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Abstract—The Open Radio Access Network (O-RAN)
paradigm fosters multi-vendor interoperability, allowing modules
from different vendors to cooperatively handle network functions,
such as temporary data processing or sensor data collection
for network operations optimization. However, this integration
agility introduces the risk of selecting suboptimal or adversarial
modules, leading to moral hazard. Traditional Moral Hazard
testing approaches typically rely on a benchmarking data set in
addition to historical performance score. However, they deemed
impractical, as vendor-supplied modules may not reveal their
outputs before deployment, and the network may lack direct
access to reference results for validation. This challenge is
further compounded by the dynamic nature of network ele-
ments and AI-driven models, whose performance can degrade
over time due to malicious tampering, obsolescence, or device
deterioration, making historical quality assessments ineffective.
In this paper, we address the challenge of identifying legitimate
vendor-supplied modules among adversarial ones, with respect
to a given network functionality/operation, in the absence of
benchmarks. We propose a benchmark-free test framework that
detects and eliminates adversarial modules using a methodology
inspired by the WereWolf game, combined with zero-knowledge
proof techniques. Monte Carlo simulations demonstrate that our
approach effectively removes adversarial entities while preserving
the privacy of legitimate modules.

Index Terms—O-RAN, Zero-Knowledge Proofs, Zero-Trust
Architecture, Homomorphic Encryption, Moral Hazard.

I. INTRODUCTION

The integration of modules supplied by different vendors
within the same Radio Access Network (RAN) was histor-
ically subject of controversial opinion until the emergence
of the Open RAN (O-RAN) concept [1]–[3]. Recently, O-
RAN has gained recognition within the 3GPP standardization
community and is now officially part of the standard [2], [4].
The primary goal of O-RAN is to foster a competitive and
dynamic supplier ecosystem by expanding the pool of avail-
able modules, thereby enhancing overall network performance,
flexibility, and the seamless integration of new functionalities
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over time [5], [6]. For instance, O-RAN allows service opera-
tors to temporarily utilize third-party machine learning models
for data processing, optimizing network operations.

In the event where a module can be supplied by multiple
vendors, selection and trust become critical challenges. Inte-
grating an adversarial module, temporarily or permanently, can
compromise end-to-end network performance, raising issues
on fault attribution and conflict resolution. While authen-
tication mechanisms can serve as the first line of defense
in verifying the legitimacy of O-RAN modules, they are
they are not designed to provide protection against moral
hazard. Specifically, an O-RAN module may fail to deliver
the expected output, either intentionally (actively malicious) or
unintentionally due to outdated models or defective hardware
(non-compliant). Furthermore, trust concerns extend to third-
party providers offering services to O-RAN. In fact, the RAN
Intelligent Controller (RIC) can be honest-but curious and
could execute the protocol faithfully but potentially exploiting
data. On the other hand, vendor-supplied modules operate
on the basis of incentives. Thus, they may be reluctant to
share their output during the testing phase due to the risk that
the RIC could utilize their data without proper compensation
or adherence to contractual agreements. Several real-world
scenarios highlight these challenges. For example, multiple
AI models hosted in the cloud may offer data processing
services, or O-RAN may rely on distributed sensors to provide
side information for network optimization. In such cases, how
can the network reliably select trustworthy modules among
many options? Additionally, how can O-RAN modules show
their compliance without disclosing vendor-sensitive data and
risking exploitation?

The O-RAN Alliance White Papers [7], [8] underline that
the move toward O-RAN calls for a change from static
trust models to a Zero Trust Architecture (ZTA), whereby
no module is intrinsically trusted and continuous verification
is needed. In the context of O-RAN, trust is assessed from
two perspectives: security and performance compliance. While
the former has been thoroughly investigated, the latter is still
emerging, with limited research available. In fact, numerous



studies have implemented ZTA to automate the continuous
detection of security threats using the RAN Intelligent Con-
troller (RIC). For instance, the authors in [9] proposed a game-
theoretic ZTA for automated detection of intelligent jammers
in 6G RAN. Liu et al. [10] introduced multi-device anonymous
authentication within O-RAN and proposed a ZTA-based local
and roaming identity authentication protocol.

While moral hazard detection in O-RAN module selection
remains an unexplored subject, techniques from contiguous
fields offer potential solutions. However, benchmarking is
the main drawback of these techniques. Subjective logic, for
instance, has been widely applied for uncertainty quantification
and information source selection in areas such as vehicular
networks, federated learning, mobile ad hoc networks, and IoT
[11]–[18]. However, access to predefined performance criteria
and reference datasets is key in subjective logic to evaluating
the performance or compliance of a module, model, or device.

Benchmarking has several limitations in the O-RAN en-
vironment. First, it requires predefined performance criteria
and reference datasets, which are often unavailable in AI-
driven systems where inputs and operating conditions change
dynamically. Second, adversarial O-RAN modules can be
trained to pass a given set of benchmarks, yet fail when
different scenarios emerge, making benchmarking vulnerable
to gaming and evasion. Third, benchmarking assumes that
the O-RAN module discloses vendor-sensitive data during the
test, which exposes them to potential exploitation. Assuming a
centralized and trustworthy authority is a challenging premise
that contradicts the ZTN principle. Testing and filtering com-
pliance among a set of modules without compromising vendor
sensitivity or relying on benchmarking data are deemed to
be obsolete as network conditions evolve and functionality
expands, making compliance testing and selection a significant
challenge in O-RAN.

In this paper, we consider the case of O-RAN, where a
set of modules, from multi-vendors, assert their ability to
perform a specific functionality. The objective is to develop
a compliance testing framework to identify and eliminate
adversarial modules while retaining legitimate ones, without
relying on benchmarking datasets or revealing potentially
exploitable outputs. We assume that both the O-RAN eval-
uator and the modules under test are untrusted at the outset.
The proposed framework is inspired by the WereWolf game
mechanism to eliminate adversarial modules, and it leverages
the principle of Zero-Knowledge Proof (ZKP) to ensure that
tested modules do not directly expose their data. It is important
to note that, in the absence of the proposed WereWolf game
based framework, Zero-Knowledge Proofs are typically used
to verify the truth of a specific statement without disclosing
any information beyond the verification itself. While ZKPs
are generally designed to validate information subject to a
benchmark, they are not directly applicable for performance
evaluation. To the best of our knowledge, this framework is the
first to provide a zero-knowledge-proof and benchmark-free
performance testing in O-RAN without exposing potentially
exploitable outputs. Specifically, our contribution is as follows.

• Inspired by the WereWolf game, we propose a frame-
work that iteratively eliminates non-compliant nodes via
probabilistic trust validation, ensuring a self-regulating,
benchmark-free compliance model.

• We prove that data are not exposed through the processes
of compliance testing and elimination of adversarial mod-
ules.

• Through Monte Carlo simulations, we demonstrate the
efficiency, scalability, and adversarial resistance of our
framework.

The paper is structured as follows: Sec. II presents the system
model, while Sec. III introduces the proposed approach. Sec.
IV discusses the simulation results, and Sec. V concludes the
paper.

II. SYSTEM MODEL AND CASE STUDIES

A. System Model

We consider an O-RAN environment in which the RIC
aims to test a set of N modules from different vendors
for compliance with respect to a given functionality. The
RIC is considered to be honest-but-curious, i.e., executing
the protocol faithfully but potentially exploiting data. The
objective is to identify and eliminate adversarial modules while
preserving privacy and avoiding reliance on predefined bench-
marks. As illustrated in Fig. 1, different vendors can offer a
solution to cover some operations in the O-RAN Distributed
Unit (O-DU) and O-RAN Centralized Unit (O-CU). The O-
RAN modules are consistently treated as untrusted, i.e., under
test. Accordingly, the RIC, specifically the Quality-of-Service
Management, is responsible for assessing trust by managing
the test execution.

Fig. 1. System architecture of the proposed compliance verification frame-
work in O-RAN, highlighting clients, the central unit, and adversarial modules.
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Let C = {C1, C2, . . . , CN} denote the set of O-RAN
modules under evaluation. Among these, a subset Clegit ⊆ C
of size M consists of legitimate modules, while the remaining
N−M modules are adversarial, attempting to pass compliance
checks without genuinely meeting the functional requirements.

The RIC conducts L test rounds, where an input x ∈ X
is randomly selected and sent to the modules for processing.
Each module Ci ∈ C processes x and produces an output
yi ∈ Y . The output space Y is large and discrete, ensuring
that random guessing has a negligible probability of yielding
the correct output.



We assume that the RIC is not in possession of a labeled
data set that can be used for the benchmarking. Moreover,
throughout the compliance verification process, neither the
RIC nor the modules inherently trust each other. The RIC
could exploit legitimate modules by using their outputs along-
side inputs to train models or process real data under the guise
of testing, introducing a moral hazard. To mitigate this, the
proposed framework embeds security measures that constrain
the RIC’s role to merely facilitating the proper execution of
an interactive algorithm for adversarial module elimination.

B. Case studies

Multiple case scenarios in O-RAN require rigorous testing
the option provided by multiple vendors, particularly for
O-DU functionalities, to ensure compliance, interoperability,
and performance consistency across vendors. One example
scenario involves validating source and channel coding im-
plementations, where multiple O-DUs from different vendors
must comply with 3GPP standards. Ensuring that vendor-
specific implementations do not introduce inefficiencies or
incompatibilities is essential for seamless network operation.

Another scenario pertains to packet segmentation and re-
assembly, where O-DUs must correctly process transport
blocks according to fronthaul requirements. Variability in
vendor implementations can impact latency, packet integrity,
and synchronization, necessitating thorough evaluation to en-
sure alignment with real-time constraints and overall system
stability.

A third scenario involves the temporary use of AI models
in the cloud for data processing, such as feature extraction,
data classification, or compression within the O-DU. Vendor
solutions need to be tested before deployment to ensure they
do not introduce biased decision making or instability in
dynamic network scenarios, thereby maintaining the reliability
and efficiency of AI-driven O-DU functionalities.

C. Limitations of intuitive compliance approach

While there is no existing solution pertain testing without
benchmarking in O-RAN, this section discusses some intuitive
approaches and their limitations. The first approach is random
selection, which, in the absence of a benchmarking dataset,
may seem intuitive, but is highly inefficient. In the second
scenario, multi-vendor modules share their outputs directly.
Given the large output space, two matching outputs may be
assumed to be correct. However, exposing data poses the
risk of exploitation by illegitimate RICs, which could use the
service without proper incentives, violating the principles of
ZTA.

III. PROPOSED APPROACH: WEREWOLF GAME FOR
ADVERSARIAL ELIMINATION

A. Backgorund in WereWolf Game

The proposed approach is inspired by the WereWolf game,
which is a social deduction party game where players are as-
signed secret roles as either villagers or werewolves. The game
revolves around the conflict between the villagers, who must

identify and eliminate the werewolves, and the werewolves,
who work covertly to eliminate the villagers without revealing
their identities. One key dynamic is that the werewolves
know each other’s identities, allowing them to strategize and
focusing on eliminating villagers excursively at each time that
get a chance. In contrast, the villagers are at a disadvantage
as they do not have any direct information about who the
werewolves are. This creates an inherent asymmetry where the
werewolves have a higher probability of winning. They avoid
eliminating each other and instead focus on weakening the
village team, while the villagers are left to eliminate players
randomly without knowledge of their roles, making it difficult
to make informed decisions.

The game continues until one side achieves its goal: ei-
ther the villagers successfully identify and eliminate all the
werewolves, or the werewolves eliminate enough villagers to
outnumber them, securing a victory.

B. Proposed approach

The proposed approach builds upon a modified version of
the WereWolf game, where the primary key success is that
the werewolves know each other’s identities. In the context
of our framework, the ”werewolves” represent the legitimate
modules, while the ”villagers” refer to the non-legitimate
modules. A critical element of this design is ensuring that the
legitimate devices, similar to the werewolves, are aware of
each other’s identities without directly disclosing their output
data yi. To achieve this, we introduce a privacy-preserving
mechanism based on zero-knowledge proofs, whereby each
module employs homomorphic encryption to protect its data.
These encrypted values are then shared with the RIC, which
are then broadcasted to all modules.

As described here within in more details, homomorphic
encryption enables the modules to compare their results with-
out decrypting the data, thereby maintaining privacy while
allowing for identification of matching outputs. Moreover, it
guarantees that neither the non-legitimate modules nor the
RIC have knowledge of the modules with matching outputs.
Following this, the process of elimination begins. In each
round, the RIC randomly selects a surviving module and
grants it the authority to eliminate another module. When a
legitimate module is selected, it eliminates a non-legitimate
module that produces a different output. Conversely, when
a non-legitimate module is chosen, it eliminates a module
at random, as all other modules appear to yield different
results. The homomorphic encryption ensures that the identity
of legitimate modules (the ”werewolves”) remains concealed,
as the encrypted data prevent the non-legitimate devices from
identifying those with matching outputs.

In subsequent sections, we provide a detailed explanation
of the key elements and operations underpinning the proposed
approach.

1) Privacy Preserving: To ensure privacy, each O-RAN
module encrypts its data using randomized homomorphic
encryption, where encrypting the same value multiple times or
by multiple devices yields different ciphertexts. This prevents



adversaries from correlating encrypted outputs. Homomorphic
encryption enables secure computation and comparison of
encrypted data without decryption [19].

We use the Paillier cryptosystem. In particular, we assume
that all modules share the same Paillier key pair, which is not
shared with the RIC. The encryption of xi is given by:

E(xi) = gxirNi mod N2 (1)

Here, g is an element of the multiplicative group Z∗
N2 and

must be chosen such that gN mod N2 ̸= 1. In many
implementations, g is conveniently set to N +1. N is defined
as the product of two large primes, p and q (i.e., N = p · q).
The security of the scheme fundamentally relies on the com-
putational difficulty of factoring N . The random value ri is
chosen from Z∗

N , meaning it must be coprime to N . The
randomization introduced by ri ensures that ciphertexts remain
indistinguishable, even for identical plaintexts.

The comparison occurs at the RIC. Since the RIC does not
have access to the secret key, it can only perform compar-
isons over encrypted values without decryption. We leverage
Paillier’s homomorphic subtraction property:

E(x1 − x2) = E(x1) · E(x2)
−1 mod N2 (2)

The RIC raises the homorphocally encrypted difference to a
random exponent α1,2, yielding E(α1,2(x1 − x2)). Even if a
module has access to the secret key and one of the plaintexts
(e.g., x1), it can only infer α1,2x2, which is random. Mean-
while, if x1 = x2, decryption yields α1,2(x1−x2) = 0. Thus,
similarity verification can be performed without exposing the
data.

The security of this scheme is based on the Decisional Com-
posite Residuosity Problem, which states that given y ∈ Z∗

N2 ,
it is computationally infeasible to determine whether there
exists an integer x such that:

xN ≡ y mod N2. (3)

This hardness assumption, similar to integer factorization,
ensures the encryption remains secure against chosen-plaintext
attacks.

C. Protocol Design and Communication Exchange

The test consists of L rounds. In each round l, each
network module i receives a random input x from the RIC
and computes its encrypted output as E(yi), where yi = f(x)
is the module’s response to x. The encrypted output E(yi) is
then transmitted to the RIC. Recall that all modules use the
same Paillier key pair.

Upon receiving the encrypted outputs, the RIC assigns a
random alias a

(l)
i to each module, ensuring that these aliases

change in every testing round. Since the RIC does not possess
the secret key, it can only compute encrypted differences by
leveraging the homomorphic property. Furthermore, it scales
each encrypted difference by a random exponent αi,j , giving:

E(αi,j(yi − yj)), ∀i, j ∈ {1, . . . , N}, i ̸= j

The RIC then sends to node Ci the set of alias-output pairs:

Si = {(a(l)j , E(αi,j(yi − yj))) | j ̸= i, j = 1, . . . , N}

Each node decrypts the received values. The result equals
zero when the compared outputs are identical, and a random
nonzero value otherwise. In this way, legitimate modules can
identify the aliases corresponding to peers with matching
outputs.

At each iteration t of the game, the RIC designates a
randomly selected surviving module j to choose an alias for
elimination. The decision process follows the structure of the
WereWolf game:

• If Cj is a legitimate module, it knows the aliases of other
legitimate modules and exclusively targets non-legitimate
modules for elimination.

• If Cj is a non-legitimate module, it lacks any similarity
with other outputs and cannot infer the identities of
the legitimate group. Consequently, it selects an alias
uniformly at random for elimination.

The game proceeds iteratively until only legitimate mod-
ules remain, or a single non-legitimate module is left. If all
adversarial modules are eliminated, the selected module by the
RIC announces the game’s conclusion, declaring all remaining
participants as legitimate. However, this declaration must be
verified through consensus among the surviving modules,
ensuring that no adversarial device prematurely terminates the
game. At the conclusion of each game:

• If a non-legitimate module remains, it receives a score of
1, while all other modules receive a score of 0.

• If legitimate modules successfully eliminate all adversar-
ial modules, the last designated legitimate module must
disclose the aliases of all remaining legitimate devices.
This claim is validated through confirmation requests
from the group, preventing adversarial modules from
falsely concluding the game early.

In the case where legitimate modules mark a win, each of them
receives a score of one, including those that were eliminated
during gameplay. Otherwise, a surviving adversarial module
receives a score of one, while the remaining modules receive a
score of zero. After L tests, the normalized score accumulated
by a module yi, denoted as Ri, corresponds to the total score
accumulated over all games. As the number of tests increases,

Ri →
L→∞

Pwin, ∀Ci ∈ Clegit

and

Ri →
L→∞

1

N −M
(1− Pwin), ∀Ci /∈ Clegit.

After L rounds, modules with the highest Ri values are
considered legitimate.

D. Game success probability

At iteration t, the remaining modules are N − t, with
Mt legitimate and At = N − t − Mt adversarial. Define
Pwin(Mt, At) as the probability that the legitimate group wins



given that Mt legitimate and At adversarial modules remain.
At each round, a module is chosen uniformly at random for
elimination. The probability of selecting a legitimate module
is:

PL(t) =
Mt

N − t
. (4)

The probability of selecting an adversarial module is:

PA(t) =
At

N − t
. (5)

If a legitimate module is chosen, it eliminate an adversarial
module, it is removed, reducing At by 1. The transition is:

(Mt, At) → (Mt, At − 1). (6)

If an adversarial module is chosen, it must eliminate another
module. Since there are N − t − 1 remaining modules, it
eliminates a legitimate module with probability:

PL|A(t) =
Mt

N − t− 1
, (7)

or an adversarial module with probability:

PA|A(t) =
At − 1

N − t− 1
. (8)

Using these probabilities, the probability that the legitimate
group wins satisfies the recurrence:

Pwin(Mt, At) = PL(t)Pwin(Mt, At − 1)

+ PA(t)
[
PL|A(t)Pwin(Mt − 1, At)

+PA|A(t)Pwin(Mt, At − 1)
]
.

(9)

Substituting the transition probabilities:

Pwin(Mt, At) =
Mt

N − t
Pwin(Mt, At − 1)

+
At

N − t

(
Mt

N − t− 1
Pwin(Mt − 1, At)

+
At − 1

N − t− 1
Pwin(Mt, At − 1)

)
.

(10)

Since the game ends when At = 0, we can treat the state
(Mt, 0) as an absorbing state, i.e., a state once entered, the
system cannot transition out of it. They can be defined as:

Pwin(Mt, 0) = 1 if Mt > 0 (i.e., the legitimates won),

and

Pwin(0, At) = 0 if Mt = 0 (i.e., the adversarial won).

By utilizing the transition states and absorbing states, a
Markov chain can be constructed. Accordingly, one can calcu-
late the steady-state probabilities or the probability of reaching
an absorbing state (win or lose) starting from an initial state
(M,N −M). Alternative approaches include using dynamic
programming or Monte Carlo simulations to analyze the
system. Given the limitations on paper length, the probability
is empirically estimated using Monte Carlo simulations instead
of being derived through theoretical analysis.

Considering the normalized scoring system described at the
end of Sec. III-C, legitimate devices are selected when

maxRi
Ci∈Clegit

≥ maxRi
Ci /∈Clegit

.

For sufficiently large L, legitimacy is ensured when

Pwin ≥ 1

N −M
(1− Pwin).

IV. SIMULATION RESULTS

The experimental setup consists of a total of N = 10 mod-
ules under test, with the number of malicious devices N −M
varying between 0 and 10. We consider L = 100 test iterations.
Recall that the used the randomized homomorphic encryption
and the designed protocol ensure that legitimate modules
identify each other with 100% certainty at the begining of
each game. Moreover, the adversarial modules will not be
able discover the alias set of legitimate ones. Thus, the results
depend solely on game performance and are independent of
the encrypted data. The results are presented in Table I. Recall
that the legitimate set is identified when its normalized score
over L tests is higher than that of the adversarial set.

TABLE I
SIMULATION RESULTS SUMMARY

N M L Legit. score Non-Legit. score Success
10 10 100 1 0 Yes
10 9 100 0.988 0.012 Yes
10 8 100 0.982 0.009 Yes
10 7 100 0.968 0.012 Yes
10 6 100 0.908 0.023 Yes
10 5 100 0.840 0.023 Yes
10 4 100 0.648 0.058 Yes
10 3 100 0.496 0.072 Yes
10 2 100 0.224 0.097 Yes
10 1 100 0.093 0.1 No
10 0 100 0 0.1 No

While it is common to assume that the number of adversarial
devices is significantly lower than the number of legitimate
ones for any effective security technique, the proposed ap-
proach demonstrates high performance even when the propor-
tion of legitimate devices is low. The results show that reliable
devices consistently win when the number of adversarial mod-
ules is below eight. For instance, the results in Table I show
that the legitimate set can still be identified through testing
even when adversarial devices constitute 70% of the total
population. This highlights the effectiveness of the WereWolf
game-based approach. It is important to note that although
the test is conducted 100 times, the RIC has no knowledge
of the responses, as the information remains encrypted using
homomorphic encryption. The results outperfom by far the
random selction where the sucess rate is in the range M/N .

The convergence time is proportional to the average number
of iterations before the game ends. Fig. 2 illustrates the
relationship between the number of malicious devices and the
average number of iterations per game. The results indicate
that convergence time increases as the proportion of legitimate
devices grows relative to adversarial ones. For instance, the



Fig. 2. Average Rounds vs. Number of Malicious Devices

average number of iterations per game is approximately five
for M = 7 and three for M = 8, reaching its peak when
Nmalicious = 9.

In comparison, random selection converges in a single
iteration, which provides an advantage in terms of speed.
However, as shown in the figure, the increase in the number
of iterations remains moderate. Overall, as the proportion of
adversarial modules rises, the system requires more iterations
to reliably converge to a compliant state.

V. CONCLUSION

This paper introduced a privacy-preserving compliance ver-
ification mechanism using a game-theoretic approach to distin-
guish legitimate modules from adversarial ones. By integrat-
ing homomorphic encryption with a probabilistic elimination
strategy, the system ensures compliance verification without
relying on predetermined benchmarks or centralized trust
authorities. The proposed method allows legitimate nodes to
iteratively identify and eliminate adversarial entities while
preserving privacy.

Simulation results demonstrate high detection accuracy and
resilience in adversarial conditions, showing that the system
effectively identifies legitimate modules even when adversarial
presence is significant. Furthermore, the convergence analysis
indicates that the approach remains computationally efficient,
with the number of required iterations scaling predictably with
the adversarial proportion.

Future research will focus on optimizing the computational
efficiency of HE and extending the framework to adaptive ad-
versarial environments. Additionally, exploring cryptographic
optimizations, such as post-quantum secure ZKPs and fully
homomorphic encryption, will further enhance security and
scalability. This work contributes to the development of a
benchmark-free, decentralized trust enforcement mechanism,
offering a robust security solution for next-generation net-
works.
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