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Bandwidth Expansion in N -fold Frequency
Multiplier: Is it N or

√
N?
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Abstract—Frequency up-conversion is an essential step in wire-
less communication systems. Meanwhile, frequency multipliers
are increasingly becoming an integral part of communication
chains operating at millimeter-wave (mmWave) and sub-terahertz
(sub-THz) frequencies. They offer a viable alternative to tradi-
tional mixers, which are highly constrained by their instability
and high phase noise at such high frequencies. Despite the
frequency multipliers’ advantages and the fact that they are
commonly recommended by hardware designers, there is a lack
of comprehensive theoretical guidelines detailing their impact
on digital communications. One key aspect is their tendency to
induce bandwidth expansion, a phenomenon not observed with
mixers. When an N -fold frequency multiplier is used, a common
practice among hardware designers is to allocate a bandwidth
scaled by a multiple of N , which is deemed large enough to keep
signals integrity. We provide an analytical framework to quantify
the exact scaling factor of the bandwidth expansion. Contrary
to common belief, we show that the bandwidth expansion scales
as

√
N , using three counterexamples, namely Gaussian, Sinc,

and raised cosine pulses. These findings can help conserve radio
resources and further decrease the noise effect.

Index Terms—Bandwidth expansion, frequency multiplier,
mmWave, sub-THz, and up-conversion.

I. INTRODUCTION

The demand for Gigabit/s wireless links and massive
connectivity is rapidly increasing. Seeking solutions, both
the wireless industry and academia are continuously explor-
ing millimeter-wave (mmWave) and Sub-Terahertz (Sub-THz)
bands, which offer bandwidths in the gigahertz range.

Up-converting the signal to mmWave and Sub-THz bands is
deemed to be a challenging task due to hardware limitations.
In the sub-6 GHz band, a sequence of mixers is typically
used for up-conversion, where the input signal is sequentially
multiplied by single-tone waveforms generated from local
oscillators. However, at higher frequencies, mixers suffer from
conversion losses, high noise, and increased cost. Circuit de-
signers are compelled to rely more on passive components for
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signal up-conversion and develop novel architectures involving
frequency multipliers [1]–[4]. The proposed architecture in-
volves passing an intermediate frequency’s modulated signal,
centered around low-frequency carrier, through a frequency
multiplier, rather than a sequence of mixers. Leveraging elec-
tronic components with non-linear behavior, it is possible to
generate multiple harmonics from an input signal, which can
then be selectively filtered to obtain the desired high-frequency
output [1], [3]. The study in [1] demonstrates the feasibility of
achieving 16 Gbps transmission at 240 GHz, highlighting the
efficacy of frequency multipliers for up-conversion.

A phenomenon known as bandwidth expansion has been
reported when frequency multipliers are used [3]–[5]. This
effect arises from the inherent non-linearity of frequency
multipliers, which can introduce distortions to the data carrier
pulse [3]–[5], resulting in an increased output signal bandwidth
compared to the input (equivalently, the output signal when
only mixers are used). When N -fold frequency multiplier is
used, a common practice among the hardware designers is
to allocate a multiple of N -fold bandwidth, which is deemed
large enough to keep signal integrity [3]–[5]. However, no
formal proof or comprehensive empirical study quantifies the
bandwidth expansion. The work in [3] presents a proof-of-
concept for a mmWave transmitter that involves a frequency
multiplier for up-conversion. While bandwidth expansion is
evident in multiple figures, the analysis primarily focuses on
Adjacent Channel Power Ratio and Error Vector Magnitude,
without explicitly quantifying the bandwidth expansion factor.
In [4], the authors emphasize bandwidth expansion, estimating
it to be on the order of N . However, their estimation relies on
visual observations rather than on formal mathematical proofs
or precise measurements of the expansion factor.

The phenomenon of bandwidth expansion has been reported
in multiple studies on high-frequency transmitter design in-
volving frequency multipliers [1]–[4]. However, no formal
framework or comprehensive experimental study has quanti-
fied the exact bandwidth expansion. Some assume—without
proof—that an N -frequency multiplier leads to an N -fold
bandwidth expansion [4]. Given the scarcity of bandwidth
and its direct impact on noise variance and, consequently, the
signal-to-noise ratio, accurately determining the scaling factor
of bandwidth expansion and validating or refuting existing
conjectures is of interest. To the best of our knowledge, this
paper is the first that develops a closed-form expression for
bandwidth expansion, demonstrating through two counterex-
amples that it can be of the order of

√
N , which contradicts the

prevailing belief. Specifically, this work pertains to two types
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Fig. 1: Communication chain.

of pulses: Gaussian and cardinal sine (Sinc) pulses. We have
also conducted a numerical investigation on the raised-cosine
pulse, where the results align with our findings.

The paper is organized as follows: Sec. II introduces the
system model. In Sec. III, we derive the bandwidth expansion
factor. Sec. IV discusses the numerical results. Finally, Sec. V
concludes our work.

II. SYSTEM MODEL

A. Frequency multiplier input-output relation

The transmitter communications chain incorporating a fre-
quency multiplier is depicted in Fig. 1. Initially, the signal
is up-converted to a low and intermediate frequency using a
mixer. The output then passes through an N -fold frequency
multiplier (instead of a sequence of mixers typically used
at lower frequencies). Finally, a bandpass filter is applied to
suppress unwanted harmonics, keeping the signal around the
intended carrier frequency.

The input to the frequency multiplier x(t) is a low-
frequency modulated signal, with bandwidth β1. The input
signal over a symbol period can be expressed as:

x(t) = g(t) cos(2πfct). (1)

Here, g(t) denotes the pulse shape or expression, and fc
refers to the carrier frequency before the multiplier. Given the
input signal x(t), the response of the nonlinear circuit can be
expressed as:

z(t) =

N∑
n=1

anx
n(t) =

N∑
n=1

ang
n(t) cosn(2πfct), (2)

where {an, n = 1, 2, · · · , N} are the coefficients of the
nonlinear circuit’s response. By expanding and then grouping
the terms according to their harmonics, the output signal
expression becomes:

z(t) =

N∑
n=0

bn(t) cos(2πnfct)

=

N−1∑
n=0

bn(t) cos(2πnfct) + c gN (t) cos(2πNfct).

(3)

The term involving the harmonic cos(2πNfct) is a scalar mul-
tiple of gN (t), representing the N -th harmonic contribution to
the signal. The remaining terms, denoted by {bn(t), n ̸= N},
are polynomial functions of g(t), capturing the contributions

from other harmonics. Here, c refers to a constant scaling fac-
tor. To elaborate, consider the case of a frequency quadruple,
i.e., N = 4. In this case, the output expression becomes:

z(t) =

(
a2g

2(t)

2
+

3a4g
4(t)

8

)
+ b1(t) cos(2πfct) + b2(t) cos(2π(2fc)t)

+ b3(t) cos(2π(3fc)t) + b4(t) cos(2π(4fc)t),

(4)

where:

b1(t) = a1g(t) +
3a3
4

g3(t), b2(t) =
a2
2
g2(t) +

a4
2
g4(t),

b3(t) =
a3
4
g3(t), b4(t) =

a4
8
g4(t).

The last term in (4) is the dominant contribution from the
fourth harmonic, and the sum represents the additional har-
monic, each modulated by polynomial functions of g(t).

The output of the nonlinear device is a linear combination
of modulated harmonics. Since the coefficients are polyno-
mial functions of g(t), the bandwidth associated with each
harmonic is no longer equal to the original bandwidth β1.
This effect is known as bandwidth expansion. For the rest of
this paper, we denote the bandwidth of the n-th harmonic as
βn. It is important to note that the bandwidth expansion can
lead to intermodulation distortion when the modulated signals
of different harmonics overlap or interfere. To mitigate the
inter-modulation, the harmonic frequencies must be spaced
sufficiently apart, higher than the expanded signal’s bandwdith,
to avoid intermodulation. Hence, an exact value, or at least an
upper bound estimate, of the bandwidth expansion must be
first determined. Mathematically, we need to ensure that the
following condition holds:

(n+ 1)fc − nfc = fc ≥ max
n=1...N

βn = βN (5)

For the rest of this paper, we consider the case of practical
scenario where the zero intermodulation condition is satisfied.
Furthermore, we focus on the highest harmonic modulated
signal. In this case, the filtered signal is expressed as:

y(t) = c gN (t) cos(2πNfct). (6)

B. Output of frequency multiplier: the case of the Gaussian
and Sinc pulses

For the case of Gaussian and Sinc pulses, the input signal
expressions are given respectively by [6]:

xg(t) = Ae−
t2

2σ2 cos(2πfct), (7)

xs(t) = A
sin(πt)

πt
cos(2πfct), (8)

where σ is the standard deviation of the Gaussian pulse, with
a mean of 0, and A is the amplitude. Accordingly, the output
signals after filtering are respectively:

yg(t) = cANe−
Nt2

2σ2 cos(2πNfct), (9)

ys(t) = cAN (sin(πt))N

(πt)N
cos(2πNfct), (10)
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where c is a constant. For simplicity, we will omit the factor
cAN in the rest of the paper, as it has no impact on the
bandwidth calculations.

III. BANDWIDTH EXPANSION FOR GAUSSIAN AND SINC
PULSES

In this section, we assess the bandwidth expansion resulting
from the frequency multiplier, defined as the ratio of the
bandwidth after the multiplier to the bandwidth before the
multiplier, i.e., βN

β1
. Whether we consider the signal before or

after the frequency multiplier, the bandwidth can theoretically
be infinite, as seen in the case of Gaussian pulses; however, this
does not accurately reflect the effective bandwidth. In practice,
the system can only operate within a limited bandwidth
(finite bandwidth), and hence the signal amplitude typically
decreases around the carrier frequency. Therefore, the essential
bandwidth is typically considered, which reflects the minimum
bandwidth containing at least γth percent of the energy of the
signal.

A. Scaling factor of the bandwidth of the Gaussian pulse

We start by deriving the essential bandwidth at the input
of the frequency multiplier. Consider xg(t) given in (7). Its
Fourier transform is given by

Xg(f) = σ
√
2πe−2π2σ2f2

∗ δ (f − fc) + δ (f + fc)

2

= σ
√
π/2

[
e−2π2σ2(f−fc)

2

+ e−2π2σ2(f+fc)
2
]
,

(11)

where (∗) denotes the convolution operator. Accordingly, the
total energy of the signal is:

E1 =

∫ +∞

−∞
|Xg(f)|2df = πσ2

∫ +∞

−∞
e−4π2σ2f2

df. (12)

Given that ∫ +∞

−∞
e−af2

df =

√
π

a
, (13)

the total energy is:

E1 =
1

2
σ
√
π. (14)

The essential bandwidth is defined as the frequency range
that contains γth of the total energy. Therefore, the essential
bandwidth can be obtained by solving the following equation:

γthE1 = σ2π

2

∫ fc+
B1

g
2

fc−
B1

g
2

e−4π2σ2(f−fc)
2

df

+

∫ −fc+
B1

g
2

−fc−
B1

g
2

e−4π2σ2(f+fc)
2

 df

= σ2π

∫ +
B1

g
2

−
B1

g
2

e−4π2σ2f2

df =
1

2
σ
√
π erf (πσβg

1) ,

(15)

where erf(.) is the error function. Solving the equality, we
obtain:

βg
1 = erf−1

(
γthE1
1
2σ

√
π

)
(a)
=

erf−1(γth)

σπ
. (16)

The operator (·)−1 is used to denote the inverse of a function
(·). The equality in (a) is obtained by incorporating the
expression of E1 in (14).

In the next, we derive the expression for the essential
bandwidth of the output signal yg(t), given by (10), starting
with the derivation of the total energy and subsequently
determining the bandwidth that contains at least γth percent
of the total energy. We have

Yg(f) = σ

√
2π

N
e−2π2σ2 f2

N ∗ δ (f −Nfc) + δ (f +Nfc)

2

= σ

√
π

2N

[
e−2π2σ2 (f+Nfc)

2

N + e−2π2σ2 (f−Nfc)
2

N

]
.

(17)
The total energy expression hence is equal to:

EN =

∫ +∞

−∞
|Yg(f)|2df

=
πσ2

N

∫ +∞

−∞
e−

4π2σ2f2

N df =
σ

2

√
π

N
.

(18)

The essential bandwidth of the output signal can be obtained
by solving the following equation:

γthEN = σ2 π

2N

∫ fc+
β
g
N
2

fc−
β
g
N
2

e−
4π2σ2(f−fc)

2

N df

+

∫ −fc+
β
g
N
2

−fc−
β
g
N
2

e−
4π2σ2(f+fc)

2

N

 df

= σ2 π

2N

∫ +
β
g
N
2

−
β
g
N
2

e−
4π2σ2f2

N df =
σ

2

√
π

N
erf
(
πσβg

N√
N

)
.

(19)
Solving the equality, we obtain:

βg
N = erf−1

(
γthEN

σ
2

√
π
N

)
(b)
=

erf−1(γth)

σπ

√
N. (20)

The equality in (b) is obtained by incorporating the expression
of EN in (32).

Using the results in (16) and (20), and the definition of the
bandwidth expansion as the ratio of the essential bandwidths
at the input and output of the frequency multiplier, we can
express the bandwidth expansion as:

βg
N

βg
1

=
erf−1(γth)

σπ

√
N

erf−1(γth)
σπ

=
√
N. (21)

Accordingly, the bandwidth expansion scales with a factor of√
N .
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B. Sinc pulse

The expression of Sinc pulse with period Tc is given by

sinc
(

t

Tc

)
=

sin( πtTc
)

πt
Tc

. (22)

Its Fourier transform gives a rectangular function with a width
equal to 1

Tc
:

Tcrect 1
Tc
(f) =

Tc, if |f | ≤ 1

2Tc

0, else where.
(23)

Accordingly, the expression of the input signal in the fre-
quency domain can be written as:

Xs(f) = Tcrect 1
Tc
(f) ∗ δ(f − fc) + δ(f + fc)

2

= Tc

rect 1
Tc

(f − fc) + rect 1
Tc

(f + fc)

2
.

(24)

Consequently, the total energy of the input signal is :

E1 =

∫ +∞

−∞
|Xs(f)|2df

=
T 2
c

4

∫ +∞

−∞

[
rect 1

Tc
(f − fc) + rect 1

Tc
(f + fc)

]
df

=
T 2
c

4

(∫ fc+
1

2Tc

fc− 1
2Tc

1df +

∫ −fc+
1

2Tc

−fc− 1
2Tc

1df

)
=

Tc

2
.

(25)

The essential bandwidth is defined as the frequency range
that contains γth of the total energy. Therefore, the essential
bandwidth can be obtained by solving the following equation:

γthE1 =
T 2
c

4

∫ fc+
βs
1
2

fc−
βs
1
2

rect 1
Tc
(f − fc)df

+

∫ −fc+
βs
1
2

−fc−
βs
1
2

rect 1
Tc
(f + fc)df


=

T 2
c

2
βs
1.

(26)

The above gives:

βs
1 = γth

1

Tc
. (27)

We next derive an approximation of the bandwidth of the
output signal of the frequency multiplier. We have

Ys(f) = rect∗N1
Tc

(f) ∗ δ (f −Nfc) + δ (f +Nfc)

2
. (28)

Here rect∗N (f) 1
Tc

denotes the N -times convolution of the
rectangular function. The N -fold convolution of rectangular
functions yields a piecewise polynomial function of degree
N − 1. It is common knowledge that when N increases,
the exact expression for the latter convolution becomes in-
creasingly complex [7]. To generalize the result for any order
N , we employ an approximation. Notably, as N increases,
the convolution increasingly resembles a bell-shaped curve,
and hence can be approximated with a Gaussian function.
By approximating each pairwise convolution of rectangular

functions with a Gaussian [7], we can closely estimate the
bandwidth expansion for any order N (see Sec. IV).

Consider the case of N = 2K, being an even number.1

The frequency domain N -times convolutions will be grouped
into k pairs of convoluted functions, i.e., k pairs of triangular
functions. Each pair of convolution is approximated with a
Gaussian with zero mean and variance σ2 [7]. While both
the triangular function and its Gaussian approximation have
their amplitudes set equal, we determine the variance by
aligning the intersection point of their slopes. Specifically, this
intersection is set at the midpoint of the triangular function’s
slope on each side [7]. Accordingly, the variance can be
obtained through solving the following equation:

Tce
− (1/2Tc)

2

2σ2 =
Tc

2
, (29)

which gives

σ =
1

2Tc

1√
2 log(2)

. (30)

Armed with the above results, the N = 2K convolutions of
the rectangular function can be approximated by the K-time
convolution of Gaussian functions. Incorporating the results in
(17), the output signal Ys(f) can be written as follows.

Ys(f) ≃ TN
c e−

f2

2σ2K ∗ δ (f −Nfc) + δ (f +Nfc)

2

=
TN
c

2

[
e−

(f+Nfc)
2

2σ2K + e−
(f−Nfc)

2

2σ2K

]
.

(31)

Following the same steps as in (32), the total energy can be
expressed as

EN =
T 2K
c

2

√
πσ2K. (32)

The effective bandwidth can be identified by solving the
following expression:

γthEN =
T 2K
c

4

∫ fc+
βs
N
2

fc−
βs
N
2

e−
(f−fc)

2

σ2K df

+

∫ −fc+
βs
N
2

−fc−
βs
N
2

e−
(f+fc)

2

σ2K

 df

=
T 2K
c

2
σ
√
πK erf

(
βs
N

2
√
σ2K

)
.

(33)

Incorporating the results in (32), we obtain:

βs
N = 2σ erf−1(γth)

√
K

=
1

2Tc

2erf−1(γth)√
2 log(2)

√
K =

erf−1(γth)

Tc

√
2 log(2)

√
K.

(34)

Accordingly, the bandwidth expansion expression is as
follows:

βs
N

βs
1

=
erf−1(γth)

γth
√

2 log(2)

√
N

2
. (35)

1When N = 2k + 1 is an odd number, the bandwidth expansion can be
bounded by considering frequency multipliers of different orders: a frequency
multiplier of order 2k + 2 serves as an upper bound, while a multiplier of
order 2k provides a lower bound.



5

Thus, the bandwidth expansion is on the order of
√

N
2 .

IV. SIMULATIONS RESULTS

We validate the derived analytical expressions, through a
comparison with the numerical results. The analysis is con-
ducted for the both Gaussian and Sinc pulse cases. In the sim-
ulation, we assume an initial carrier frequency fc = 2.5GHz
and an input signal with an essential bandwidth of 20 MHz.
The output signal is obtained following the application of a
frequency multiplier and a bandpass filter with a bandwidth of
50 MHz. We consider the essential bandwidth with γth = 0.9.

Table I depicts the bandwidth expansion values for the
Gaussian Pulse obtained from simulations, compared with
those derived from experimental results. The findings indicate
a match between the theoretical values obtained in equation
(21) and the simulation results related to bandwidth expansion.

TABLE I: Bandwidth expansion (BW-E) for the Gaussian
pulse.

Order N BW-E Numerical value Theoretical value
2 βg

2/β
g
1

1.4109
0.9966

= 1.4157
√
2 ≃ 1.4142

3 βg
3/β

g
1

1.7287
0.9966

= 1.7345
√
3 ≃ 1.7321

4 βg
4/β

g
1

1.9967
0.9966

= 2.0035
√
4 = 2

Unlike the case of the Gaussian pulse, the theoretical ex-
pression for bandwidth expansion in (35) is an approximation.
Table III presents the bandwidth expansion values for the Sinc
pulse obtained from simulations alongside those derived from
experimental results. The findings reveal a minor discrepancy,
within one significant digit, between the theoretical and simu-
lation results across different values of the frequency multiplier
order N .

TABLE II: Bandwidth expansion for Sinc pulse.

Order N BW-E Numerical value Theoretical value
2 βs

2/β
s
1

1.068
0.8955

= 1.1926 1.0974

4 βs
4/β

s
1

1.3980
0.8955

= 1.5611 1.5519

6 βs
6/β

s
1

1.6871
0.8955

= 1.8839 1.9014

For N = 2 (with K = 1), the theoretical results suggest
a bandwidth expansion of 1.0974

√
1 = 1.0974, which differs

from the simulation result by approximately 8%. For N = 4,
the derivations suggest a bandwidth expansion with a factor
1.0974

√
2 = 1.5519. In comparison, with the simulation

results, there is a discrepancy of less than 1%. Similarly, for
N = 6, the theory and simulation results match with a gap
of 1%. Collectively, the results confirm that the bandwidth
expansion scales with a factor of

√
N/2.

TABLE III: Bandwidth expansion for raised-cosine pulse

.

Order N BW-E Numerical value
√
N

2 βr
2/β

r
1 1.38 1.41

3 βr
3/β

r
1 1.69 1.73

4 βr
4/β

r
1 1.96 2

5 βr
5/β

r
1 2.2 2.23

In Tab. III, we provide numerical results for bandwidth
expansion when a raised-cosine pulse is used, with a roll-
off factor of one. The results clearly indicate that the scaling

factor for the bandwidth is significantly smaller than N ; rather,
it scales with a factor on the order of

√
N , further supporting

our findings and refuting the prevailing conjecture.
Bandwidth is a scarce resource that must be allocated

efficiently to preserve signal integrity and prevent spectral
truncation, inter-symbol interference, and waveform distortion.
Overestimating bandwidth, if left unaddressed, not only does
it lead to inefficient spectrum utilization (limiting the wireless
system capacity) but also degrades the signal-to-noise ratio.
In fact, the noise variance is proportional to the product
of bandwidth and noise power spectral density. Overesti-
mating the bandwidth unnecessarily incorporates additional
noise components, increasing overall noise power and further
degrading the signal-to-noise ratio. By demonstrating that the
bandwidth expansion follows the order of

√
N rather than

N , it becomes possible to conserve (N −
√
N)β1 spectral

resources while simultaneously reducing the noise power by
a factor of N/

√
N . Besides, such a work will provide insight

on the matched filter design at the receiver, which serves as
a low-pass filter. Overall, this finding supports the feasibility
of high-frequency communication, as the impact of bandwidth
expansion is less severe than previously assumed.

V. CONCLUSION

In this paper, we demonstrated that the bandwidth expan-
sion in frequency multipliers scales as

√
N , contrary to the

common belief that it is on the order of N . This finding
directly impacts spectral efficiency and signal-to-noise ratio
improvements. While frequency multipliers offer power and
cost advantages, the

√
N -order bandwidth expansion remains

significant. This raises questions about their spectral efficiency
compared to mixers combined with low-rate channel coding
and signaling overhead for error correction. Future work
will focus on real-world experiments to further investigate
bandwidth expansion and the trade-off between performance
and spectral efficiency.
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