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Abstract—Frequency multipliers are increasingly utilized for
signal up-conversion in modern wireless communication systems,
particularly in millimeter-wave (mmWave) and sub-terahertz
(sub-THz) bands, owning to their simplicity and ease of inte-
gration. However, their inherent nonlinearity causes distortions,
fundamentally altering the temporal and spectral characteristics
of transmitted signals. This distortion transforms well-defined
baseband pulses (e.g., sinc, raised cosine) into complex, hardware-
dependent waveforms, where the matched-filter depends both
on the multiplication order and the specific hardware imple-
mentation. Notably, the spectral occupancy of the transmitted
signal expands after frequency multiplication. Without accurate
knowledge of the multiplier-induced distortions at the receiver,
applying a mismatched filter can cause severe inter-symbol inter-
ference and loss of critical frequency components, signal-to-noise
ratio degradation thereby degrading detection performance. In
this paper, we propose a blind, adaptive matched-filter estimation
approach leveraging a Long Short-Term Memory (LSTM) neural
network. Our method directly estimates the matched filter from
sampled segments of the noisy modulated received signal without
requiring pilot symbols. The proposed model adapts to dynamic
pulse shapes and amplitudes by implicitly learning the spectral
transformations introduced by hardware-induced nonlinearities.
Simulation results demonstrate high accuracy of the matched
filter estimation, with a mean-square error precision of four
decimal places.

Index Terms—Adaptive filtering, frequency multipliers, LSTM,
matched filters, mmWave communications.

I. INTRODUCTION

The demand for Gigabit/s wireless links and massive
connectivity is rapidly increasing. Seeking solutions, both
the wireless industry and academia are continuously explor-
ing millimeter-wave (mmWave) and Sub-Terahertz (Sub-THz)
bands, which offer bandwidths in the gigahertz range. Up-
converting the signal to mmWave and Sub-THz bands is
deemed to be a challenging task due to hardware limitations.
In the sub-6 GHz band, a sequence of mixers is typically
used for up-conversion, where the input signal is sequentially
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multiplied by single-tone waveforms generated from local
oscillators. However, at higher frequencies, mixers suffer from
conversion losses, high noise, and increased cost. Circuit de-
signers are compelled to rely more on passive components for
signal up-conversion and develop novel architectures involving
frequency multipliers [1]–[4]. The proposed architecture in-
volves passing an intermediate frequency’s modulated signal,
centered around low-frequency carrier, through a frequency
multiplier, rather than a sequence of mixers. Leveraging elec-
tronic components with non-linear behavior, it is possible to
generate multiple harmonics from an input signal, which can
then be selectively filtered to obtain the desired high-frequency
output [1], [3]. The study in [1] demonstrates the feasibility of
achieving 16 Gbps transmission at 240 GHz, highlighting the
efficacy of frequency multipliers for up-conversion.

Despite their advantages, frequency multipliers introduce
challenges that can compromise, if not addressed, the reliabil-
ity and efficiency of communication systems. Principally, their
inherent nonlinearity, while essential for carrier up-conversion,
results in pulse shape non-linear distortion. In the frequency
domain, this manifests as bandwidth expansion, where the
signal’s spectral support expands. In the time domain, the
effect appears as a reshaping of the pulse and a reduction
in the pulse width [3], [5], [6]. Consequently, the spectral
and temporal profile of the transmitted signal no longer
align with the original baseband waveform, and the degree
of distortion depends on the order and configuration of the
frequency multiplier. Importantly, even basic pulse shapes such
as sinc or raised cosine pulses become distorted into non-
standard formats after passing through frequency multipliers.
The resulting waveform characteristics are determined not only
by the multiplication factor but also by the specific cascade
configuration used in the hardware. For instance, a signal
intended for transmission at 60 GHz could be generated by
up-converting a 10 GHz intermediate frequency followed by
a doubler and a tripler, or alternatively, by up-converting to
5 GHz followed by a quadruplicator and a tripler. Although
these configurations yield the same output frequency, the
spectral and temporal characteristics of the resulting signal



can differ significantly due to their internal structure. These
hardware-specific configurations are typically not shared with
the receiver, as they are not part of existing communication
standards. Furthermore, communicating such specifications
would introduce additional overhead and complexity, which
is generally avoided in practice. These introduce uncertainty
in the received signal format, particularly affecting the design
and application of matched filters.

The matched filter is a fundamental component in digital
communication receivers, designed to maximize the signal-
to-noise ratio (SNR) at a sampling instant, thereby enabling
optimal detection of transmitted symbols in the presence of
noise [7]. Its effectiveness relies on precise knowledge of the
transmitted pulse shape; the filter must be “matched” to the
expected waveform for it to perform optimally. However, in
practical systems, especially those involving nonlinear opera-
tions such as frequency multiplication, the transmitted pulse
shape can be significantly altered, resulting in bandwidth ex-
pansion and time-domain distortion. When the receiver applies
a matched filter that does not account for these distortions, a
situation referred to as mismatched filtering, the consequences
can be severe: inter-symbol interference (ISI), loss of spectral
components, and a degraded SNR at detection. This misconfig-
uration undermines the filter’s primary function and can lead
to substantial performance degradation, particularly when the
exact waveform distortion is unknown or hardware-specific
and not communicated to the receiver [7].

To the best of our knowledge, this work is the first to
investigate blind and adaptive matched filter design at the
receiver in the presence of frequency multipliers. We propose
an adaptive filtering framework based on Long Short-Term
Memory (LSTM) networks, which is a class of recurrent neural
networks well-suited for modeling temporal dependencies in
time-series data. LSTM-based models have been widely used
in applications such as time-series forecasting [8], [9] and
noise reduction [10]. Unlike traditional matched filters that
rely on fixed, predefined filter design, LSTMs can learn and
adapt to evolving spectral and temporal distortions in the
received signal. By leveraging their ability to model nonlinear
relationships and maintain memory over time, our approach
enables dynamic signal reconstruction and effective noise
mitigation—independent of the specific frequency multiplier
configuration [10]. Our main contributions are summarized as
follows:

• We formalize the matched-filter mismatch problem at the
receiver arising from the nonlinear behavior of frequency
multipliers.

• We propose a novel, data-driven approach utilizing LSTM
networks to directly estimate an effective matched filter
from the received signal, eliminating the need for pilot
symbols or prior knowledge of multiplier characteristics.
The proposed method dynamically adapts to varying
pulse shapes and bandwidth expansions, thereby pro-
viding robust signal reconstruction and effective noise
mitigation in the presence of nonlinear distortions.

• Simulation results clearly demonstrate that the proposed
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Fig. 1: Transmitter block diagram.

LSTM-based matched filter achieves near maximum
SNR, in scenarios involving unknown frequency multi-
plication order. These findings validate its potential for
blind receiver design in modern communication systems.

The paper is structured as follows. Sec. II presents the
system model and problem formulation. Sec. III describes
the LSTM architecture. Sec. IV reports simulation results and
performance evaluation. Sec. V concludes the paper.

II. SYSTEM MODEL

A. Frequency multiplier input-output relation

The transmitter communication chain incorporating a fre-
quency multiplier is illustrated in Fig. 1. Initially, the baseband
signal is up-converted to an intermediate frequency using
a mixer. The resulting output then passes through an N -
fold frequency multiplier, replacing the multiple cascaded
mixers typically employed at lower frequencies. Finally, a
bandpass filter suppresses unwanted harmonics, ensuring the
transmitted signal remains concentrated around the desired
carrier frequency.

The input to the frequency multiplier x(t) is a low-
frequency modulated signal, with bandwidth β. The input
signal over a symbol period can be expressed as:

x(t) = g(t) cos(2πfct). (1)

Here, g(t) denotes the pulse shape/expression with pulse width
T ∝ 1

β , and fc refers to the carrier frequency before the
multiplier. Given the input signal x(t), the response of the
nonlinear circuit can be expressed as:

z(t) =

N∑
n=1

anx
n(t) =

N∑
n=1

ang
n(t) cosn(2πfct), (2)

where {an, n = 1, 2, · · · , N} are the coefficients of the
nonlinear circuit’s response. By expanding and then grouping
the terms according to their harmonics, the output signal
expression becomes:

z(t) =

N∑
n=0

bn(t) cos(2πnfct)

=

N−1∑
n=0

bn(t) cos(2πnfct) + c gN (t) cos(2πNfct).

(3)

The term involving the harmonic cos(2πNfct) is a scalar mul-
tiple of gN (t), representing the N -th harmonic contribution to
the signal. The remaining terms, denoted by {bn(t), n ̸= N},



are polynomial functions of g(t), capturing the contributions
from other harmonics. Here, c is a random constant that en-
compasses the modulated symbol value. To elaborate, consider
the case of a frequency quadruple, i.e., N = 4. In this case,
the output expression becomes:

z(t) =

(
a2g

2(t)

2
+

3a4g
4(t)

8

)
+ b1(t) cos(2πfct) + b2(t) cos(2π(2fc)t)

+ b3(t) cos(2π(3fc)t) + b4(t) cos(2π(4fc)t),

(4)

where:

b1(t) = a1g(t) +
3a3
4

g3(t), b2(t) =
a2
2
g2(t) +

a4
2
g4(t),

b3(t) =
a3
4
g3(t), b4(t) =

a4
8
g4(t).

The last term in (4) is the dominant contribution from the
fourth harmonic, and the sum represents the additional har-
monic, each modulated by polynomial functions of g(t).

The output of the nonlinear device is a linear combination
of modulated harmonics. Since the coefficients are polyno-
mial functions of g(t), the bandwidth associated with each
harmonic is no longer equal to the original bandwidth β. This
effect is known as pulse distortion and it induces bandwidth
expansion as a result of N -fold convolutions in the frequency
domain [2]. Band-pass filtering around the highest harmonic
modulated signal, the signal over one symbol period can be
expressed as:

y(t) = c gN (t) cos(2πNfct). (5)

B. The case of Sinc pulse

To elaborate on the pulse distortion, we consider the Sinc
pulse as an example. The frequency multiplier input signal
expression, over one symbol period, is given by [11]:

xs(t) = A
sin(πt/T )

πt/T
cos(2πfct), (6)

where T is the symbol period. Accordingly, the output signals
after filtering is given by:

ys(t) = cAN (sin(πt/T ))N

(πt/T )N
cos(2πNfct). (7)

Recall that c takes random value each symbol period, en-
compassing the value of the modulated symbol.The Fourier
transform of Sinc pulse gives a rectangular function with a
width equal to 1

T :

T rect 1
T
(f) =

T, if |f | ≤ 1

2T
0, else where.

(8)

The frequency representation of the frequency multiplier out-
put signal is N -times convolution of rectangular function
(multiplication in time domain is equivalent to convolution
in the frequency domain)

Ys(f) = TN
c rect∗N1

T
(f) ∗ δ (f −Nfc) + δ (f +Nfc)

2
. (9)

Here rect∗N (f) 1
T

denotes the N -times convolution of the
rectangular function. The N -fold convolution of rectangular
functions yields a piecewise polynomial function of degree
N − 1. For example, in the case of a tripler, we have:

rect∗31
T
(f) =



0, |f | > 3
2T

1
2

(
1
T

)2 (
f + 3

2T

)2
, − 3

2T ≤ f < − 1
2T

3
4

(
1
T

)3 − (
1
T

)2
f2, − 1

2T ≤ f < 1
2T

1
2

(
1
T

)2 (
f − 3

2T

)2
, 1

2T ≤ f ≤ 3
2T

(10)

The time-domain expression, obtained via the inverse Fourier
transform, results in a non-trivial form that varies with the
multiplication order N .

C. Matched Filter expression

The transmissions are subject to Additive White Gaussian
Noise (AWGN), denoted by n(t), with Power Spectral Density
(PSD) equal to ρ. The base-band signal, over one symbol
period, can be written as

r(t) = cgN (t) + n(t). (11)

The variance of each noise sample before filtering is close to
infinity, as it corresponds to the integral of the PSD over the
entire frequency domain. Therefore, a matched filter should
be applied that will play the role of low pass filter to reduce
the effect of the noise and maximize the SNR. Subsequently,
a filter with impulse response h(t) is applied to extract and
filter the baseband signal.

The derivation of the matched filter begins by considering
the filtered version of received signal r(t) as a convolution
of the received signal cgN (t) plus noise n(t) with the filter
impulse response h(t):

r(t) ∗ h(t) = (cgN (t) + n(t)) ∗ h(t) (12)

The SNR of the sampled version for t = 0, can be written as:

SNR : =

∣∣∣∫∞
−∞ h(τ)cgN (τ)dτ

∣∣∣2
E[(h(t) ∗ n(t))2]

(13a)

=
c2

∣∣∣∫∞
−∞ h(τ)gN (τ)dτ

∣∣∣2∫∞
−∞ |H(ω)|2ρdω

(13b)

≤
c2

∫∞
−∞ g2N (τ)dτ

∫∞
−∞ h2(τ)dτ

ρ
∫∞
−∞ |H(ω)|2dω

(13c)

=
c2

∫∞
−∞ g2N (τ)dτ

ρ
(13d)

The inequality in (13c) follows from the Cauchy–Schwarz
inequality and becomes an equality when h(t) = gN (t),
which motivates the notation of the matched filter. This
indicates that the SNR is maximized when the receiver filter is
matched to the distorted pulse gN (t), rather than the original
baseband pulse g(t). However, practical challenges arise when
the received signal includes unknown parameters, such as an
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filtering.

unknown frequency multiplication factor N , or when the fre-
quency multiplier is non-ideal, introducing a mismatch factor
N + α, where α represents uncertainty or hardware-induced
noise. Moreover, even when N is known, the output of the
frequency multiplier generates non-standard pulse shape that
depends heavily on the multiplication order, as demonstrated
in (10). These distorted pulses are analytically complex and
difficult to generate or model precisely, further complicating
the design of an optimal matched filter.

III. LSTM-BASED MATCHED FILTER DESIGN

A. Receiver Structure

Following the down-conversion process, a copy of the
received signal is used for matched filter estimation, as il-
lustrated in Fig. 2. Each input, corresponding to the symbol
duration, is utilized to update the matched filter. It is important
to note that the received signal is modulated, exhibiting
random amplitude, and is further corrupted by noise. The
proposed matched filter estimation pipeline consists of two
main stages: an LSTM network followed by a one-dimensional
convolutional layer. The LSTM network processes the sequen-
tial input data to capture long-term temporal dependencies,
transforming each input along with previously received sig-
nal into a richer, 64-dimensional feature representation. This
transformation leverages the LSTM’s gating mechanisms and
its use of the hyperbolic tangent (tanh) activation function to
retain relevant historical patterns.

Subsequently, the one-dimensional convolutional layer per-
forms local feature refinement. With a kernel size of one and a
linear activation function, it computes a weighted combination
across the 64-dimensional LSTM output, reducing the feature
space to a compact, single-dimensional representation. This
ensures that the final output remains both computationally
efficient for matched filter construction.

B. Adaptive Matched Filter Estimation Using LSTM

The received continuous-time signal is typically sampled
by an analog-to-digital converter (ADC), resulting in discrete-
time observations. The resulting sampled signal at the receiver,
denoted by

r[n] =
∑
k

ckg
N (nTs −KT ) + n(nTs).

The sampling period Ts is adjusted to be higher than Nyquist
lower bound. The transmitted symbol modulated by a pulse
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Fig. 3: LSTM Cell Architecture.

shape (with random amplitude due to modulation) and cor-
rupted by additive noise. Formally, each received symbol
period provides a sequence of sampled observations, which
serve as inputs to our adaptive matched filter estimation
algorithm. The role of the proposed LSTM neural networks
is to dynamically estimate the matched filter directly from
these sampled sequences. The inherent temporal dependency
and nonlinearity present in the received sampled signal make
LSTM particularly suitable for modeling the underlying pulse
shape.

LSTM networks, an advanced variant of recurrent neural
networks (RNNs), incorporate gated mechanisms, forget, in-
put, and output gates, to selectively retain or discard historical
information. As depicted in Fig. 3, the LSTM cell processes
the sampled input sequence r[n] to update its internal cell state
and hidden states. The forget gate assesses which information
from previous symbol periods remains relevant, defined as:

fn = σ(Wf · [hn−1, r[n]] + bf ), (14)

where σ(·) denotes the sigmoid function. Values close to 1
indicate retention of prior knowledge, while values near 0
discard less relevant information.

The input gate identifies new information from the current
sampled input sequence that should update the internal mem-
ory. It computes:

in = σ(Wi · [hn−1, r[n]] + bi), (15)

C̃n = tanh(WC · [hn−1, r[n]] + bC), (16)

generating a candidate update to the cell state based on current
signal characteristics. Subsequently, the LSTM cell updates its
internal cell state as:

Cn = fn ⊙ Cn−1 + in ⊙ C̃n, (17)

where ⊙ denotes element-wise multiplication. This adaptive
updating captures temporal variations of the pulse shape across
consecutive samples.

Lastly, the output gate determines the next hidden state hn,
summarizing information relevant for matched filter estima-
tion:

on = σ(Wo · [hn−1, r[n]]+bo), hn = on⊙tanh(Cn). (18)



Through these gating mechanisms, the LSTM network effec-
tively extracts and preserves temporal patterns within sampled
symbol periods, directly modeling the matched filter’s tempo-
ral dynamics.

C. Pulse Refinement through One-Dimensional Convolution

While the LSTM provides a temporally rich and high-
dimensional representation of the pulse characteristics, we
further refine this representation into a more explicit matched
filter estimate through a one-dimensional convolutional
(1DConv) layer. This convolutional layer performs a learned
linear combination across the LSTM output feature dimen-
sions. Specifically, at each sampled time step, the convolu-
tional layer applies a kernel with size one and linear activa-
tion to aggregate the 64-dimensional temporal representation
provided by the LSTM network. Formally, the matched filter
coefficient estimation at each discrete-time index n can be
expressed as:

ĥ[n] = Wconv · hn + bconv, (19)

where Wconv and bconv represent the learned weights and bias
of the convolutional operation, respectively. This results in
a concise and effective matched filter estimate suitable for
matched filtering and subsequent symbol detection.

By combining the adaptive temporal modeling of the LSTM
with the localized refinement capabilities of the 1D convolu-
tional layer, our approach provides a fully data-driven solution
to the problem of matched filter estimation, robustly handling
modulation-induced randomness, hardware imperfections, and
unknown distortions encountered in practical communication
systems.

IV. SIMULATION RESULTS

We analyze the performance of the LSTM-based matched
filter through extensive numerical simulations, evaluating both
the achieved SNR and the Mean Square Error (MSE). For
comparison, we consider two benchmark approaches:

• Expanded Bandwidth Filter (EBF) :A wideband version
of the matched filter with a compressed time-domain rep-
resentation (i.e., bandwidth expanded by a factor of N ),
but based on the same pulse form as g(t). Several recent
studies have demonstrated that the signal bandwidth may
expand by a factor on the order of N [3].

• Conventional Matched Filter (CMF): The conventional
matched filter using the original baseband pulse g(t).

Furthermore, as a natural point of comparison, we consider
the ideal case of perfect Matched Filter (MF) reconstruction.

Fig. 4 illustrates the effect of the frequency multiplier on a
Gaussian pulse, where N = 1 corresponds to the original pulse
g(t). As observed, increasing the multiplier order N results
in temporal compression of the pulse and a corresponding
expansion in the frequency domain. This behavior is consistent
with the time-bandwidth product, where compression in one
domain leads to expansion in the other.

Training data comprise a comprehensive dataset of
computer-generated pulses, including Gaussian and Raised

Fig. 4: Time and frequency domain representations of the
Gaussian pulse with different multiplier order.

Cosine waveforms. To achieve robust generalization, we vary
pulse amplitudes, symbol periods, and SNRs randomly across
training samples, while maintaining a fixed pulse shape during
each individual transmission scenario. The model is trained for
50 epochs using a batch size of 1000 samples per iteration.
We use MSE to quantify the discrepancy between the true
transmitted signal samples and the LSTM-predicted outputs,
is mathematically defined as:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2

y2i
, (20)

where yi denotes the true sampled signal amplitude, ŷi is
the corresponding estimated value produced by the model,
and N is the total number of evaluated samples. At the
conclusion of training, the model achieves an MSE of 0.0167
on the validation dataset, suggesting effective convergence and
satisfactory training generalization.

In the simulations, each waveform is generated with ran-
domized amplitudes to simulate modulation-like variations.
A diverse set of pulse shapes and widths is used, including
Gaussian and Raised Cosine pulses with varying roll-off fac-
tors. Additionally, different frequency multiplication factors,
uniformly distributed in the range [2, 10], are applied to
ensure diversity within the dataset. The random amplitudes
are drawn from a uniform distribution over the interval [−1, 1].
To establish a consistent reference, the signal and noise levels
are configured such that, under an ideal matched filter (perfect
reconstruction of the matched filter), the resulting SNR would
be 25 dB. When applying any filtering method, whether the
proposed LSTM-based filter or one of the benchmark matched
filters, some level of degradation is expected, and the resulting
SNR reflects the practical performance of each method under
these conditions. For the MSE calculation, a normalized
version is used, where the squared error is divided by the
squared amplitude range of the signal. This ensures that the
MSE values are scale-invariant and comparable across signals
with varying amplitudes.

Simulations are conducted using independently generated
datasets comprising 100 samples for each waveform type:
Gaussian and Raised Cosine pulses. The performance was
evaluated in terms of both MSE and SNR. Recall that the
a mismatched filter at the receiver results in SNR reduction.



The results for Gaussian pulses are summarized in Table I,
and for Raised Cosine pulses in Tab. II.

TABLE I: Performance Comparison for Gaussian Pulses

Filter Type MSE SNR (dB)
EBF 0.02205 10.33
CMF 0.17251 1.03

LSTM 0.00234 22.70
Perfect MF 0 25

TABLE II: Performance Comparison for Raised Cosine
Pulses

Filter Type MSE SNR (dB)
EBF 0.07742 10.00
CMF 0.07743 10.01

LSTM 0.00448 24.70
Perfect MF 0 25

As observed from the tables, the LSTM-based filter consis-
tently outperforms both CMF and EBF baselines in terms of
MSE and SNR across both waveform types. The performance
gain is particularly significant for Gaussian pulses, where the
LSTM achieves an SNR exceeding 22 dB and an MSE of
0.0023, compared to 10.33 dB and 0.0220 for the EBF, and
only 1.03 dB and 0.1725 for the CMF. The CMF performs
worse than BMF in this case, likely due to temporal misalign-
ment introduced by the bandwidth expansion, which distorts
the pulse shape severely when applied to Gaussian waveforms.

In the case of Raised Cosine pulses, the LSTM still achieves
superior performance, but the CMF and EBF show nearly
identical results. This can be explained by the fact that we
are using random roll-off factors during pulse generation.
When the roll-off factor is small, the distortion introduced
by the frequency multiplier is minimal, and the pulse shape
remains relatively unchanged, as illustrated in Fig. 5 for a roll-
off factor of 0.4. Conversely, as the roll-off factor increases,
the discrepancy between the original and post-multiplier pulse
shapes becomes more pronounced. As a result, performance
alternates between the CMF and EBF depending on the roll-
off value, leading to an overall convergence in their average
performance. Nonetheless, the LSTM remains robust across
this variability and provides consistently improved results.

These results demonstrate the LSTM model’s strong adapt-
ability and its capacity to generalize across waveform struc-
tures and noise conditions, offering a flexible and learning-
based alternative to traditional matched filtering techniques.

V. CONCLUSION

In this study, we introduced an adaptive, blind matched-filter
estimation approach utilizing a LSTM neural network to effec-
tively address signal distortions caused by nonlinear frequency
multipliers in mmWave and sub-THz wireless communication
systems. Our proposed method dynamically estimates the
matched filter directly from the noisy, modulated received
signals, eliminating the need for pilot symbols or prior knowl-
edge of the frequency multiplier configuration. Simulation
results validated the high accuracy of our matched filter

Fig. 5: Time and frequency domain representations of the
Raised Cosine signal with different exponentiation factors.

estimation, achieving a mean-square error with four-decimal
precision and near maximum SNR. The adaptive LSTM-based
approach demonstrated robustness against spectral and tempo-
ral distortions, effectively mitigating inter-symbol interference
and preserving signal integrity. Future work will extend the
current matched filter estimation framework toward learning-
based reconstruction of additional receiver components. This
includes exploring AI-driven demodulation and equalization,
progressively moving toward a fully trainable receiver chain
that adapts to hardware impairments and complex channel
dynamics.
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