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Abstract—With the emergence of the Open Radio Access
Network (ORAN) concept and related standardization efforts,
future radio access networks are anticipated to feature ele-
ments from diverse vendors. Although the ORAN elements
can authenticate as legitimate, the system may fail to meet
service requirements if some network components do not
adhere to their respective agreements, i.e., moral hazard.
This issue raises concerns about the network’s end-to-end
performance, complicating fault attribution and conflict res-
olution. Therefore, there is a need for an automated zero-
trust framework capable of continuously detecting instances of
moral hazard. The complexity is exacerbated by the dynamic
nature of network elements or artificial intelligence (AI) model
performance, which may degrade over time intentionally (e.g.,
malicious tampering) or unintentionally (e.g., model obsoles-
cence or device performance decline), limiting the effectiveness
of offline testing. To address this, we develop a mechanism
based on subjective logic principles, incorporating a logic-
based argumentation framework that explicitly accommodates
argument schemes, argument accrual, and burden of proof.
Building upon this framework, we apply contract theory to
incentivize compliant devices to participate truthfully in the
ORAN ecosystem, thereby enhancing system performance. The
simulation results show improved system efficiency and reduced
operational costs.

Index Terms—ORAN, subjective logic, contract theory, and
zero-trust architecture.

I. INTRODUCTION

The integration of components from various vendors
in a Radio Access Network (RAN) became feasible and
promising with the introduction of Open-RAN (ORAN) [1].
The primary objective of ORAN goes beyond fostering
a dynamic and thriving supplier ecosystem; it aims to
enhance the RAN by providing greater flexibility, interop-
erability, and automation, boosting the overall performance
[2]. ORAN offers the advantage of a wide range of selection
options for network elements along with unconventional fea-
tures, such as temporarily leasing underused radio resources
from private access nodes and utilizing third-party compu-
tational resources or trained models, leading to cost savings
and enhanced network performance. Additionally, ORAN
creates profit opportunities for private resource owners [3].

This project has received funding from the European Union’s Horizon
2020 research and innovation program under the Marie Sklodowska-Curie
grant agreement No 101108094. This work is supported by Tübitak under
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Recognized by the 3GPP standardization community, ORAN
has been supported by numerous operators globally, includ-
ing Rakuten Mobile, Dish Network, Verizon, Telefónica,
Huawei, ZTE, and Vodafone [1], [4]. Its adoption reduces
reliance on traditional infrastructure vendors, enhancing net-
work performance, scalability, and the seamless integration
of new technologies and services.

In an ORAN system, trust has emerged as a critical issue,
requiring continuous proactive measures against internal and
external threats [5]. While authentication mechanisms can
verify the legitimacy of ORAN components, they cannot
ensure end-to-end performance, a fair cost-benefit ratio or,
in general, compliance with contractual terms, leaving the
system vulnerable to moral hazards [6], [7]. Specifically, an
ORAN element may deliver content that does not comply
with the initial agreement, either intentionally (as with mali-
cious devices) or unintentionally (due to outdated models or
defective elements). Although pre-selection mechanisms can
be established to choose the suitable devices under the most
favorable contract, the moral hazard issue persists, often
becoming apparent only after an ORAN element has been
selected and the agreement established [2], [6].

Failure to address the moral hazard can compromise
the system’s end-to-end performance and negatively impact
various factors with real-world implications, especially in
mission-critical services [6]. In accordance with the Zero
Trust Architecture (ZTA), trust goes beyond privacy and
asserts that successful authentication within a network does
not imply implicit trust. Thus, an automated supervision
mechanism is crucial. In the context of ORAN, trust is
assessed from two perspectives: security and performance
compliance. While the former has been thoroughly inves-
tigated, the latter is still emerging, with limited research
available. The National Institute of Standards and Tech-
nology (NIST) emphasizes essential procedures such as
authentication, authorization, monitoring, and detection to
safeguard critical infrastructure and mitigate risks [8], [9].
Security concerns and moral hazard extend to risks from
open interfaces, multi-vendor integration, and misconfigura-
tion, necessitating intelligent threat detection and proactive
measures. Numerous studies have implemented ZTA to
automate the continuous detection of security threats using
the RAN Intelligent Controller (RIC). For instance, [10]



proposed a game-theoretic ZTA for automated detection of
intelligent jammers in 6G RAN. Liu et al. [11] introduced
multi-device anonymous authentication within ORAN and
proposed a ZTA-based local and roaming identity authenti-
cation protocol.

Despite the implementation of ZTA, the issue of non-
compliance due to device-related moral hazard remains
unaddressed [2, Sec. VII-F]. To this end, we build on the
subjective logic principle to develop a mechanism to detect
the moral hazards [12]. We establish a logic-based argumen-
tation framework that explicitly caters to argument schemes,
accrual of arguments, and burden of proof. Subsequently, we
use contract theory to incentivize highly compliant devices to
participate in the ORAN system truthfully, enhancing system
performance. Our main contributions are as follows:

• To the best of our knowledge, we are the first to
address the moral hazard problem in the multi-vendor
environment of ORAN.

• We introduce a novel approach to identify devices
with consistently poor performance using a subjective
logic-based reputation mechanism. This history-based
reputation mechanism gives more weight to users with
higher reputations to remain in the system.

• We apply contract theory to offer lucrative contracts to
highly reputed devices, encouraging their participation
in system operations while isolating poorly reputed
devices that consistently perform poorly. Simulation
results demonstrate the effectiveness of our proposed
approach.

The remainder of this paper is organized as follows:
Section I introduces the ORAN and the associated moral
hazard problem. The system model and its flow are de-
tailed in Section II. In Section III, we present the problem
formulation and discuss reputation-based subjective logic.
Section IV explains the application of contract theory to
the previously formulated problem. Simulation results are
presented in Section V. Finally, Section VI provides the
conclusion of the paper.

II. SYSTEM MODEL

A. System Model Description

We consider a generic model of an ORAN system
comprising M devices from diverse vendors, denoted as
D = {D1, D2, . . . , Dj , . . . , DM} illustrated in Fig. 1. In the
figure, the devices from different vendors are indicated by
different colors. The ORAN elements are consistently treated
as untrusted, i.e., Devices Under Test (DUTs). Accordingly,
the RIC, specifically the Quality-of-Service (QoS) manage-
ment block, is responsible for assessing trust by sending test
signals (pilot signals) to the DUTs. The test signals are sent
at random instances without prior notice to the device being
tested. We assumed that for each device, Dj the RIC has the
preknowledge of a set of possible inputs {ϕi}Ni=1 and their
corresponding outputs {θc,i}Ni=1. The RIC randomly selects

Fig. 1: a) ORAN system overview b) Reputation-based
incentive mechanism as a part of the functions of the QoS
management block.
a set of test inputs and records their corresponding outputs
to build trust assessments for each DUT.

B. Maverick Modules

Maverick modules may deviate from system specifications
in two forms: unintentional divergence and deliberate non-
compliance. Some devices exhibit deviations due to inherent
probabilistic variations in their outputs, such as signal clas-
sifiers at the receiver, where deviations are a natural result
of stochastic behavior. Conversely, other maverick modules
with moral hazards intentionally do not adhere to the pre-
agreed performance, potentially degrading the system’s over-
all functionality. In an ORAN environment, where devices
from multiple vendors operate interdependently, a single
non-compliant device can degrade system performance, as
functionality relies on each device’s adherence. Technical
incompatibilities—such as proprietary hardware, incompat-
ible software, or substandard performance—as well as op-
erational issues like outdated firmware, insufficient testing,
and security vulnerabilities, further drive non-compliance.
Vendor-specific factors, including proprietary implementa-
tions and customization conflicts, also hinder adherence to
ORAN standards, collectively compromising system relia-
bility. This study centers on identifying non-compliance in
DUTs.

C. System Overflow

The RIC initiates a structured protocol by issuing a
randomized request to the ORAN DUT for task-specific
responses, which are then transmitted to the designated
testing apparatus. The testing apparatus subjects the DUT
to an exhaustive suite of performance evaluations, validating
the compliance of the device against predefined task-oriented
metrics. Upon completing the verification process, the test-
ing equipment communicates binary feedback (positive or
negative) to the RIC based on the DUTs’ adherence to
performance benchmarks.

The RIC aggregates the feedback over a statistically
increasing sample size, reducing the uncertainty over time.



Accordingly, the RIC computes a reputation score for the
DUT. This score is derived based on the feedback from
the testing equipment that reflects the device’s consistency
in meeting performance expectations, with special attention
given to any deviations from the claimed operational spec-
ifications. The computed reputation score is then archived
in the RIC’s local storage, serving as a historical record for
ongoing and future evaluations.

The RIC invokes a subjective logic-based algorithm,
which applies a reputation-based decision-making frame-
work to determine whether the DUT satisfies the reliability
threshold required for operational trust to thwart moral haz-
ards by the non-compliant devices. This algorithm processes
the accumulated reputation score stored in the RIC’s local
storage, giving more preference to the recent responses over
the obsolete responses, and cross-referencing it with pre-
defined compliance criteria to make an informed decision
about the device’s trustworthiness. Finally, contract theory
is used to attract the potentially better devices/services by
reliable vendors to participate in the system contract to
elevate the overall system-level experience.

The RIC’s compliance decision is made in alignment
with the DUT’s performance history, dynamically updated
based on empirical testing data, and ensuring that only
devices with sufficiently robust reputations are integrated
into the network ecosystem as shown in Fig. 1. In Fig. 1(a),
the reputation-based incentive framework within the RAN
Intelligent Controller (RIC) is pivotal for critical decision-
making and incentive distribution, as further detailed in
Fig. 1(b). Upon receiving feedback from various devices,
the RIC’s framework calculates each device’s reputation for
compliance evaluation. Subsequently, it formulates incentive
offers to highly reputed devices, encouraging their partici-
pation in system contracts to optimize overall performance.
In essence, this process encapsulates an automated, data-
driven compliance framework that continuously monitors
and updates the status of each device within the ORAN
architecture and attracts the compliant device by offering
lucrative offers to avoid moral hazard.

To assess compliance in uncertain contexts, this analysis
will utilize subjective logic, examining the beliefs, disbeliefs,
and uncertainties associated with each device’s compliance,
followed by contract-theory-based incentive mechanisms to
engage compliant devices in enhancing system efficiency.

III. PROBLEM FORMULATION AND PROPOSED
SOLUTIONS

A. Subjective Logic

Subjective logic is probabilistic in nature and explicitly
incorporates source trust and epistemic uncertainty. It is
particularly useful for representing and analyzing scenarios
where information is uncertain or comes from unreliable
sources [12]. In subjective logic, an opinion is defined
in the form of an ordered quadruple ω, formed over a

proposition—in our case, ”the device Dj is compliant”—and
can be written as follows:

ωDj = (bDj , dDj , uDj , αDj ) (1a)

0 ≤ bDj
≤ 1 Dj ∈ D (1b)

0 ≤ dDj
≤ 1 Dj ∈ D (1c)

0 ≤ uDj ≤ 1 Dj ∈ D (1d)

bDj
+ dDj

+ uDj
= 1 Dj ∈ D (1e)

where bDj
∈ [0, 1] is belief in the compliance of the device,

dDj
∈ [0, 1] is disbelief in the compliance, uDj

∈ [0, 1] is
uncertainty due to lack of information, and αDj

∈ [0, 1] is
relative atomicity [13]. The uncertainty u ∈ [0, 1] captures
the lack of evidence or the ignorance regarding the truth of
the proposition ”the device Dj is compliant.” It represents
the proportion of the total evidence that is unknown or
missing, mathematically expressed as uDj

= 1−(bDj
+dDj

).
Conversely, the following relationship is used to relate
bDj , dDj , and uDj : bDj+dDj+uDj = 1, as in (1e). Relative
atomicity or the base rate αDj

represents a prior knowledge,
a prior probability, or an assumption of compliance without
specific observations, i.e. uDj

= 1. For example, if we as-
sume most devices from reputable vendors are compliant, we
could set αDj based on historical data or vendor reputation
(e.g., αDj = 0.8). The overall opinion is summed up as:

rDj
= bDj

+ αDj
· uDj

(2)

B. Reputation Calculation based on Subjective Logic

In this section, we map the subjective logic parameters
to the parameters of the considered system to evaluate each
device’s reputation, thereby confirming its reliability within
the ORAN [14]. The belief corresponds to the proportion
of observed output performance θr,i that is in line with the
claimed performance θjc . Belief is high if most observations
match the expected output.

bκz

Dj
=

η · gκz

Dj

ρ+ η · gκz

Dj
+ ζ · hκz

Dj

(3)

where gκz

Dj
=

∑N
i=1 1(θr,i ≈ θjc) is the number of positive

outcomes of the device interaction during κz the time period
with the system. This compares each observed output θr,i
to the claimed performance level θjc , counting the number
of matches. η and ζ are the weights of the positive and
negative feedback from the testing equipment [15]. η and
ζ are summed to one, i.e. η + ζ = 1. Finally, ρ is the
constant quantity. Disbelief is the proportion of observations
that deviate significantly from the claimed performance θjc ,
indicating non-compliance.

dκz

Dj
=

ζ · hκz

Dj

ρ+ η · gκz

Dj
+ ζ · hκz

Dj

(4)



where hκz

Dj
=

∑N
i=1 1(θr,i ̸≈ θjc) is the number of negative

outcomes of the device interaction with the system. Un-
certainty represents the lack of information or observations
about the device’s performance.

uκz

Dj
=

ρ

ρ+ η · gκz

Dj
+ ζ · hκz

Dj

(5)

Recent interaction events possess elevated importance
owing to their recency, thereby exerting a more substantial
influence compared to those from earlier periods. This
behavior is encapsulated in the concept of temporal decay,
mathematically formalized as:

∇(tz) = ∇z = yZ−z. (6)

Here y ∈ (0, 1) represents a decay coefficient that governs
the rate of temporal degradation, with values closer to 1
indicating a slower decay. The variable Z denotes the current
time slot and z refers to the most recent time period, estab-
lishing a framework where interaction significance dimin-
ishes exponentially as the time difference Z − z increases.
Consequently, the temporal decay captures the exponential
attenuation of reputation scores over time, ensuring that
more recent interactions are assigned a disproportionate
weight in the computation of the overall reputation metric,
while older interactions progressively lose influence.

bterDj
=

∑Z
z=1∇zb

κz

Dj∑Z
z=1∇z

, (7a)

dterDj
=

∑Z
z=1∇zd

κz

Dj∑Z
z=1∇z

, (7b)

uter
Dj

=

∑Z
z=1∇zu

κz

Dj∑Z
z=1∇z

. (7c)

Combining (6) and (7) results in

bterDj
=

∑Z
z=1 y

Z−z ·
η·gκz

Dj

η·gκz
Dj

+ζ·hκz
Dj

+ρ∑Z
z=1 y

Z−z
, (8a)

dterDj
=

∑Z
z=1 y

Z−z
ζ·hκz

Dj

η·gκz
Dj

+ζ·hκz
Dj

+ρ∑Z
z=1 y

Z−z
, (8b)

uter
Dj

=

∑Z
z=1 y

Z−z ρ
η·gκz

Dj
+ζ·hκz

Dj
+ρ∑Z

z=1 y
Z−z

. (8c)

The time-decayed average terminal reputation of the DUT
is calculated as

Rter
Dj

= bterDj
+ αDj

· uter
Dj

(9)

Putting equations together, we get (10). The algorithmic
representation of the subjective logic-based reputation cal-
culation, followed by the device compliance mechanism, is
provided in Algorithm 1.

Algorithm 1 Subjective Logic-Based Reputation Algorithm
for Device Compliance

1: Input: Dj ∈ D : Devices under test.
T : Compliance threshold

2: Output: Reputation score RDj
and compliance decision

(Trusted/Flagged)
3: Initialization:
4: Set RDj ← 0
5: Set Z ← Number of previous interactions.
6: for each device Dj ∈ D do
7: Extract subjective opinion components from equa-

tions (3), (4), and (5) : {bκz

Dj
, dκz

Dj
, uκz

Dj
, aκz

Dj
}.

8: Apply time decay function from equation (8)
9: Compute time averaged terminal reputation using

(10).
10: end for
11: Compliance Decision:
12: if RDj

≥ T then
13: Mark Dj as Compliant device.
14: else
15: Mark Dj as Flagged for Review
16: end if

IV. CONTRACT THEORY-BASED INCENTIVE
MECHANISM

Contract theory is crucial for designing incentives that
align agent behavior with system goals, enhancing efficiency
and mitigating risks [6]. The contract between the RIC
and individual devices/services is directly linked to their
reputation, i.e. it is a reputation-based contract. Devices
with higher reputations are deemed to be more reliable and
receive greater incentives from the central unit, enhancing
overall ORAN system performance. The RIC acts as the
principal, and each ORAN device Dj with an observable
reputation score RDj ∈ [0, 1] is the agent. Emphasizing
compliance, the utility function can be formulated as:

URIC I{ηj=1}

=
∑
j∈M

(
θDj

(RDj
)− CDj

(RDj
)
)
· I{ηj=1} − eRIC

(11)

where θDj (RDj ) is the gain of the system by the device Dj

based on their reputation RDj , CDj (RDj ) is the compensa-
tion paid to the devices expressed in (13), and I{ηj=1} is an
indicator function, ηj = 1 if device Dj is compliant. The
agent’s utility depends on compensation and effort:

UDj (RDj ) = CDj (RDj )− eDj (RDj ) (12)

where eDj (RDj ) is the effort made by the device to maintain
or improve its reputation, modeled in (14). The compensa-
tion CDj

(RDj
) to the device Dj is given by

CDj
(RDj

) = α ·RBDj
+β ·PDj

+γ ·BWDj
+δ ·SDj

(13)

where RBDj is number of resource blocks allocated, PDj

is transmission power granted to the device, BWDj is



Rter
Dj

=

∑Z
z=1 y

Z−z ·
η·gκz

Dj

η·gκz
Dj

+ζ·hκz
Dj

+ρ∑Z
z=1 y

Z−z
+ αDj

·

∑Z
z=1 y

Z−z ρ
η·gκz

Dj
+ζ·hκz

Dj
+ρ∑Z

z=1 y
Z−z

. (10)

bandwidth allocated to the device, SDj is scheduling pri-
ority, and α, β, γ, δ are the task-oriented binary coefficients
determining the significance of each resource for the device
Dj . The compensation CDj

(RDj
) for individual devices is

structured to maximize the RIC’s utility while satisfying
the constraints of individual rationality (IR) and incentive
compatibility (IC). IC ensures truthful reporting and aligns
incentives, addressing the challenges of private information
disclosure. To enforce incentive compatibility: UDj

(RDj
) ≥

UDj
(R̂Dj

), ∀R̂Dj
̸= RDj

, ∀Dj where UDj
(RDj

) is
the utility of device Dj reporting its true reputation, and
UDj (R̂Dj ) is the utility when misreporting. IR guarantees
that each device Dj achieves non-negative utility from the
contract: UDj

(RDj
) ≥ 0 This implies that compensation

must exceed effort costs: CDj
(RDj

)− eDj
(RDj

) ≥ 0. The
reward provided by devices is their contribution to overall
system performance, and can be in the form of spectral
efficiency, reduced interference, and low latency by device.

In the ORAN system, the costs incurred by the devices
to provide the reward/services to the RIC can be defined
as the effort or resources that the device must expend to
meet the system’s performance expectations. In reputation-
based systems, lower reputation typically correlates with
higher costs due to the increased risks and reduced trust
associated with these entities. This principle is applied to
incentivize improved performance and participation. In our
framework, devices with lower reputations incur higher
operational costs, which serves to enhance overall system
reliability. This mechanism encourages devices to improve
their reputations, thereby reducing their costs and increasing
their incentives to participate, ultimately leading to a more
efficient and trustworthy system. Therefore, the total cost
eDj (RDj ) incurred by device Dj can be the combination of
the costs of optimizing the power, bandwith, and interference
mitigation, weighted by complement of their reputations,
expressed as:

eDj (RDj ) = {αE ·EDj +αB ·BWDj +αI ·IDj}·(1−RDj)
(14)

where α’s are binary variables associated with distinct
devices. The total cost to RIC include compensation to
the individual devices, cost of network monitoring, repu-
tation calculations, and resource allocations, which can be
expressed as:

eRIC =
∑
j∈M

CDj (Dj) + Cmon + Crep + Cra (15)

To maximize overall system performance while adhering to
these constraints, the optimization problem can be formu-

lated as the sum of all elements within the ORAN system
as follows:

max
Iηj=1

Psystem = URIC I{ηj=1} +

M∑
j=1

UDjI{ηj=1}(RDj ) (16a)

UDj
(RDj

) ≥ UDj
(R̂Dj

), ∀R̂Dj
̸= RDj

, ∀Dj (16b)

CDj
(RDj

) ≥ eDj
(RDj

). (16c)

I{ηj=1} ∈ {0, 1},∀j ∈M (16d)

We propose a contract that evaluates the efficiency-to-cost
ratio Esystem for engaging devices, asserting that increased
costs correspond to improved efficiency through the incen-
tivization of reputable devices.

Esystem =
Psystem

etotal
(17)

where etotal = eRIC+
∑M

j=1 eDj(RDj)·Iηj=1
is the total cost

incurred to the principal and all the agents participating in
the contract. This reputation-driven mechanism followed by
compensation-based lucrative contracts allows the ORAN
system to establish attractive contracts that reward high-
reputation devices, resulting in superior system performance,
albeit at a higher cost. A higher Esystem indicates a more
optimized system, ensuring that investments are oriented
toward reputable devices to enhance the efficacy of ORAN.

V. SIMULATION RESULTS

In this section, we discuss the simulation results to assess
the efficacy of the proposed mechanism. We considered a
total number of M = 20 devices (unless otherwise stated).
For fair analysis, the parameters η, ζ, and ρ are all equal to
0.5. The reputation threshold is set to T = 0.7.

In Fig. 2, ORAN system management without a moral
hazard detection mechanism serves as a performance bench-
mark, against which we compare the proposed reputation-
based incentive mechanism. Devices with poor reputations
introduce moral hazards, impacting system performance if
not excluded. The figure demonstrates that the proposed
approach ensures high efficiency compared to assuming
all elements are trustworthy. This performance advantage
persists even with low acceptance rates or high incidences of
maverick devices, supporting the importance of a zero-trust
architecture in ORAN. For instance, in the third simulation
run, the rate of reliable devices is less than 30%; nonetheless,
the system achieves high performance, more than three
times greater than the benchmark case when all devices are
considered trusted. The efficiency of the proposed subjective
logic based detection mechanism stems partly from its
reduced false detection. Reputation scores are weighted to
favor recent interactions. This benefits devices with recent
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Fig. 2: Reputation-based incentive mechanism: cost effi-
ciency over five simulation runs.
performance improvements, prevents unfair isolation, and
increases their incentive to participate. Consequently, the
system considers the recently proven reputable devices,
resulting in enhanced system efficacy.
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Fig. 3: Effect of increasing number of devices M .
Fig. 3 depicts the system efficiency as a function of the

number of available devices (choices). The figure shows an
increased efficiency but also a steady phase. As the number
of devices increases, the management and testing cost (e.g.,
signaling overhead) also increases. However, the increase in
the number of potential devices expands the set of choices,
ultimately outweighing the associated costs. This positive
trend continues until a saturation point, beyond which the
additional devices contribute only marginally to further
enhance the gain. At the saturation point when M = 65,
the system efficiency stabilizes, meaning that adding more
devices does not significantly enhance performance. This
steady-state behavior, as depicted in Fig. 3, underscores the
balance between the cost of adding more devices and the
diminishing returns in system efficiency.

VI. CONCLUSION AND FUTURE WORKS

We developed the foundation of a moral hazard detection
mechanism in ORAN, leveraging subjective logic to quantify

device reputation and contract theory to incentivize com-
pliance among highly reputed devices. Subjective logic is
employed to dynamically evaluate each device’s reputation,
integrating both positive and negative interactions with the
system. This approach accommodates the inherent uncer-
tainty in ascertaining belief and disbelief regarding device
compliance. Our simulation results substantiate the efficacy
of this mechanism, demonstrating significant improvements
in system performance when adopting our proposed ap-
proach.

While this approach assesses the reliability of the DUT,
the confidence in compliance decisions is not quantified. In
our future work, we will implement a hypothesis testing-
based compliance evaluation mechanism for DUT in ORAN.
This will include confidence intervals to quantify the cer-
tainty of compliance decisions.
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