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Abstract—The next generation of cellular networks, 6G,
is expected to offer a handful of exciting applications and
services, including holographic communications, machine-to-
machine communications, and data sensing from millions
of devices. Whether these services come with a Gbps rate
requirement or call for massive connectivity, they translate
to the need for more spectral resources that are deemed to
be scarce and costly. The communications resource should be
wisely managed through value-driven approaches that eliminate
waste and continuously enhance the communication process.
These management principles align with the Task-Oriented
Communications (TOC) philosophy. The aim is to allocate the
minimum necessary communication resources according to the
receiver (actor) goal. In the pursuit of the goal, the receiver
may encounter irregularities and unforeseen events, rendering
unclear how to build knowledge on the receiver’s state and
communicate accordingly. Our management approach integrates
viability theory and transfer entropy to maintain the actor within
a viable space, in contrast to the conventional approaches that
help the actor to pass through singular states. By favoring a
set of viable states aligned with the receiver (actor) goal and
gradually reducing information exchange through knowledge
accumulation, our method enhances flexibility and minimizes
the risk of the receiver entering a non-viable state, thereby
optimizing the communication resource as per the receiver goal.
We discuss these theories in the context of TOC and examine
their application in the plant process control case.

Index Terms—Task-oriented-communication, viability theory,
transfer entropy, remote power plant.

I. INTRODUCTION

Shannon’s influential work, which falls under the category
of Level A Technical Communications, has provided a
strong foundation for groundbreaking advancements in
communications and networking. The objective of Technical
Communications is to ensure that a sequence of bits
is perfectly reconstructed at the receiver. This approach
was effective in an era when end devices had limited
computational capabilities. However, in the last five decades,
the computational capabilities of end devices have grown
exponentially. Additionally, the use of specialized artificial
intelligence (AI) chips in end-user devices has become more
common, enabling the application of modern machine learning
algorithms for highly complex calculations. In this respect,
discussions have already begun on a paradigm shift from
Shannon’s Level-A to Level-B (semantic)/Level-C (effective)
of communications [1]. Some of the recent works approach
the problem from a semantic perspective, i.e., focusing on
the conveyed meaning of information. The objective is to
reduce the number of bits in transfer by performing end-
to-end semantic encoding [1]. However, by itself, semantic

communications do not capture the time-dependent impact
on the receiver. Recent works are increasingly directing
their focus toward task-oriented communications, in which
the impact of information on the receiver is central to the
investigation. In [2], the authors explore the role of fidelity
in goal-oriented semantic communication through a rate-
distortion approach. Another study proposes an explainable
semantic communication that selectively transmits task-
relevant features for improved transmission efficiency and
robustness against semantic noise [3]. In another work, the
authors investigate the possible cooperation between the
senders and receivers to minimize semantic error (i.e., belief
efficiency) and achieve a goal via curriculum learning [4].

This paper discusses the design of task-oriented
communications (TOC) pertaining to the afterword impact
of the received data on the end-user’s actions. There is
no doubt that the receiver must properly decode/interpret
the received data before taking a possible action; however,
the effect of the interpretations on the receiver’s actions
differentiates TOC from semantic communication. The main
utility of TOC is to continuously assess the need/goal of
the receiver and its capability, then accordingly assign
the minimally sufficient communication resource. For the
majority of case scenarios, the receivers (actors) goals
outlines are flexible to a certain extent, and their actions
are robust such that they do not suffer from limited
irregularities. The receiver’s robustness results from the
processes’ characteristics or the AI-empowered knowledge
base that takes action. Whether or not the actor has strict goal
outlines or is robust to irregularities, these quantities have
to be understood, analyzed, and exploited in an autonomous
(closed-loop) fashion for a communications approach that
delivers values as per the actor’s object.

TOC leverages continuous understanding/assessing of the
actors’ goals, capabilities, and environment to deliver adequate
communications resources. In light of irregularities and
unforeseen events, ranging from the actor’s inability to execute
control-unit directives with precision (internal impairment)
to those caused randomly by nature (external impairment),
the viability theory [5] provides an adequate framework for
TOC. This theory defines the viable space, also known as the
viability kernel, within which an actor can evolve toward its
goals while preserving important qualities such as adaptation,
stability, confinement, homeostasis, and tolerance. The larger
the kernel size, the more tolerant the actor is to errors,
including those resulting from delayed instructions, thereby
reducing further resource utilization.

Although the viable space can be derived through
optimization or machine learning, it differs conceptually
and in terms of its core objective. The viability theory
offers more thorough solutions, as it assesses the risks of



adopting a solution in the presence of uncertainty. In contrast,
optimization approaches typically determine the best strategy,
often overlooking close-performing solutions in which the
actor remains operative. As a result, the actor may need to
continuously seek support from the control unit, in case it is
impelled outside the thin-line solution.

The viability kernel encompasses the set of viable states,
providing actors with room for action and decision errors,
enabling more autonomous task-execution. The actor resorts
to the control-unit only when events require more refined
solutions, computationally demanding decisions, and/or more
trained models. The viability kernel width determines the
resilience degree to unknown disruptions. Understanding
the viability kernel allows to derive the appropriate
communication rate required to convey minimum-sufficient
directives and knowledge. As per the viability theory, the
objective of TOC is to dynamically analyze the environment
and actor state to develop strategies that maintain a safely-
large viable space.

For example, an efficient communications strategy may
involve adopting a viable path with a low communication
rate, instead of a shorter path that requires channeling high-
rate instructions. The viable space depends largely on the
actor’s capability and knowledge, which can be continuously
accumulated from the past. To measure the rate of meaningful
information flow over time while knowledge continues to
be accumulated, we suggest using Transfer Entropy (TE)
[6]. This measure quantifies the knowledge transfer between
communicating parties, enabling them to assess and adjust
their communication strategy.

Our paper contributes by proposing a novel management
approach for communication resources in 6G networks,
integrating viability theory and transfer entropy. This approach
aligns with the TOC philosophy, aiming to allocate minimal
necessary resources based on the receiver’s objectives and
gradually reduce information exchange through knowledge
accumulation, as demonstrated in the context of plant process
control in Section-IV. Other motivating use cases are stated in
the Section-II and we propose our framework in Section-III
with mathematical preliminary on viability and information
theory. Lastly, in Section V, we are giving insights into
future research directions from computational, performance,
and protocol perspectives in the evolving landscape of 6G
networks.

II. MOTIVATING USE CASES

In this work, the analysis primarily pertains to developing a
viability theory based TOC approach in the context of a remote
power plant. Nonetheless, we briefly discuss some other timely
use cases that motivate the utility of viability theory.

A. Multi-sensory and holographic telepresence
Consider the case of replicating the sense of touch at a

remote location [7]. The receptors on the hand/feet from the
brain are about 1.5 and 2 meters away, and the speed at which
a sensory point transmits data is around 30 m/s. Accordingly,
the maximum delays of signals are 0.038s and 0.067s [8].
A human can detect temperature differences with a 0.02◦C
resolution in 5 − 45◦C range. Transmitting temperature and
pressure information to replicate the sense of touch, sampled
at 50 Hz, requires bit rates of up to 880 Mbps with minimal
delays. In this context, we envisage the rule of Viability theory
to aid in determining communication bit rates and delays
sufficient for a human-like sensing experience, considering
the brain’s ability to interpolate missing data. Meanwhile,
transfer entropy helps identify information redundancies and
dependencies between sensory points, facilitating the design

of efficient closed-loop systems for multi-sensory telepresence
applications.

B. Autonomous Vehicles
In the context of autonomous vehicles prioritizing both

travel efficiency and safety, a cloud-based control-unit
supports the vehicle by continuously adjusting communication
rates based on the dynamic evaluation of factors such as
environmental conditions, vehicle capabilities, and control-
unit expertise. The viability approach is capable of ensuring
safe navigation while considering system constraints like
delay and battery life. Communication rates are adapted
to maintain a broad viable space, with higher rates near
the viability boundary. As the environment evolves, the
system reassesses risks, enhancing vehicle autonomy, and
optimizing communication rates, leading to a task-oriented
communication strategy.

C. Remote Power Plant
The remote power plant serves as another example where

maintaining the plant’s operation within a safe range is
the primary objective of the control unit [9]. The state
of the power plant is defined by its temperature and
pressure. The main function of the control unit is to provide
directives to the power plant regarding heat supply and the
displacement rate of a pneumatic piston, with the primary
goal of keeping the plant’s state (heat and pressure) within
a predetermined safe range. While the plant must remain
continuously connected to the control unit for state monitoring
and directive purposes, abnormal states occur sporadically
and do not persist indefinitely, allowing for the potential
conservation of communication resources. In the context of
viability theory, one can define the viable space of the plant’s
states that do not necessitate intervention from the control
unit, communicating only when necessary. This approach
suggests saving on communication resources and aligns with
the principles of TOC.

D. The statement for task-oriented communications
In the listed examples, the goal is not to support continuous

streaming of timely packets from the sensors or minimize the
mismatch between the actual and estimated data. Instead, it
is to design a system that functions similarly to a human
communication/processing system, which is task-oriented and
aligns with the viability theory principle. The primary aim is to
allocate resources to communicate changes outside the viable
space to ensure a genuine and swift response from the system.
For example, a person responding to significant changes in
temperature/surface tension, a doctor responding to changes in
a remote patient’s body, or an autonomous factory responding
to anomalies in machines’ states.

TOC solutions typically answer two fundamental questions:
1) How can we communicate effectively while ensuring
proper operations of the end-system? 2) What is the
optimal data rate given a task to accomplish? Our TOC
framework incorporates two key concepts to answer these
questions: 1) The viability theory to identify and expand
the actor’s space of options to ensure robust operation. 2)
The transfer entropy to measure knowledge accumulation
and utility of communications while executing current and
future tasks. The following is an overview of these concepts.

III. PROPOSED FRAMEWORK

A. Viability Theory
Viability theory is a field of mathematics that studies the

steady evolution of dynamic systems under state constraints
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and in the presence of uncertainties [5]. It gives directives
on how to effectively regulate the evolution of actors
given uncertain events. The viability theory yields a set
of solutions/states of a dynamic system, referred to as its
viability kernel (the main elements forming the viable space
are depicted in Fig. 1.) The viability kernel is defined as the
set of states in which an actor can operate and evolve within
normal/safe parameters given a certain rate of guidance from
the control unit, i.e., communication rate. As the actor evolves,
the communication rate may increase to supply the actor with
more knowledge. The latter occurs when the actor is impelled
to be on the boundary of the viability kernel and seeks to
restore its viability. The fact that the actor is aware of the
states helps to improvise and steer the communication rate
with the control unit. Also, as a part of the viability theory
framework, the concept of a capture basin will be used to deal
with delay constraints. A capture basin is a set of viable states
that can achieve a specific task within a predetermined time
frame.

Let us consider a smooth nonlinear dynamic system F with
bounded control such that:

ẋ(t) = f(x(t), u(t)), u(t) ∈ [U ], (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is
the control input, [·] stands for interval vector, and [U ] =[
[U1, ū1] , . . . ,

[
Um, Ūm

]]T
is the control constraint. Denote

φ (τ, x(0), u) as the state of the system F at time τ with initial
state x(0) and control input u(t). The union of the states forms
the trajectory:

φ ([0, τ ];x(0), u(t)) =
⋃

t∈[0,τ ]

φ (t;x(0), u(t)) (2)

Note that the trajectory is a set of state vectors with respect
to time.

Consider K ⊆ Rn to be the space of viable states and
C ⊂ K to be the target states as indicated in Fig. 1. Namely,
feasible states form a viable set, while the target states are
those where objectives are met within the feasible set. Then,
the capture basin is defined as CaptF (K,C), and it refers to
the set of the viable current states in K, from which there
exists at least one viable trajectory that can reach the target C
within a predefined time window τ , where t ∈ [0, τ ]:

CaptF (K,C) = {x(0) ∈ K|x(τ) ∈ C, ∀x(t) ∈ K} (3)

The viability-based approach to TOC targets identifying
a viable kernel of the dynamic system acting in a
specific environment while considering existing constraints,
communication limitations, state uncertainties, and actor

capabilities. The system then adjusts communication resources
in a closed-loop to maintain viability. The size of the viable
kernel particularly depends on the actor’s capabilities, which
may be enhanced to reduce communication resource usage
further.

B. Transfer Entropy
Transfer entropy (TE) is a measure used to quantify

the flow of information between random processes by
analyzing causality from the generalized Markov property
[6]. Transfer entropy quantifies the impact of the control
unit decisions/directives at the previous (N − 1) time
slots, denoted as u((N − k)Ts) ∈ [U ] (N ∈ N, k ∈
1..N , and Ts ∈ R+), on the state of the actor at the
N th time slot x(NTs). The upper limit of the transfer
entropy is the directed information flow from a length N
sequence uN = {u(Ts), u(2Ts), . . . , u(NTs)} to xN =
{x(Ts), x(2Ts), . . . , x(NTs)}, which in turn is defined as
follows [10]:

DI
(
uN → xN

)
.
= H

(
uN

)
−H

(
uN∥xN

)
=

N∑
n=1

I
(
xn;u(nTs) | un−1),

where H
(
uN∥xN

)
is the entropy of uN causally conditioned

on the sequence. un stands for control input between time slots
1 and n. By combining transfer entropy and viability theory,
we can measure the flow of information between past and
present/future events or actions. The actor-centric operation
allows for customization based on diverse end-user perceptions
and applications. The actor’s behavior relies on accumulated
and inherited knowledge, and the upper limit of this knowledge
can be represented by the information content derived from the
history of two random processes: the control action and actor
state random processes.

C. Viability and Information Theories for Task-oriented
Communications

Viability theory is a framework for examining possible
states and transitions between these states with the objective
of identifying those states that are “viable”. These states
may include adaptation, stability, confinement, homeostasis,
tolerance, etc. The choice of criteria depends on the actor, the
actor’s capabilities, and the environment. These factors may
change over time as the actor’s state evolves. In the context
of TOC, the viability kernel is discussed as a tool to help an
actor achieve its objective with minimal remote support from
a decision unit. The control unit starts with more knowledge
than the actor, using trained models, experience, and statistics.
However, unpredictable environments and actor responses can
lead to unexpected events such as glitches or disturbances.

As seen in Fig. 2, the actor and the control unit communicate
in a closed loop to dynamically identify the viable kernel
and their appropriate communication rates. When stringent
constraints are involved, it is more suitable to consider the
capture basin instead of the viability kernel. This allows,
for instance, a drone with delay constraints to consider
the fastest path, even if it involves more communication
resources. Hence, viability theory provides a structured way



to model adaptivity, establish decision policies, and determine
the viability kernel based on the actor’s ability. Note that actors
are able to learn from past decisions and use this knowledge
to improve decision-making intelligence through knowledge
transfer. As time passes, the actor becomes more self-
sufficient, leading to a decrease in the need for communication.
This is where the concept of transfer entropy comes into play,
quantifying the knowledge transfer between the control-unit
decisions random process, actor state random process, and the
probabilistic model that binds both processes.

Our framework utilizes the in-the-loop (ITL) transmission
rate metric [11]. This metric can be defined as:

RN
ITL

.
=

1

N

N∑
n=1

H
(
un | un−1, xn−1,pn

1

)
=

1

N
H

(
uN | xn, pn

)
+

1

N
DI

(
uN → xN∥pN

)
,

where DI
(
uN
1 → xN∥pN

)
is directed information from un

to xn causally conditioned on the sequence pn of the
probabilistic model of the dynamic system.

The proposed TOC system setup is depicted in Figure 2.
To ensure the system’s continuous operation, it is imperative
to consider the bidirectional flow of information between the
random actor process and the control process. The encoder
and decoder can reduce transmission rates by consulting the
viability kernel to find optimal action. Following the work in
[5], we frame the problem as the minimization of a valuation
function, denoted as V, over a finite horizon within capture
basins, which is defined as follows:

V(T, x) = inf
(x(·),u(·))∈P(x)

(
c(x(T )) +

∫ T

0

L(x(τ), u(τ))dτ
)

= inf
(x(·),u(·))∈P(x)

(
c(x(T )) +RT

ITL

)
,

(4)

where P is the evolutionary system generated by (1), c :
Rn 7→ R+ is the final state cost function and transient
state cost function, often called a Lagrangian, i.e., defined
as L : Rn × Rm 7→ R+. The choice of Lagrangian for
control mainly depends on the system’s characteristics and
the objectives that must be met. Therefore, to determine L,
the ITL transmission rate is taken into account by discretizing
the time horizon [0,T] as shown previously. The final state
cost is the following:

c∞(t, x) :=


c1(x) if x(t) ∈ CaptF (K,C)

c2(x) if x(t) ∈ K

+∞ if not

. (5)

Note that the variables c1(x) and c2(x) take the values 0 and
1, respectively, representing the communication cost. If the
viability kernel is large or the current state is distant from the
boundary, the probability of the system becoming non-viable
is low. Moreover, the decoder does not depend heavily on the
encoder for viable actions; thus, state transition flow rates can
be minimized. Also, note that the viability kernel is dynamic
since the control policy evolves with accumulated knowledge.

Decoder 1

(Actor)

Decoder 2

(Actor)

Encoder

(Control

Unit)

Viability Kernel 1, every T

Viability Kernel 2, every T

State Transition

every t<T

State Transition

every t<T

Codeword

Fig. 2. Proposed framework to ensure safe and successful operation when
a control unit communicates with two different actors. As knowledge is
transferred, we anticipate that actors will require fewer updates on their state
transitions, and hence, the control unit will provide fewer control directives.

IV. AN ILLUSTRATIVE CASE STUDY: REMOTE POWER
PLANTS

We demonstrate the distinguishing features of viability
theory-based TOC policies via a dynamic control example
taken from [9]. We consider the case of the plant (actor)
remotely operated by a control-unit similar to the case of
the Factory-of-the-Future (FoF). The plant has the capability
of sensing the data and communicating them to the control-
unit and adjusting the system functioning according to the
control-unit directives with reasonable precision, but not free
of error. Nonlinear differential equations characterize the plant
dynamics. The process requires cycling the plant repeatedly
through three operating points. The process is robust so that
it is sufficient to visit some specified neighborhoods of these
operating points. The plant is described with state variables;
the temperature of the plant and its pressure. Their units of
measurement are normalized so that (0, 0) represents ambient
conditions. There are two control inputs, i.e., the rate at which
heat is supplied to the plant and the rate at which a pneumatic
piston is displaced.

The plant operating points are depicted in Fig. IV, X1 =
(0, 0), X2 = (2.5, 2), and X3 = (1, 3). The operational
process is robust; hence, it suffices to be in states in specified
neighborhoods, denoted by X1, X2, and X3, respectively. The
plant process must visit three states’ levels cyclically in order,
namely, X1, X2, then X3. Operating the plant involves three
control phases. In Phase-I (respectively, Phase-II and Phase-
III), control inputs are fed to the system to reach state X1

(respectively, X2, X3). To elaborate, let us consider that the
plant is operating in Phase-II. The control law of this phase
must move the plant state from a first state level (at a point
X1) to some point X2 in the second state level. An off-
line processing approach is typically used to synthesize state
feedback control laws that move the plant state from one
operating point to the next [9].

The plant’s simulation results are depicted in Fig. 3a. The
system state and corresponding control input are updated every
0.1, 0.05, and 0.05 time units in Phase-I, Phase-II, and Phase-
III, respectively. The green regions depict the viable kernels



Phase II

Phase-I

Phase-III

(a) Fixed update

(b) Viable points in X3 with adaptive update.

(c) Viable points in X2 with adaptive update.

that are around the ideal states. Starting from any point in
a green region, the plant will continually and cyclically run
(remains viable) if adequate decision controls are taken. We
observed that the TOC policy has a direct impact on the
viability of the process. For instance, we experienced a change
in the width of the viability kernel (green region) by the simple
fact of altering the state/control update frequency, i.e., TOC
rate. For low rates, the width of the viability kernel decreases.
It is crucial to monitor the plant with a communication
rate high enough for proper functioning but low enough to
save resources. This example highlights a common issue that
numerous FoF use cases may encounter.

We design an adaptive TOC update policy that infers an
adequate TOC rate according to the position of the state within
the admissible region. First, we generate a set of 50 priors
for each Xn, considering fixed update intervals. We observe
the trajectories in each phase and identify the viable states.
Suppose both viable and non-viable priors fall within a circle
centered on one of the prior states. This state is at the edge
of the viability kernel, meaning that it is more likely for a
trajectory starting from this state to end up being non-viable.
To increase the size of the viability kernel, a smaller update
interval is scheduled. In Fig.3b, and 3c, green-colored regions
refer to the points in X3 and X2 that allow the system to run
swiftly and properly. As shown, by adopting a TOC policy,
the viability kernel around X2 has significantly increased,
and slightly increased for X3, without increasing the average
communication rate. Furthermore, the proposed TOC policy

TABLE I
TRANSFER ENTROPY (BITS) BETWEEN THE SYSTEM STATES AND

CONTROL INPUT DURING PHASE-II. RTRANSFERENTROPY PACKAGE IS
USED TO CALCULATE TE FROM THE STATE AND CONTROL TIME-SERIES

DATA.

Update period
Transfer Entropy (state → control input)
Temperature →
Heat supplied

Pressure → Piston
displacement

0.1 0.168 0.014
0.075 0 0.0035
0.05 0 0.0007

decreased the communication rate by 12% in Phase-III,
and by 14% in Phase-I.

We have observed that the benefit obtained by increasing
the communication rate varies depending on the system
parameters. To further investigate this, we have calculated
the transfer entropy between the state and control processes
in Table I. From the results, we can conclude that updating
the temperature state more frequently than once every 0.1-
time unit yields no additional valuable information. Therefore,
designing a customized policy for each system parameter
could potentially enhance the efficiency of the TOC.

The process runs cyclically in the counter-clockwise
direction. At the end of each control phase, we mark in green
the points in an initial level eligible as starting points to go to
the next state level if adequate control actions are applied.
Meanwhile, the blue points label viable points at a given



state level after completing a phase. The non-viable states
are colored in red. For example, consider the Phase-II control
actions so that the system goes from a state X1 in the first
level to a state X2 in the second level. The intersections of
green and blue points represent those points that enable the
process to be repeated continually, and we mark this region in
yellow color.

V. CONCLUSION

This article discusses a novel approach for TOC, utilizing
viability theory to enhance communication efficiency. We
stressed that the requirements for envisaged 6G applications
would be extensive; meanwhile, the spectrum resources remain
scarce and costly. By harnessing viability theory, we can
devise an end-to-end TOC framework that is robust against
unforeseen events. We provide a framework on how to
integrate this theory into TOC and apply the solution to an
academic example. The results demonstrated a reduction in
the communication rate while ensuring the steady progression
of the actor toward its goal across viable states.
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