number 79 ≤ Re ≤ 84. Later, Hua and

ou (2007) numerically studied the bubble rising and reported that

or constant magnitudes of Reynolds, Bond, density and viscosity
ctric forces and confinement ratio on the bubble rising, Interna- 
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ratios, a toroidal bubble is more likely to be formed when the bub-

ble has an initial prolate shape compared to an initially oblate one.

Nonetheless, these bubble regimes can also be affected by other

parameters such as external forces and domain constraints. 

The electrohydrodynamics (EHD), the imposition of electrical

forces on fluid flow problems, is one of the means of manipulat-

ing flow regimes in bubble rising problems. Mählmann and Pa-

pageorgiou (2009) studied the electrified bubble rising in a two-

dimensional space for spherical and ellipsoidal rising regimes un-

der the assumption of perfect dielectric model. They revealed that

the bubble initially deforms to a prolate shape and later changes

to an oblate shape performing ”wobbly-like” oscillations. They also

showed that the EHD effects increase the vertical rise velocity of

the bubble. Wang et al. (2015) simulated the influence of EHD ef-

fects on bubble rising and showed that increments of the elec-

tric field strength has a direct relationship with the deformation

of bubble. They also illustrated that further increments of electric

field lead to the formation of a toroidal shape. 

Also, the domain constraints have a significant effect on the

bubble morphology. Mukundakrishnan et al. (2007) investigated

the effect of domain confinement in a two-dimensional axisym-

metric geometry on the bubble rising. They realized that the ver-

tical and horizontal confinements are important when the domain

height and width are smaller than 8 and 3 times of the bubble

diameter, respectively. Recently, Kumar and Vanka (2015) studied

the effect of domain confinement on bubble dynamics in a square

duct for Bond number ranges of 1 − 100 and three confinement ra-

tios and realized that for Bond number of 1, the bubble does not

deform and corresponding aspect ratios (the ratio of vertical bub-

ble diameter over its horizontal diameter) are independent of con-

finement and Reynolds number. For higher Bond numbers, how-

ever, the deformation is significant and the aspect ratio increases

by incrementing both Bond number and confinement ratio. Never-

theless, the combined effect of the external electric forces on the

bubble dynamics during its rising in a confined domain and pos-

sible influence of the EHD effects on the on the formation of a

toroidal bubble has not been studied yet. 

In this paper, the combined effect of external electric force and

confinement ratio on the formation of a toroidal bubble is numer-

ically investigated. In Section 2 , the governing equations and di-

mensionless parameters are presented. In Section 3 , the compu-

tational domain and relevant boundary conditions are introduced.

Moreover in Section 3 , the numerical tool is validated by compar-

ing the results with some of those available in the literature, and

the dependency of the results with respect to the grid resolution is

tested. In Section 4 , the results are provided and the combined ef-

fect of electrical Capillary and confinement ratio on the formation

of a toroidal bubble is discussed. Finally, the concluding remarks

are presented in Section 5 . 

2. Governing equations and numerical scheme 

Equations governing an incompressible flow may be written as

∇ · u = 0 , (1)

ρ
D u 

Dt 
= −∇ p + 

1 

Re 
∇ · T + 

1 

Bo 

f (s ) + 

1 

Eg 
f (e ) , (2)

where u is the velocity vector, p is pressure, ρ is density, t is time

and D / Dt = ∂ /∂ t + u · ∇ represents the material time derivative. In

this study, normal letters indicate scalar quantities and bold letters

represent vectors and tensors. Here, T is the viscous stress tensor,

T = μ
[∇ u + ( ∇ u ) † 

]
, (3)

where μ denotes viscosity and superscript �† represents the trans-

pose operation. Local surface tension force is expressed as an
Please cite this article as: A. Rahmat et al., The combined effect of ele
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quivalent volumetric force according to the continuum surface

CSF) method ( Brackbill et al., 1992 ), 

 (s ) = γ κ ˆ n δ. (4)

ere, surface tension coefficient, γ , is taken to be constant while κ
epresents interface curvature, −∇ · ˆ n , where ˆ n is unit surface nor-

al vector. f ( e ) is the electric force vector defined as ( Saville, 1997 )

 (e ) = −1 

2 

E · E ∇ ε + q v E . (5)

n the above equation, ε denotes electric permittivity, q v is the

olume charge density near the interface while E is the elec-

ric field vector. Assuming small dynamic currents and neglect-

ng magnetic induction effects, the electric field is irrotational

ua et al. (2008) and may be represented by gradient of an electric

otential φ, E = −∇ φ. In the above equation, the electrostrictive

orce vanishes due to the fact that the system is assumed to be

ncompressible, thus the electric permittivity does not vary with

espect to the fluid density ( Eringen and Maugin, 2012 ). Further

ssumption of fast electric relaxation time compared to viscous re-

axation time leads to the following relations for electric potential

nd charge density 

 ·
(
σ∇ φ

)
= 0 , (6)

 

v = ∇ ·
(
ε ∇ φ

)
, (7)

here σ is the electrical conductivity. 

Dimensionless values are formed using the following scales 

 = r + / d , z = z + / d , ρ = ρ+ /ρ f , μ = μ+ /μ f u = u 

+ / 
√ 

gd ,

 = t + 
√ 

g/ d , E = E 

+ /E ∞ 

, p = 

(
p + − ρg · x 

+ )/ρ f gd , 

 = ρb /ρ f , V = μb /μ f , P = ε b /ε f , C = σb /σ f , (8)

eading to Reynolds, Bond, Electro-gravitational and Electro-

apillary numbers defined as 

e = 

ρ f 

√ 

gd 

3 

μ f 

, Bo = 

ρ f gd 

2 

γ
, Eg = 

ρ f gd 

ε f E 2 ∞ 

, Ec = 

Bo 

Eg 
= 

ε f E 
2 
∞ 

d 

γ
.

(9)

ere d is the bubble diameter, E ∞ 

is the undisturbed electric field

ntensity and g is the gravitational acceleration. A plus sign marks

imensional variables whereas subscripts �b and �f denote bubble

nd surrounding fluid phases, respectively. 

In the Volume of Fluid (VOF) method, the volume fraction α is

alculated by solving an evolution equation as, 

∂α

∂t 
+ u · ∇ α = 0 , (10)

nd fluid properties are smoothed on the interface by, 

= αξb + (1 − α) ξ f , (11)

here ξ can be any physical fluid property such as density, viscos-

ty, electrical conductivity or permittivity whichever is appropriate.

In this paper, the finite volume method is used to discretize

he continuity and momentum equations. The momentum equa-

ion ( Eq. 2 ) is solved by a second-order upwind formulation both

n time and space. The PRESTO! method is employed to calculate

he pressure field, and the pressure and velocity fields are coupled

sing the SIMPLE scheme. 

The commercial ANSYS Fluent software is used to solve the rel-

vant governing equations together with the associated boundary

onditions. In addition to the continuity and momentum equations,

 Laplace equation needs to be solved to obtain the electric field

 Eq. 6 ) in the domain. This has been carried out using a User De-

ned Function (UDF). Then, the electric field is evaluated as the
ctric forces and confinement ratio on the bubble rising, Interna- 
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Fig. 1. Schematic of the test case. 
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radient of the electric potential in the entire domain and relevant

orces are calculated using Eqs. 5 and 7 . Then the forces are added

s a source term to the momentum equation. 

. Problem setup 

.1. Geometry and boundary conditions 

In this study, the axisymmetric simulation domain is a rectangle

ith a height of H and width of W wherein the bubble is centered

t a distance of h = 4(d / 2) from the bottom boundary, as shown

chematically in Fig. 1 . The domain height is set to H = 24(d / 2)

hich is tested in the preliminary studies ensuring the system to

e independent from vertical boundary confinement. The width of

he domain is adjusted accordingly to maintain the desired con-

nement ratio. No-slip condition along with a potential difference

f �φ = E ∞ 

/H is applied to top and bottom walls shown by solid

ines in Fig. 1 . Referring to Fig. 1 , the left and right boundaries are

hown with dash-dot and dash lines representing the domain axis

nd the side wall, respectively. The right boundary abides the no-

lip boundary condition and a Neumann boundary condition for

he electric potential. In the absence of the bubble, this produces

 uniform downward electric field parallel to the side walls. In

ll simulations including the validation and convergence tests, the

ime step is set to keep the Courant–Friedrichs–Lewy (CFL) condi-

ion below 0.2 (CFL < 0.2). 

.2. Validation and resolution study 

To validate the results of present study, three test cases (VT1,

T2 and VT3) are simulated and compared with those from ex-

eriments of Bhaga and Weber (1981) and numerical findings

f Hua and Lou (2007) . In order to ensure that the results are

ot affected by the side wall effects, the diameter and height of

he axisymmetric domain is taken six and twelve times larger

hat the bubble diameter ( W = 6(d / 2) ) and ( H = 24(d / 2) ), respec-

ively. The bubble is located at a distance of two bubble diame-

er from the bottom boundary, and the boundary conditions are

imilar to those indicated in Fig. 1 . The simulation condition of

he test case VT1 is [ Re = 33 . 02 , Bo = 116 ], while VT2 and VT3

ases have simulation conditions of [ Re = 135 . 4 , Bo = 116 ], and

 Re = 15 . 24 , Bo = 243 ], respectively, and the density and viscos-

ty ratios are D = 10 0 0 , V = 10 0 . These conditions are identical

o those of Hua and Lou (2007) and equivalent with results of

haga and Weber (1981) . It should be noted that in Bhaga and

eber (1981) the Reynolds number is calculated based on the ter-
Please cite this article as: A. Rahmat et al., The combined effect of ele

tional Journal of Heat and Fluid Flow (2017), http://dx.doi.org/10.1016/j
inal rise velocity (U t ) of the bubble and named as the terminal

eynolds number Re ∗ = ρ f U t d /μ f . Table 1 compares terminal bub-

le shapes and vertical rise velocity of VT1, VT2 and VT3 with ex-

eriments in Bhaga and Weber (1981) and simulations in Hua and

ou (2007) . Considering terminal bubble shapes, the present nu-

erical results are satisfactory in general, and matches with results

f the provided references. The comparison of terminal rise veloc-

ty with numerical simulations in Hua and Lou (2007) shows that

he present numerical results underestimates the vertical rise ve-

ocity for VT2 and VT3 by the relative difference of 0.9% and 1.6%,

espectively, and overestimates the rise velocity of VT1 by the rel-

tive difference of 1.8%. 

There is a difference observed between the characterized

eynolds number (Re) of numerical simulations and calculated

eynolds number (Re ∗) of experimental studies. Based on the di-

ensionless and characteristic parameters, the terminal rise veloc-

ty of the bubble can be found by U t . 
√ 

gd , and the Reynolds num-

er calculated based on the dimensional terminal rise velocity can

e obtained by Re ∗c = U t . Re . For the above simulated cases, the cal-

ulated Reynolds number is found to be Re ∗c = 20 . 24 , Re ∗c = 88 . 55

nd Re ∗c = 8 . 26 for cases VT1, VT2, and VT3 which shows relative

ifference ( 
| Re ∗−Re ∗c | 

Re ∗ × 100 ) compared to the experimental finding

f Bhaga and Weber (1981) by 0.78, 5.8, and 6.3 percentages, re-

pectively. It should be noted that similar comparison has been

ade by Hua and Lou (2007) reporting comparable results. 

Fig. 2 presents the dependency of present numerical results on

he grid the resolution for the test case VT3 from Table 1 . For

ll simulations in this paper, the domain is meshed by Cartesian

tructured mesh model. The test is carried out for four differ-

nt resolution cases of MR1 = 24 χ, MR2 = 32 χ, MR3 = 48 χ, and

R4 = 64 χ, where n χ indicates the number of grids per initial

ubble diameter. It is observed that for the coarse case of MR1, the

ubble vertical velocity is under predicted and the bubble shape

as considerable distinctions compared to other cases. The com-

arison of MR3 and MR4 reveals that the increase in the grid res-

lution does not change the results considerably, thus the resolu-

ion of MR3 is adopted for the simulations of the present study.

t should be mentioned that the validation of present study in

able 1 are also carried out with the same mesh resolution (MR3).

In order to validate the code for implementation of the elec-

ric forces, the deformation of a stationary bubble in a quiescent

uid is simulated. The bubble is located in an axisymmetric do-

ain of ( H = 12(d / 2) ) and ( W = 6(d / 2) ) where the distance of

he bubble center from the top and bottom boundaries are the

ame. The boundary conditions are also similar to those explained

n Fig. 1 . The density, viscosity and conductivity ratios are D = 1 ,

 = 1 , and C = 5 , respectively, and the applied electric potential

ields the Electro-capillary number of Ec = 0 . 4 . In order to quan-

ify the deformation of the bubble, the deformation index of the

ubble D ι is introduced as the fraction of the difference of bub-

le vertical ( ς ) and horizontal ( ϱ) diameters over their summation,

 ι = (ς − �) / (ς + �) . The positive values of deformation index in-

icates the deformation of the bubble in the direction of elec-

ric field (prolate deformation) and its negative values represents

he deformation perpendicular to the direction of the electric field

oblate deformation). Fig. 3 compares the deformation index of the

est case for variations of electric permittivity ratio with Taylor’s

heory ( Taylor, 1966 ) and numerical results of Lin et al. (2012) for

n inviscid system. It can be shown that the bubble deformation

ndex is a weak function of viscosity ratio ( Saville, 1997 ) and vari-

tions of viscosity ratio does not change the results, considerably.

he Taylor’s theory can be simplified for a bubble in an inviscid

ystem as, 

 ι = 

9 ϕ 

32(2 + C) 2 
ε f E 

2 
∞ 

d 

γ
= 

9 ϕ 

32(2 + C) 2 
Ec , (12) 
ctric forces and confinement ratio on the bubble rising, Interna- 

.ijheatfluidflow.2017.01.002 
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Table 1 

Validation of numerical code with the experiments of Bhaga and Weber (1981) and Hua and Lou (2007) for three test cases; VT1: Re = 33.02 and Bo = 116, 

VT2: Re = 135.4 and Bo = 116, and VT3: Re = 15.24 and Bo = 243. 

Test case Experiment conditions Bhaga and Weber (1981) Simulation conditions Hua and Lou (2007) Simulation conditions Present study 

VT1 Re* = 20 .4 Re = 33.02 Re = 33.02 

Bo = 116 Bo = 116 Bo = 116 

U t = — U t = 0 .602 U t = 0 .613 

VT2 Re ∗ = 94 Re = 135.4 Re = 135.4 
Bo = 116 Bo = 116 Bo = 116 

U t = — U t = 0 .660 U t = 0 .654 

VT3 Re ∗ = 7.77 Re = 15.24 Re = 15.24 

Bo = 243 Bo = 243 Bo = 243 

U t = — U t = 0 .551 U t = 0 .542 
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Fig. 2. The grid resolution study for the test case VT3 from Table 1 for bubble shape (at left) and vertical rise velocity (at right), employing four different resolutions of 

MR1 = 24 χ, MR2 = 32 χ, MR3 = 48 χ, and MR14 = 64 χ where n χ indicates the number of grids per initial bubble diameter. 

Fig. 3. Comparison the deformation index of present numerical results (square 

marks) with Lin et al. (2012) (circle marks) and Taylor’s theory ( Saville, 1997 ) 

(dashed and solid lines) for the deformation of a neutrally buoyant bubble; The 

parameters are set to D = 1 , V = 1 , C = 5 , and Ec = 0 . 4 . 
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where ϕ is a discrimination function, 

ϕ = C 2 + 1 − 2 P + 

3 

2 

(P − C) . (13)

In Fig. 3 , square and circle signs indicate the numerical results of

present study and those of Lin et al. (2012) , respectively and Tay-

lor’s theory is shown with solid and dashed lines. It should be

noted that the Taylor’s theory gives accurate results for small de-

formations where the bubble is nearly spherical, but in high defor-

mation cases, the results of the Taylor’s theory become inaccurate

( Feng and Scott, 1996; Vizika and Saville, 1992; Zhang and Kwok,

2005 ). Therefore, the dash line illustrates the inaccurate Taylor’s

theory while the solid lines indicate the region where the theory is
Please cite this article as: A. Rahmat et al., The combined effect of ele

tional Journal of Heat and Fluid Flow (2017), http://dx.doi.org/10.1016/j
ccurate. The comparison of the present study with referenced nu-

erical and analytical results illustrates that in the region of small

eformation, the deformation index is predicted with a sufficient

ccuracy. For large oblate deformations, the present results stand

etween the referenced numerical and analytical results while for

he large prolate deformations, the current study slightly overesti-

ates the deformation index compared to both referenced data. 

. Results 

In this section, the results of a rising bubble in a cylindrical

onfined domain under the effect of an external electric field are

resented. The domain confinement ratio Cr is defined as the ratio

f the diameter of the cylindrical domain over the bubble diameter,

r = (2W / d) . In our preliminary investigations, it is observed that

he side wall boundary effects are insignificant for confinement ra-

ios above five (Cr > 5). Thus, four confinement ratios of Cr = 2 ,

r = 3 , Cr = 4 , and Cr = 5 are considered to take into account the

ffect of confinement ratio. The simulation conditions of the ris-

ng bubble is Re = 100 , Bo = 50 , D = 0 . 001 , V = 0 . 01 , C = 0 . 001 ,

nd P = 0 . 05 . Under such simulation conditions and in the absence

f electric forces, the bubble deforms to a hemispherical shape in

mall confinement ratios ( Cr = 2 ) due to the effects of the side

omain boundaries. By increasing the confinement ratio, the bub-

le is flattened where the effects of the side domain boundary

re lessened. Despite having a wider frontal area, the bubble rises

aster in larger confinement ratios. This is a direct consequence of

he effects of domain confinement on hydrodynamics of the bub-

le rising such as the flow vortices inside and outside of the bub-

le. It should be noted that similar results have been reported in

umar and Vanka (2015) for equivalent simulation conditions. 

It should be noted that the Bond number can also be repre-

ented as the ratio of the characteristic length (here the bubble di-

meter) over the capillary length scale ( l c = 

√ 

γ
ρ f g 

). In the present

tudy, the characteristic length scale is almost one order of mag-
ctric forces and confinement ratio on the bubble rising, Interna- 

.ijheatfluidflow.2017.01.002 
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Fig. 4. The history of bubble shapes at t = 0 , 1 , 2 , 3 , 4 , 5 in confinement ratio of Cr = 2 for variations of Electro-capillary number; (a) Ec = 1 . 0 , (b) Ec = 1 . 5 , (c) Ec = 2 . 0 , (d) 

Ec = 2 . 5 . 
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itude larger that the capillary length scale. This leads to the con-

ideration of just geometrical confinement due to the domain con-

traints. 

In the presence of electric field, the electric potential is adjusted

o maintain the Electro-capillary number in the range of 0.5 ≤ Ec

2.5. For small Electro-capillary numbers, Ec ≈ 0.5, the electric

orces does not significantly influence the bubble shape and its ver-

ical rise velocity in any confinement ratio. On the other hand, ap-

lying the Electro-capillary number of Ec = 2 . 5 leads to the forma-

ion of a toroidal bubble shape for all confinement ratios. In the

ollowing, the formation of a toroidal rising bubble is separately

nvestigated for the piercing effect of electric forces in a confined

omain, and the influence of confinement ratio in the presence of

lectric forces. Afterwards, relevant discussions are made on the

ombined effect of electric forces and confinement ratios on the

ormation of a toroidal bubble. 

.1. Effect of Ec 

Fig. 4 represents the cross-section and the history of bubble

hapes at t = 0 , 1 , 2 , 3 , 4 , 5 for the confinement ratio of Cr = 2

nd for four different Electro-capillary numbers, (a) Ec = 1 . 0 , (b)

c = 1 . 5 , (c) Ec = 2 . 0 and (d) Ec = 2 . 5 . During the initial transient

tage wherein the bubble motion is dominated by inertial force,

he bubble deforms from an initial spherical shape to a spherical-

ap shape ( t = 2 in (a) and (b) cases). Here, recall that the initial

ransient stage refers to dynamics of the bubble from the initial

pherical shape to the terminal state of non-pierced cases and to

he piercing moment of pierced cases. This deformation is followed

y the formation of an upward jet current of the surrounding fluid

t the wake of the bubble. Consequently, the bottom surface of the

ubble is indented inwardly while the upper surface of the bub-

le remains nearly spherical. Afterwards, the bubble tries to main-

ain its terminal shape due to the effect of surface tension where

he indentation of the bottom surface is vanished and the bottom

urface of the bubble flattens, reaching into a hemispherical state.

ncreasing the Electro-capillary number in (c) and (d) cases, the

ubble is pierced and a toroidal bubble is formed. The piercing oc-

urs when the upward jet current pushes the bottom surface and

he distance between the upper and bottom surfaces of the bub-

le is minimum in the transient stage (notice t = 2 in case (c)). At

his moment, the electric forces which act on the interface direct-

ng into the bubble, facilitate the formation of a toroidal bubble if
Please cite this article as: A. Rahmat et al., The combined effect of ele

tional Journal of Heat and Fluid Flow (2017), http://dx.doi.org/10.1016/j
he magnitude of the Electro-capillary number is sufficiently large.

y comparing the bubble shapes at t = 2 for (c) and (d) cases in

ig. 4 , it is observed that the electric forces pierce the bubble ear-

ier in time in case (d) which has a larger magnitude of the Electro-

apillary number. After the bubble is pierced, the surface tension

orce which is stronger in regions where the curvature is larger,

reserves the shape of the bubble ring (notice the deformation of

he bubble shape from t = 2 to t = 5 for case (d)). This can be re-

erred to as the ’secondary transient stage’ describing the dynamics

f a rising bubble between the piercing moment and reaching its

erminal state. Later, it will be discussed how domain confinement

ffects the secondary transient stage. 

In order to see how the electric forces assist the formation of a

oroidal bubble, Fig. 5 is presented. In this figure, the normalized

lectric forces per unit volume are shown at t = 1 on the bubble

nterface for four cases represented in Fig. 4 . It is seen that the

lectric forces increase with increments of Electro-capillary num-

er by comparing the normalized magnitudes of the forces. Con-

idering the distribution of electric forces on the bubble interface,

t is observed that the electric forces are stronger on the bottom

urface of the bubble. Moreover, the force vectors show that the

irection of electric forces are from the heavier fluid towards the

ighter one in that region. This shows that when the distance be-

ween the upper and bottom surfaces of the bubble are small, the

lectric forces pierce the bubble from the center. 

The vertical rise velocities of cases (a), (b), (c) and (d) from

ig. 4 are presented in Fig. 6 . For the initial moments of tran-

ient stage nearly up to t ≈ 1, the vertical rise velocity increases

nd reaches a maximum, and thereafter decreases due to the dis-

ended frontal area which augments the drag force and nearly lev-

ls off with relatively small oscillations for non-pierced cases and

rops down further for pierced cases. The maximum value of rise

elocity gets larger with increments of the Electro-capillary num-

er. This is due to the distribution and direction of electric forces

n the bubble interface, as described in Fig. 5 . Since the electric

orces are stronger on the bottom surface of the bubble during the

nitial transient stage directing from heavier to lighter fluid, slight

ncrease on the vertical rise velocity is observed for increments

f Electro-capillary number. At t ≈ 2, piercing occurs for Ec = 2 . 0

nd Ec = 2 . 5 cases and the upward jet current passes through

he pierced area (not shown here), followed by a sudden drop in

he vertical rise velocity. As a result, the terminal rise velocity of

he pierced bubbles decreases by almost 50 percent compared to
ctric forces and confinement ratio on the bubble rising, Interna- 
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Fig. 5. The electric forces per unit volume normalized by ε f E 
2 
n / d shown by vector field (on the left half) and contours (on the right half) on the interface of the bubble 

at t = 1 in confinement ratio of Cr = 2 and for (a) Ec = 1 . 0 , (b) Ec = 1 . 5 , (c) Ec = 2 . 0 , (d) Ec = 2 . 5 ; In order to compare force magnitudes, the electric field intensity for 

normalizing the forces E n is taken equal to 1. 
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the non-pierced cases. During the secondary transient stage for the

pierced cases, the vertical rise velocity decreases slightly from v ≈
0.4 to v ≈ 0.3. This slight decrease is due to the effects of side

boundary, and occurs when the bubble ring approaches the side

boundaries during its secondary transient stage. For all cases, it is

observed that the velocities are oscillatory especially for pierced

cases. It will be shown that these oscillations are due to the con-

finement of the domain and disappear when the confinement ratio

is increased. 

Fig. 7 represents the velocity streamlines and bubble shapes in

the half domain for confinement ratio of Cr = 2 and for different

Electro-capillary numbers ( Fig. 7 (a)–(d)), and their corresponding

wall shear stress τ = μ f ∇ u | z at the side wall boundary normal-

ized by ρ f g d( Fig. 7 (e)). The cases are shown for the moment when
Please cite this article as: A. Rahmat et al., The combined effect of ele

tional Journal of Heat and Fluid Flow (2017), http://dx.doi.org/10.1016/j
he centroid of the bubble is at z = 5 . For (a) and (b) cases, the

ubble is not pierced, and the velocity streamlines illustrate the

tructure of the upward jet current at the wake of the bubble. For

he pierced cases in (c) and (d), however, no upward jet current

f surrounding fluid which passes into the pierced region is ob-

erved. It should be noted that after the formation of the toroidal

hape, a pair of vortices begin to develop at the sides of the bub-

le ring. These vortices develop as the bubble rises in the fluid.

imultaneously, the effect of the upward jet current in the pierced

egion gradually disappears. Consequently, the direction of the sur-

ounding fluid motion in the pierced region is reverted. Such a

ransformation leads to the formation of some other complex vor-

ices especially beneath the bubble ring. Considering the wall shear

tress in Fig. 7 (e), it should be noted that positive magnitudes of
ctric forces and confinement ratio on the bubble rising, Interna- 
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Fig. 6. The vertical rise velocity versus time for constant confinement ratio Cr = 2 

at different Electro-capillary ratios, Ec = 1 . 0 , 1 . 5 , 2 . 0 and 2.5. 
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all shear stress indicate the friction in the upward direction for

ownward motion of the surrounding fluid at the vicinity of the

all. The maximum value of the wall shear stress slightly increases

ith increments of Electro-capillary number for non-pierced cases.

he location of the maximum value stands at the elevation of the

ottom surface of the hemispherical bubble. For the pierced cases,

he magnitude of the maximum point increases considerably and

ts location is at the elevation of the centroid of the bubble ring.

ncrements of Electro-capillary number for pierced bubbles show a

light decrease in the maximum value of the wall shear stress. For

c = 2 . 5 , the wall shear stress has negative values between z ≈ 3.5

nd z ≈ 4.3 indicating that an upward current of the surrounding

uid exists in the vicinity of the wall as a direct consequence of

he formation of vortices beneath the toroidal bubble. 

.2. Effect of Cr 

The cross-section and the history of bubble shapes at t =
 , 1 , 2 , 3 , 4 , 5 for Electro-capillary Ec = 1 . 35 and various confine-
ig. 7. The velocity streamlines and bubble shapes for confinement ratio for Cr = 2 an

c = 2 . 5 and (e) their corresponding wall shear stress; The bubbles are shown in a half d

Please cite this article as: A. Rahmat et al., The combined effect of ele

tional Journal of Heat and Fluid Flow (2017), http://dx.doi.org/10.1016/j
ent ratios, (a) Cr = 2 , (b) Cr = 3 , (c) Cr = 4 , (d) Cr = 5 are shown

n Fig. 8 . Later it will be shown that how the confinement ra-

io affects the minimum value of the Electro-capillary number re-

uired for piercing the bubble. It will also be shown that in large

onfinement ratios, there is not much of a difference between

he minimum value of Electro-capillary number which can pierce

he bubble. Thus, Ec = 1 . 35 is selected to show that the bubble

ierces in two larger confinement ratios but remains hemispher-

cal/ellipsoidal in more confined cases. Comparing the bubble ter-

inal shapes for (a) and (b) cases at t = 5 , it is observed that the

ubble is more flattened when the confinement ratio increases,

hanging the terminal shape from a hemispherical shape in Cr = 2

o an ellipsoidal-cap in Cr = 3 . When the bubble is flattened in

arger confinement ratios, the distance between the upper and bot-

om surface of the bubble in the transient region decreases (no-

ice the bubble shapes at time t = 2 and consider the distance be-

ween upper and bottom surfaces in r = 0 . 0 ). Then, the electric

orces pierce the bubble from the center forming a toroidal bubble

s discussed in Fig. 4 . After the formation of the toroidal bubble,

he secondary transient stage begins. 

Fig. 9 represents the vertical rise velocity versus time for the

ases shown in Fig. 8 . The maximum value of vertical rise veloc-

ty increases with increments of the confinement ratio. This is in-

uitively expected since the larger the confinement ratio, the less

he effect of the no-slip boundary on the rising velocity. Similar

o the variations of maximum of vertical rise velocity for different

lectro-capillary numbers ( Fig. 6 ), the vertical rise velocity drops

own (after t ≈ 1) due to the enlargement of the frontal area of

he bubble and levels off briefly. For (c) and (d) cases, the verti-

al rise velocity sharply drops down further because of the pierc-

ng of bubbles. Further decrease in the vertical rise velocity until

 ≈ 5 for (c) and (d) cases indicates the secondary transient stage

f the bubble. After reaching the terminal rise velocity, one can

learly observe the influence of the increments of confinement ra-

io on the magnitude of the terminal rise velocity for both pierced

nd non-pierced cases where upon the formation of toroidal bub-

le,the terminal rise velocity of pierced bubbles falls below those

f (a) and (b) cases. It is shown earlier that the vertical rise veloc-
d different Electro-capillary numbers; (a) Ec = 1 . 0 , (b) Ec = 1 . 5 , (c) Ec = 2 . 0 , (d) 

omain for the moment when their centroids are at z = 5 . 

ctric forces and confinement ratio on the bubble rising, Interna- 
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Fig. 8. The history of bubble shapes at t = 0 , 1 , 2 , 3 , 4 , 5 in Electro-capillary number of Ec = 1 . 35 for various confinement ratios; (a) Cr = 2 , (b) Cr = 3 , (c) Cr = 4 , (d) Cr = 5 . 

Fig. 9. The vertical rise velocity versus time for constant Electro-capillary numbers 

Ec = 1 . 35 at different confinement ratios, Cr = 2 , 3 , 4 and 5. 
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ity in small confinement ratios are oscillatory. Here in Fig. 9 , it is

shown that by increasing the confinement ratio, these oscillations

tend to be reduced. 

Fig. 10 represents the velocity streamlines and cross section of

bubble rings in the half domain for Electro-capillary number of

Ec = 2 . 5 and various confinement ratios ( Fig. 10 (a)–(d)), and the

corresponding side wall shear stress ( Fig. 10 (e)), at the moment

when the centroid of the bubble ring is at z = 5 . In relation to the

formation of vortices after the piercing of the bubble, it is stated

earlier that the jet current of the surrounding fluid gradually disap-

pears after the development of a pair of vortices around the bubble

ring. The pair vortices are observable in Fig. 10 (a) and (b) at the

sides of the bubble interface. However, the development of these

vortices depends on the domain confinement. In smaller confine-

ment ratios, the vortices are formed right after the bubble is torn

from the center (not shown here), but the formation of vortices

are delayed in time for larger confinement ratios. Thus, it is ob-

served in Fig. 10 that for (a) and (b) cases, the vortices are devel-

oped and the upward jet current disappears, but the upward jet

current passing through the pierced region still exists for (c) and

(d) cases. It should be noted that the development of pair vortices

around the bubble ring is accompanied by the formation of other

vortices beneath the bubble ring. Considering the wall shear stress,

its magnitude dramatically increases with decrements of confine-

ment ratio. This represents the effect of side walls on the flow of

the surrounding fluid that affects the bubble shape and vertical

rise velocity and also the magnitude of Electro-capillary number

in which the bubble pierces. Since all the cases are pierced, the

maximum values of wall shear stress for all the confinement ratios

are in the same location which corresponds to the centroid of the
Please cite this article as: A. Rahmat et al., The combined effect of ele

tional Journal of Heat and Fluid Flow (2017), http://dx.doi.org/10.1016/j
ubble ring. Moreover, it is found that the existence of pair vortices

round the bubble ring for Cr = 2 and 3 cases generates negative

agnitudes of shear stress on the side wall. 

.3. The combined effect of Cr and Ec 

Fig. 11 represents the terminal shapes of bubbles in 3D for dif-

erent confinement ratios and Electro-capillary numbers at t = 10 .

or Electro-capillary number of Ec = 1 . 0 , the bubble remains non-

ierced for all confinement cases and increments of confinement

atio make the bubble shape flattened. For Ec = 1 . 5 , the bubble

eeps its hemispherical shape in Cr = 2 , but the bubble is torn

hen the confinement ratio is increased to Cr = 3 . The toroidal

hape of the bubble horizontally spreads as the confinement ra-

io increases to Cr = 4 and 5. Considering larger magnitudes of

lectro-capillary number Ec = 2 . 0 and 2.5, it is observed that the

nal bubble shape for all confinement ratios is toroidal. 

It has shown earlier that both confinement ratio and Electro-

apillary number affect the bubble rising regime and have direct

nfluence on the formation of a toroidal bubble (refer to Figs. 8 and

 , respectively). In order to determine the region where the bub-

le is pierced, a set of simulations in different Electro-capillary

umbers and confinement ratios are carried out and the corre-

ponding results are shown in Fig. 12 . For four different confine-

ent ratios, various Electro-capillary cases are simulated and the

nal state of the bubble is indicated by circle and plus marks for

he non-pierced and pierced cases, respectively. Moreover, a solid

ine determines where the bubble shape transforms into a toroidal

hape as the Electro-capillary number increases. It is seen that in

arge confinement ratios Cr = 5 , Ec ≈ 1.3 is the threshold value in

hich a toroidal bubble is formed. This threshold does not change

onsiderably when the confinement ratio of Cr = 4 is interested.

ince the wall effects resist against the formation of toroidal bub-

le shape, the threshold increases when the confinement ratio falls

elow Cr = 4 . Relatively large magnitude of Electro-capillary num-

er Ec ≈ 1.9 is required for Cr = 2 to make the bubble form a

oroidal shape. 

Fig. 13 represents the terminal Reynolds number Re ∗ for differ-

nt confinement ratios in variations of Electro-capillary number. It

s stated earlier in Fig. 6 that when the bubble is pierced, the ver-

ical rise velocity and consequently, the terminal Reynold number

ecreases considerably. Considering the terminal Reynolds number

n two spectra of Electro-capillary number - Ec < 1.25 for non-

ierced bubbles and Ec > 1.85 for toroidal bubbles - the terminal

eynolds number increases by incrementing the confinement ratio

ue to the effects of side boundary on the vertical rise velocity of

he bubble. Moreover, by noticing the trend of terminal Reynolds

umber before the formation of the toroidal bubbles, it is observed

hat increments of Electro-capillary number lead to a slight in-
ctric forces and confinement ratio on the bubble rising, Interna- 
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Fig. 10. The velocity streamlines and bubble shapes for Electro-capillary number of Ec = 2 . 5 and different confinement ratios; (a) Cr = 2 , (b) Cr = 3 , (c) Cr = 4 , (d) Cr = 5 

and (e) their corresponding wall shear stress; The bubbles are shown in a half domain for the moment when their centroids are at z = 5 . 

Fig. 11. Three-dimensional demonstration of terminal bubble shape for variations of Electro-capillary numbers and confinement ratios. 
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rease in the vertical rise velocity and consequently, the terminal

eynolds number for all confinement ratios. As it has been stated

arlier, it is due to the formation of electric forces on the interface

f the bubble which leads to a faster rise of the bubble in larger

lectric field strengths. After the formation of the toroidal bubble,

owever, increase in the Electro-capillary number does not influ-

nce the trend of terminal Reynolds number considerably. This in-

icates that the electric forces do not have a significant impact on

he vertical rise velocity of the bubble after the formation of the

oroidal shape. 

Fig. 14 presents the variations of normalized diameter of the

ubble ring D r versus time after the bubble is pierced for some

est cases in this study. The D r is defined as the magnitude of

he toroidal bubble diameter divided by the initial bubble diam-

ter. The trend of D r consists of two sections, one which has a

teep slope showing the second transient stage of the bubble, and

he other with a gentle slope indicating that the toroidal bubble

radually reaches its terminal state. During the second transient

tage of rising, the toroid expands circumferentially and the bub-

le ring approaches the side boundary. This is due to the direction
Please cite this article as: A. Rahmat et al., The combined effect of ele

tional Journal of Heat and Fluid Flow (2017), http://dx.doi.org/10.1016/j
f the flow field of the surrounding fluid around the bubble that

irects from the inner region of the bubble ring towards the side

oundary. The flow field of the surrounding fluid around the bub-

le ring is motivated by the upward jet current, and can be seen

n Fig. 10 (d). It is observed that the pair vortices at the sides of

he bubble ring develop leading to the gradual disappearance of

he upward jet current. Considering the pair vortices, the vortex in

he outer side of the bubble ring is found to be effective on the ex-

ansion of the bubble ring during the second transient stage. How-

ver, the expansion is ceased by the gradual strengthening of the

nner vortex during the bubble rise, which is a turning point in the

rend of the normalized diameter. Afterwards, the toroidal bubble

eaches a plateau where the change in the normalized diameter is

uite negligible. Since the development of the pair vortices around

he bubble ring occurs earlier in time in smaller confinement ra-

ios, reaching the plateau happens earlier for CE5 and CE6 cases.

t should be noted that some oscillations are seen in the pattern

f normalized diameter of the bubble ring for CE5 and CE6 cases

hich is due to the effects of the side boundary on the formation

nd strength of pair vortices around the bubble ring. 
ctric forces and confinement ratio on the bubble rising, Interna- 
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Fig. 12. The map of the test cases for variations of Electro-capillary numbers and 

confinement ratios simulated in present study; the circle marks indicate the cases 

wherein the rising bubble remains non-pierced while the plus marks represent the 

pierced cases. The red solid line indicates the transition region where the bubble 

pierces. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 13. Variations of Terminal Reynolds number as a function of Electro-capillary 

number for different confinement ratios. 

Fig. 14. The variations of normalized diameter of the bubble ring D r in time for CE1 

[ Cr = 5 , Ec = 2 . 5 ], CE2 [ Cr = 5 , Ec = 2 ], CE3 [ Cr = 5 , Ec = 1 . 5 ], CE4 [ Cr = 4 , Ec = 

2 . 5 ], CE5 [ Cr = 3 , Ec = 2 . 5 ], and CE6 [ Cr = 2 , Ec = 2 . 5 ]. 
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5. Conclusion 

In this study, the combined effect of electrohydrodynamic

forces and domain confinement is numerically studied for the for-

mation of a toroidal bubble. The VOF method is used to cap-

ture the bubble interface. In order to implement the surface ten-

sion and electric forces, the Continuum Surface Force (CSF) and
Please cite this article as: A. Rahmat et al., The combined effect of ele

tional Journal of Heat and Fluid Flow (2017), http://dx.doi.org/10.1016/j
eaky dielectric models are used, respectively. The numerical tool

s initially validated carefully for the bubble rising with exper-

ments of Bhaga and Weber (1981) and numerical findings of

ua and Lou (2007) . In regards to the electric forces, the accu-

acy of the numerical tool is compared for the bubble deformation

roblem with Taylor’s theory ( Saville, 1997 ) and numerical results

f Lin et al. (2012) . 

In order to study the effect of domain confinement and elec-

ric force on the formation of a toroidal bubble, a case with the

imulation conditions of Re = 100 , Bo = 50 , D = 0 . 001 , V = 0 . 01 ,

 = 0 . 001 , and P = 0 . 05 is considered. Four confinement ratios,

r = 2 , 3, 4 and 5, are modeled and Electro-capillary number is

djusted to consider the effect of electric forces. It is found that

oth Electro-capillary number and confinement ratio are influen-

ial on the formation of the toroidal bubble. The bubble is pierced

hen the electric forces is sufficiently strong. The reason is that

hen the bubble is in the initial transient stage, the distance be-

ween the upper and bottom surfaces of the bubble decreases and

hen, the electric forces pierces the bubble. For smaller confine-

ent ratios, larger Electro-capillary number is required to pierce

he bubble. After the formation of a toroidal bubble, a secondary

ransient stage is observed. During the secondary transient stage,

he vertical rise velocity of the bubble ring slightly decreases while

he diameter of the bubble ring increases. 

It is observed that in all confinement ratios, the bubble termi-

al Reynolds number increases with enhancement of electric forces

p to the state where the bubble remains non-pierced. The forma-

ion of the toroidal bubble is followed by a sudden drop of almost

0 percent in bubble vertical rise velocity. Increasing the Electro-

apillary number after the bubble piercing does not have a sig-

ificant influence on the terminal Reynolds number. The terminal

eynolds number increases with increments of confinement ratio

oth before and after the formation of the toroidal bubble. 

The study of the velocity streamlines revealed that after the for-

ation of the toroidal bubble, a pair of vortices gently develops

round the bubble ring resulting in gradual disappearance of the

pward jet current. For smaller confinement ratios, the pair vor-

ices develop right after the piercing, thus the upward jet current

isappears earlier. Formation of the pair vortices results in the de-

elopment of other complex vortices beneath the bubble ring. 

Considering the wall shear stress, it is found that for all con-

nement ratios, the wall shear stress increases with increments

f the Electro-capillary number. In larger confinement ratios, the

agnitude of the wall shear stress is much smaller than the

maller confinements. Negative shear stress is found in some parts

f the side wall elevations due to the existence of complex vor-

ices formed after the piercing of the bubble, especially in smaller

onfinement ratio cases. 
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