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ABSTRACT

PREVENTIVE AND CORRECTIVE MAINTENANCE

SCHEDULING FOR VEHICLES AT A SINGLE DEAD-END

TRACK UNDER SERVICE LEVEL AGREEMENT

We introduce the problem of vehicle maintenance scheduling under service level

agreement (SLA) and preventive maintenance cycles at a single dead-end track. We

show that the problem is NP-Hard. We build MILP model to solve the problem and

propose formulation improvements based on problem structure. Besides, we develop a

heuristic that generates an initial feasible solution to the MILP solver. As a result of

computational experiments, we show that improved model, which is a combination of

formulation improvements, CPLEX parameter fine-tuning and the heuristic drastically

heightens the solution quality compared to the MILP model under given time limits.

We select the improved model as a solution method. We create a discrete-event sim-

ulation environment to determine effects of problem parameters on key performance

indicators (KPI). We build two alternative methodologies, as corrective jobs worsen

tardiness related KPIs of preventive jobs. One of them is the buffer method which

reschedules the result of the solution method, the other one is anticipation method

in which we alter objective function of the solution method to favor earliness in the

model. In conclusion, these methods diminish tardiness related KPIs of preventive jobs

but they increase preventive earliness compared to the solution method.
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ÖZET

HİZMET SEVİYE ANLAŞMASI ALTINDA TEK UCU

KAPALI RAYDA ARAÇLAR İÇİN ÖNLEYİCİ VE

DÜZELTİCİ BAKIM ÇİZELGELEMESİ

Hizmet seviye anlaşması (HSA) ve planlı bakım çevrimleri altında tek ucu ka-

palı rayda araç bakım çizelgelemesi problemini ele aldık. Problemin NP-Zor olduğunu

gösterdik. Problemi çözmek için Karma Tamsayılı Program (KTP) modeli ve formu-

lasyon iyileştirmeleri önerdik. Ayrıca KTP çözücüsüne başlangıç çözümü veren bir

sezgisel geliştirdik. Bilgisayısal deneyler sonucunda formulasyon iyileştirmesi, CPLEX

parametre ince ayarı ve sezgiselin birleşimi olan gelişmiş model, verilen zaman sınırları

altında KTP modeline kıyasla çözüm kalitesini ciddi şekilde arttırmıştır. Gelişmiş

modeli çözüm yöntemi olarak seçtik. Problem parametrelerinin anahtar performans

göstergesine (APG) etkisini belirlemek için kesikli olay benzetimi ortamı yarattık.

Düzeltici işler önleyici işlerin geçlik bazlı APGlerini kötüleştirdiği için iki alternatif

metodoloji önerdik. Birincisi çözüm yönteminin verdiği sonucu yeniden çizelgeleyen

tampon yöntemi, diğeri ise modelde erkenliği gözetmek için çözüm yönteminin amaç

fonksiyonunu değiştirdiğimiz beklenti yöntemidir. Sonuç olarak bu yöntemler çözüm

yöntemine göre önleyici işlerin geçlik bazlı APGlerini düşürmekte fakat önleyici erkenli-

ğini yükseltmektedir.
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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF ACRONYMS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . xxiii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1. Train, Tram and Bus Maintenance . . . . . . . . . . . . . . . . . . . . 5

2.2. Aviation Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3. Corrective Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4. Parking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3. PROBLEM DEFINITION AND MOTIVATIONS . . . . . . . . . . . . . . . 13

4. MATHEMATICAL FORMULATIONS AND THE SOLUTION APPROACH 25

4.1. MILP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1. Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.2. Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.3. Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.4. Decision variables . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.5. Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2. Model Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1. Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2. Model II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.3. Optimality Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.4. Valid Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3. Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1. Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



viii

4.3.2. Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.3. Dynamic Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.4. Some Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4. Alternative Methods for Handling Corrective Jobs . . . . . . . . . . . . 49

4.4.1. Introduction of Buffer Time . . . . . . . . . . . . . . . . . . . . 49

4.4.2. Anticipation of future events . . . . . . . . . . . . . . . . . . . . 53

5. COMPUTATIONAL EXPERIMENT DESIGN . . . . . . . . . . . . . . . . 54

5.1. Service Level Agreement Generation . . . . . . . . . . . . . . . . . . . 54

5.2. Preventive Job Generation . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3. Corrective Job Generation . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4. Job Duration Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5. Determination of Critical Jobs . . . . . . . . . . . . . . . . . . . . . . . 61

5.6. Warmup Period Determination . . . . . . . . . . . . . . . . . . . . . . 65

5.7. Single Run Length and Batch Size . . . . . . . . . . . . . . . . . . . . 67

5.8. Cplex Parameter Fine-Tuning . . . . . . . . . . . . . . . . . . . . . . . 68

5.9. Computational Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.9.1. 2 mins Time Limit . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.9.2. 10 mins Time Limit . . . . . . . . . . . . . . . . . . . . . . . . 74

5.10. Experiment Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6. RESULTS AND DISCUSSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1. Preventive Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1.1. Effect of Track Capacity . . . . . . . . . . . . . . . . . . . . . . 83

6.1.2. Effect of Service Level Agreement . . . . . . . . . . . . . . . . . 83

6.1.3. Effect of Preventive Interarrival Times . . . . . . . . . . . . . . 84

6.1.4. Effect of Variability Factor in Preventive Intervals . . . . . . . . 84

6.1.5. Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.6. Marginal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1.7. Multifactor Effect . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2. Preventive and Corrective Maintenance . . . . . . . . . . . . . . . . . . 88

6.2.1. Effect of Track Capacity . . . . . . . . . . . . . . . . . . . . . . 88

6.2.2. Effect of Service Level Agreement . . . . . . . . . . . . . . . . . 89



ix

6.2.3. Effect of Preventive Interarrival Times . . . . . . . . . . . . . . 89

6.2.4. Effect of Variability Factor in Preventive Intervals . . . . . . . . 90

6.2.5. Effect of Mean Time Between Failures . . . . . . . . . . . . . . 91

6.2.6. Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.7. Multifactor Effect . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.8. Comparison at High Load . . . . . . . . . . . . . . . . . . . . . 95

6.3. Comparison of Solution Methods . . . . . . . . . . . . . . . . . . . . . 97

7. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



x

LIST OF FIGURES

Figure 3.1. Two Configurations of a Shunt Track [1] . . . . . . . . . . . . . . 13

Figure 3.2. Crossing Example [2] . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 3.3. Various Block Schedules . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.4. SLA Schedule Example . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.5. Spare Vehicles and SLA . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 3.6. Preventive Maintence Interval and Scheduling Due time . . . . . . 18

Figure 3.7. Rolling Horizon Scheme . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.8. Weekly Schedule based on Critical Jobs . . . . . . . . . . . . . . . 19

Figure 3.9. Extended Rolling Horizon Scheme . . . . . . . . . . . . . . . . . . 20

Figure 3.10. Weekly Schedule based on Preventive Jobs . . . . . . . . . . . . . 20

Figure 3.11. Relationship between SLA and Parking Capacity without Correc-

tive Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.12. Relationship between SLA and Parking Capacity with Corrective

Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 4.1. Schedule and its Assignment Plot . . . . . . . . . . . . . . . . . . 25



xi

Figure 4.2. Case 1 Change in Parent-Child Relationship when dist = 0 . . . . 35

Figure 4.3. Case 1 Change in Parent-Child Relationship when dist > 0 . . . . 35

Figure 4.4. Case 2 Change in Parent-Child Relationship . . . . . . . . . . . . 36

Figure 4.5. Possible Assignments to Track Locations with respect to Lemma 4.5 38

Figure 4.6. Possible Parent-Child Assignments based on b′ and b′′ . . . . . . . 39

Figure 4.7. Possible Parent-Child Assignments based on a . . . . . . . . . . . 39

Figure 4.8. Maximum Job Assignments to Second Track Position Example . . 41

Figure 4.9. Maximum Job Assignments to Third Track Position Example . . . 41

Figure 4.10. Possible Job Assignments to Track Position 3 . . . . . . . . . . . . 42

Figure 4.11. Dimensionality Reduction Example . . . . . . . . . . . . . . . . . 42

Figure 4.12. General Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . 49

Figure 4.13. Core Heuristic Algoritm . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 4.14. Buffer Time Method Example . . . . . . . . . . . . . . . . . . . . 52

Figure 4.15. Anticipation Solution of SP . . . . . . . . . . . . . . . . . . . . . . 53

Figure 5.1. Core SLA Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 5.2. Case 1 Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



xii

Figure 5.3. Case 2 Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 5.4. Weekly Case 1 Schedule . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 5.5. Weekly Case 2 Schedule . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 5.6. First Two Preventive Maintenance Intervals for a Vehicle . . . . . 59

Figure 5.7. Ongoing Jobs Case I Example . . . . . . . . . . . . . . . . . . . . 62

Figure 5.8. Ongoing Jobs Case II Example . . . . . . . . . . . . . . . . . . . . 62

Figure 5.9. Ongoing Jobs Case III Example . . . . . . . . . . . . . . . . . . . 62

Figure 5.10. SP and Preventive Maintenance Intervals . . . . . . . . . . . . . . 63

Figure 5.11. Overlapping of Maintenance Jobs for a Vehicle . . . . . . . . . . . 64

Figure 5.12. Conflict Free Maintenance Job Asssignments for a Vehicle . . . . . 64

Figure 5.13. Preventive Interval and Stay . . . . . . . . . . . . . . . . . . . . . 66

Figure 5.14. Corrective Interval and Stay . . . . . . . . . . . . . . . . . . . . . 66

Figure 5.15. Average Cumulative Stays in Test System . . . . . . . . . . . . . . 67

Figure 5.16. Autocorrelation Graph for 10 Batch Size . . . . . . . . . . . . . . 68

Figure 5.17. Gap(%) Normality Plot . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 5.18. Low Load System Comparison under Zf with 2 mins Time Limit . 71



xiii

Figure 5.19. Low Load System Comparison under Gap(%) with 2 mins Time

Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 5.20. Middle Load System Comparison under Zf with 2 mins Time Limit 72

Figure 5.21. Middle Load System Comparison under Gap(%) with 2 mins Time

Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 5.22. High Load System Comparison under Zf with 2 mins Time Limit 73

Figure 5.23. High Load System Comparison under Gap(%) with 2 mins Time

Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 5.24. Low Load System Comparison under Zf with 10 mins Time Limit 76

Figure 5.25. Low Load System Comparison under Gap(%) with 10 mins Time

Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 5.26. Middle Load System Comparison under Zf with 10 mins Time Limit 77

Figure 5.27. Middle Load System Comparison under Gap(%) with 10 mins Time

Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 5.28. High Load System Comparison under Zf with 10 mins Time Limit 78

Figure 5.29. High Load System Comparison under Gap(%) with 10 mins Time

Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 6.1. Four Performance Indicators under Preventive Maintenance . . . . 87

Figure 6.2. Slaviol under Preventive Maintenance . . . . . . . . . . . . . . . . 87



xiv

Figure 6.3. Shop Load % under Preventive Maintenance . . . . . . . . . . . . 88

Figure 6.4. Four Performance Indicators under Preventive and Corrective Main-

tenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 6.5. Slaviol under Preventive and Corrective Maintenance . . . . . . . 94

Figure 6.6. Shop Load % under Preventive and Corrective Maintenance . . . . 94

Figure 6.7. Four Performance Indicators under Π = 480 vs τ = 2508 . . . . . 95

Figure 6.8. Slaviol under Π = 480 and τ = 2508 . . . . . . . . . . . . . . . . . 96

Figure 6.9. Shop Load % under Π = 480 vs τ = 2508 . . . . . . . . . . . . . . 96



xv

LIST OF TABLES

Table 5.1. Warmup period experimental factors . . . . . . . . . . . . . . . . . 65

Table 5.2. Time comparisons of methods under 2 mins time limit . . . . . . . 75

Table 5.3. Time comparisons of methods under 10 mins time limit . . . . . . 79

Table 5.4. Simulation experimental factors . . . . . . . . . . . . . . . . . . . 80

Table 6.1. KPI values depend on m change . . . . . . . . . . . . . . . . . . . 83

Table 6.2. KPI values depend on SLA change . . . . . . . . . . . . . . . . . . 84

Table 6.3. KPI values depend on Π change . . . . . . . . . . . . . . . . . . . 84

Table 6.4. KPI values depend on v change . . . . . . . . . . . . . . . . . . . . 85

Table 6.5. KPI values depend on Π change . . . . . . . . . . . . . . . . . . . 86

Table 6.6. KPI values depend on v change under preventive and corrective

maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Table 6.7. KPI values depend on SLA change under preventive and corrective

maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Table 6.8. KPI values depend on Π change under preventive and corrective

maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



xvi

Table 6.9. KPI values depend on v change under preventive and corrective

maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Table 6.10. Comparison of KPIs under preventive maintenance and preventive

and corrective maintenance . . . . . . . . . . . . . . . . . . . . . . 92

Table 6.11. Comparison of two systems at high load . . . . . . . . . . . . . . . 97

Table 6.12. Method comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Table 6.13. Model based KPIs and Z values of methods . . . . . . . . . . . . . 100



xvii

LIST OF SYMBOLS

a A coefficient to determine SLAb

adj |T | − dj
ajt 1 if job j is in maintenance hangar at time period t, else 0
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1. INTRODUCTION

Due to urbanization and increasing population size, tram service operations have

become a challenging task day by day for tram service providers. They should operate

vehicles efficiently so that they satisfy passenger demands with a reasonable fleet size

and cost. The preventive maintenance plays an important role to fulfill this aim, as a

poor preventive maintenance policy results in too much breakdowns for vehicles. This

threatens transportation safety, diminishes availability of vehicles, incurs major repair

costs and damages the reputation of service providers. Service providers control various

service lines that each one of them has their own path. In this work, we engage in one

type of short term preventive maintenance operations in one service line while ignoring

heavy maintenances like overhauls and multi-types in any of these service lines.

Tram service providers need to provide efficient services to satisfy increasing pas-

senger demands to their services. While doing that, they must also consider planning

their services successfully through using their resources in full potential. Hence, they

should manage their system not only considering only preventive maintenance cycles,

but also their resources like manpower and hangar tracks. Besides, they need to run

their system according to demand pattern to their services. Therefore, all these as-

pects of the vehicle maintenance system need a holistic approach, as focusing on one

of these features while disregarding another one would lead to suboptimal results in

the long term. Yet, usually the provider is not aware of this suboptimality in their

plan because they confront daily operational problems like satisfaction of demanded

vehicle quantity. Since it is costly to see the effects of such an approach in an existing

system, we build an abstract environment to see long term effects of factors that have

an impact upon the system.

Our maintenance hangar consists of one single dead-end track. Hence, vehicles

are parked to track according to LIFO rule. It entails that park time of each vehicle

at this track does not equal to maintenance or intended stay time at all cases. Let
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us consider two vehicles. One of them is already parked and while its stay, another

vehicle parks into that track. After a while, already parked vehicle tries to leave the

track but it is obstructed by later incoming vehicle. This case is called crossing. This

makes the problem harder to solve. Preventive maintenance interval is a time window

that a vehicle can undergo a maintenance. Since one vehicle contains many parts and

each part has its own maintenance time window, actually there are several intervals per

vehicle. Nevertheless, we employ one stop principle which is a combination of main-

tenance jobs in one stop. Dekker [3] names it as opportunistic maintenance in which

neighboring and deteriorated components of the main failed components undergo pre-

ventive action. Therefore, we assume that every vehicle has one maintenance interval

and thus one maintenance job.

Service Level Agreement (SLA) is an agreement between the service provider and

the customer that provides a guarantee for satisfaction of determined service levels [4].

We are interested in commitments between a city and a tram/train service provider.

In this regard, the customer is people living in a city and the tram service provider

aims at fulfilling their travel demands via assigning convenient type and number of

vehicles [5]. We consider the commitment from the maintenance planner of the tram

service provider’s point of view. For them, operation department of the provider is

a customer such that their SLA targets must be met. Number of demanded vehicles

vary by time so it results in a temporal SLA schedule. In order to prevent SLA breach,

providers utilize spare vehicles to diminish the effect of breakdowns and preventive

jobs.

In this thesis, we introduce the problem of vehicle maintenance scheduling under

service level agreement (SLA) and preventive maintenance cycles in a single dead-end

track. To the best of our knowledge, there is no work that deals with all of these aspects

of the problem simultaneously. Furthermore, we show that even only hangar parking

scheduling at the track is NP-Hard in the strong sense. During maintenance schedul-

ing, we consider two operational scenarios. We define a due time in maintenance time

window. It is a target point that vehicle maintenance should begin. If maintenance
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begins before it, preventive job becomes early and tardiness is occured if we pass the

point. Corrective job tardiness is defined as time between breakdown event and main-

tenance start time. We build MILP model to solve the problem in which we minimize

penalized SLA and latest maintenance start point violations as well as earliness and

tardiness of preventive jobs and weighted tardiness of corrective jobs.

We derive a number of valid inequalities and some formulation improvements

so as to speed up computational time. We also construct a heuristic to generate an

initial feasible solution for the MILP solver. We propose two alternative method-

ologies to tackle negative effects of stochastic arrivals on performance indicators of

preventive jobs. We create a discrete-event simulation environment to test the solu-

tion method. Throughout tests, we employ a rolling horizon method to schedule jobs

using our methodology on each day by the end of the planning horizon for each pa-

rameter combination. We report results of our numerical experiments that measure

for performance of our methodology under various solution parameters. As a result of

the simulation study, we aim to draw conclusions about the general system and make

general recommendations to assure a solid vehicle maintenance scheduling.

Rest of this work is organized as follows: We explain the problem in detail in

Chapter 3. In Chapter 4, we elaborate on our solution methodology. In Chapter 5,

we explain instance generation, warmup period and CPLEX parameter fine-tuning.

Chapter 6 points out computational study, discussion of operational scenarios and

alternative method comparisons with the MILP model. We draw conclusions from

tests in Chapter 7.

Contributions of this work are as follows:

� It investigates the effect of SLA on a vehicle maintenance schedule at the single

dead-end track. Other works might take various service demands like flight hours,

flight legs or train duties into account but none of them are regarded as SLA.

� It incorporates single dead-end track into vehicle maintenance scheduling.



4

� It is one of the few studies in the literature that handles corrective maintenance.

� It considers a due time in maintenance time window.

� We make use of a heuristic, model improvements and CPLEX parameter fine-

tunings to come up with efficient solutions during rolling horizon.

� It takes proactive methods into account to come up with robust schedules in the

existence of corrective jobs.



5

2. LITERATURE REVIEW

There are vast number of studies that treats maintenance operations and trans-

portation together in different manners. We generally examine preventive maintenance

in terms of application areas. After that, since our work includes also corrective main-

tenance, we refer works how they treat stochasticity in their problem. Finally, our

review ends with works that deal with parking in railtracks.

2.1. Train, Tram and Bus Maintenance

Haghani and Shafahi [6] handle bus maintenance scheduling problem such that

they minimize the time that bus is out of service to maximize service reliability. Jing [7]

concerns the impact of vehicle planning according to depots and depot capacity on

deadhead km (non-value added trips) and average service delay. He uses a discrete

event simulation for modelling interactions between different components of the system.

He concludes that vehicles should be distributed to lines appropriately and new depot

should be opened on a location where there is no depot in the neighborhood exists.

In trains, we encounter vehicle routing problems that are comprised of either

rolling stock assignment or rolling stock circulations. Giacco et al. [8] take circulation

into account with considering empty rides and maintenance issues so as to minimize

number of trams required. Cadarso [9], Maróti and Kroon ( [10], [11]) build models to

route each individual rolling stocks into maintenance depot. Lai et al. [12] is different

from them by concerning two maintenance types and deadhead movements. They

handle routing and two maintenance types which are daily inspection(DI) and monthly

inspection(MI). They minimize replacement cost of wrong assigned trains to trips,

deadhead kms along with maintenance costs while ensuring feasible assignments to

trips and depot capacity limits. They derive a heuristic to attack the problem. Since

it has two maintenance types and replacement issue like Sriram and Haghani [13], they

are similar in this regard but they treat these maintenances in a different way. Lai et
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al. [14] is an extension of it in which they find out optimal DI times in the presence of

MIs. At last, Jacobsen and Pisinger [15] schedule trains in workshops and depot tracks

in order to finish repairs while avoiding blockings in LIFO track and deadlines which

causes tardiness.

Few works in preventive maintenance deal with high level maintenance issues. Lin

and Lin [16] turn km requirements into days which is same conversation method we

apply in our problem. They dispatch every train within their maintenance time window

unlike us because we allow its violation as a soft constraint. They minimize unutilized

remaining millaege by taking maintenance capacity and rate related constraints into

account and solve the problem simulated annealing based solution approach. Sriskin-

dajarah et al. [17] establish a common due date for each train which is composed of

multiple railcars where each has its own due date. They minimize distance of each

due date to common due date through genetic algorithm. Vernooij [18] handles boo-

gie maintenance and diminishes work in progress of spare parts between maintenance

depot and overhaul center by smoothing preventive maintenance calls to depot. Ji-

ravanstit and Tharmmaphornphilas [19] consider monthly overhaul of vehicles from

different service lines by diminishing of number of machines used by different tasks.

They develop a MILP model for it. Then, given monthly plans, they devise a second

MILP model to come up with detailed schedule of tasks to check whether number of

machines at each month found by first model is feasible or not.

2.2. Aviation Maintenance

In aviation, we observe many diverse works. One group handles multi-commodity

formulations to model vehicle maintenance routing. We examine these works in two

classes. In the first class, problem is not daily, that is, solved for k-days or periodically.

Feo and Bard [20] introduces origin-destination pairs for each flights and considers

navigation of airlines on network in an infinite horizon while also considering a new

maintenance facility construction in their set partitioning model. Gopalan and Talluri

[21] treat the problem different than Feo and Bard [20] and introduce a polynomial
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time algorithm for aircraft maintenance routing problem in which aircrafts in fleets

are directed to maintenance station at every 3-days provided that flown routes during

the day is fixed. Sriram and Haghani [13] adopt Feo’s approach over existing facilities

but they also take Type B checks and cyclic weekly schedule with heteregeneous fleet

into account. El Moudani and Camino [22], by contrast, split this problem into two

parts. In the first part, airlines are alloted to flights with dynamic programming then

maintenance reassignments are made via greedy heuristic. Keysan et al. [23] deal

with maintenance timing of critical aircrafts. Because critical aircraft may overburden

a maintenance facility, they appoint critical and noncritical aircrafts to flights in k-

day period to ensure smooth hangar workload. Second class is about keeping track

of remaining maintenance hour or km calculations. Sarac et al. [24] employ a set-

partitioning model to employ branch-and-price algorithm. They minimize number of

unused legal flying hours for high-time or critical airplanes in one day horizon without

violating legal remaining flight hours, man-hour and slot availability of maintenance

stations. Basdere and Bilge [25] handle similar objective but make use of weekly

planning horizon and concern maintenance capacity in terms of number of aircrafts as

an extension. They propose a heuristic based on compressed annealing. Al-Thani et

al. [26] utilize almost same model with Basdere and Bilge [25] but they allow that an

aircraft can undergo more than one maintenance check within a week unlike Basdere

and Bilge [25]. Besides, they introduce graph preprocessing and valid inequalities and

solve the remaining instance by Variable Large Neighborhood Search(VLNS).

Second group of works do not cover routing. In terms of a relationship between

maintenance and flights, different approaches have been utilized in the literature. Some

of them focus on aircraft utilization to fulfill this criteria. Afsar et al. [27] succeed in

minimizing unused flight time of critical aircrafts that must undergo maintenance check

and mark other aircrafts as uncritical to maximize general aircraft utility. When we

look flight load maximization from a different side, we can see that it also corresponds

to minimization of lost flying hours between maintenance checks. Thus, Boere [28]

recommends a priority based scheduling reliant on a discrete event simulation for this

objective. If one considers maintenance costs, flight assignments that have already been
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made might be changed. Sriraram and Haghani [13] combat this issue via minimizing

costs during reassignment of already assigned flights. If more than one maintenance

base and other aircraft resources are taken into consideration, Yang and Yang [29]

minimize flight, opportunity and maintenance cost.

We generally detect studies on second group in military, especially in fighter air-

crafts. Verhoeff et al. [30] state that military part of the problem distinct itself from

civil counterpart due to having central maintenance base and mission readiness instead

of profitability. Mission readiness is a flight availability optimization for a given bud-

get. Mostly observed problems in this part can be named as Flight and Maintenance

Problem (FMP). According to Gavranidis and Kozanidis [31], FMP decides on assign-

ment of maintenance and flight hours to maximize unit fleet availability on a planning

horizon under certain flight and maintenance requirements. Verhoeff et al. [30] state

that sufficient training flight hours or loads are needed to keep aircrew in mission ca-

pable position. Pippin [32] determines flight load addressing this issue. He copes with

minimization of deviations of flight hours till maintenance from ideal phase flow line

while satisfying several flight hour bounds using MILP and another model which has a

quadratic objective function while ignoring maintenance phase. Rosenzweig et al. [33]

also consider Pippin [32]’s problem and model it with a MILP model that penalizes

weighted deviations from ideal line in a civil training aircrafts. First study that tackles

both maintenance and flight loads is Sgaslik [34]. He treats helicopter fleet mainte-

nance and mission assignment problem. Maintenance planning part is considered in

yearly planning model that penalizes violation of load and flight related constraints.

This model yields monthly maintenance schedule and required flight hours for each he-

licopter. The short term model takes these parameters into account and brings about

mission assignments of helicopter and spare helicopters. Steiner [35]’s work is similar

to Sgaslik [34]’s yearly plan. In his heuristic based approach, maintenance activities are

combined in master plan by shifting. Afterwards, optimization heuristic is executed

to obtain optimal maintenance schedule and so as to minimize variability in flying

hours per aircraft per time under maintenance and flight related constraints. The last

two papers generally study flight load and maintenance schedule generation but fail
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to handle residual flight load of aircrafts through time. In Kozanidis and Skipis [36],

residual flight time is defined as the total remaining time that an aircraft can fly until

it has to undergo a maintenance check. Furthermore, a total deviation index is used to

describe smoothness of residual flight times. It is the first paper that also takes residual

flight times into consideration. They handle maintenance and flight load constraints in

their bi-objective mathematical programming model which reckons with total number

of available aircraft for customer service and total residual flight time. Kozanidis et

al. [37] develop three heuristics for Kozanidis and Skipis [36] ‘s model since their model

is quite limited to yield a nondominated solution in a reasonable number of time on

large problems in terms of computational effort. Kozanidis et al. [38] is an extended

version of Kozanidis et al. [37] regarding theoretical, computational and heuristics im-

provements. Kozanidis et al. [39] handle only minimization of least squares of total

deviation of individual aircraft flight and maintenance times from their target values

via built mixed integer nonlinear model. Finally, Gavranidis and Kozanidis [31] tackle

this problem by virtue of maximizing residual flight time. It is the latest paper in their

series of works and comes up with an exact solution algorithm for the FMP problem

that find optimal solution for realistic problems in a reasonable time to fill the gap

in FMP literature where we see heuristics with poor solution quality like Kozanidis

et al. [37] or Kozanidis and Skipis [36] with computational intractable times. These

works in this field have generally common constraints except their different kinds of

objectives.

Other works take residual maintenance time in constraints into account but use

different objective functions. Given sortie and maintenance requirement, Cho [40] min-

imizes maximum number of aircraft in maintenance at any time to smooth maintenance

demand variability of fleet while distributing flights of aircrafts through time evenly.

They decompose their MILP into two subproblem in their solution method. At first,

they solve maintenance assignment problem and thereafter tackle flying assignments

given solution of first maintenance problem to get rid of incurred computer tractabil-

ity because of large datasets. Yet, it yields a suboptimal solution. Finally, Verhoeff et

al. [30] present a model which is unique in terms of considering three key components of
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operational readiness at the same time. First one is availability that is total functioning

duration of a fleet. Second one is serviceability that considers number of functioning

aircrafts at a specific instant of time. These conditions are concerned while maximiz-

ing minimum sustainability which is a third factor and related with total remaining

functioning duration of entire fleet at a particular time.

2.3. Corrective Maintenance

There is also a problem type that is similar to FMP problem but military aircraft

fleets undergo a maintenance check not after certain flight hours like FMP but after

part failures and scheduled maintenance intervals. Safaei et al. [41] treat a problem of

execution of a healthy military flight program where major probabilistic failures are

considered before and after daily flight mission checks. Their aim is to schedule repair

shop under workforce availability constraints to maximize available aircrafts in flight

fleet. Bajestani and Back [42] concern similar problem to Safaei et al. [41] in repair shop

but they schedule maintenance jobs in shop to determine start-time of maintenance

activities so that wave/fleet which comprises of various airplanes for military mission

covered best in the presence of aircraft failure probabilities and maintenance capacity.

Lastly, Lai et al. [12] and Lai et al. [14] consider stochastic breakdowns of trains as an

addition to their preventive maintenance problem.

2.4. Parking

In daytime, tram operations are executed according to a timetable that tram is

either in service or maintenance. Nevertheless, especially in nights, it is temporarily

out of operation so it is convenient to park it on shunting area near one of the stations

in the railway network. The main purpose is to park the rolling stock on shunt tracks

in such a way that railway process at the next morning can embark on without any

problem [43–45].
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Some works in the literature treat train unit shunting problem (TUSP). Freel-

ing et al. [46] strive to solve train unit shunting problem (TUSP) that is composed of

matching arriving and departing train units and parking these units to minimize total

shunting costs. However, they solve the problem in a separate way. Several papers

attack TUSP problem as an integrated approach. Fons [47] uses Freeling et al. [46]’s

parking model except allowing a parking at platform track. Kroon et al. [43] combine

two separate steps of TUSP in one model. Akker [48]’s work takes platform waiting

and moving train units between tracks into consideration which is different than Kroon

et al. [43]’s model, on the other hand Jekkers [49] makes use of flexible shunt times in

addition to Kroon et al. [43]’s approach. Gallo and Di Miele [50] stretch Winter and

Zimmermann [51]’s Quadratic Assigment Model by way of using on bus dispatch sched-

ule and Lübbecke and Zimmermann [52]’s through handling different vehicle lengths.

Cardonha and Börndörfer [53] derive a three-index variable that combines arrival, de-

parture and their assigned shunt track and solve the problem as a set-partitioning

model whereas Borndörfer and Cardonha [54] devise quadratic programming approach

and come up with a better model through relaxation this model.

Common assumption in these papers is that blocks which are result of matching

problem are given as an input to a train parking problem and parking is handled over

these blocks. However, they are different with regard to their focused parts in parking

problem. Lübbecke and Zimmermann [52] and Blasum et al. [55] deal with departure

parking problem of train unit vehicles but Winter and Zimmermann [51] investigate this

problem in detail that they not only handle departure parking but also deal with online

dispatching of incoming arrivals. Cornelsen and Di Stefano [56] treat dispatching trams

to free track and Hamdouni et al. [57] engage in dispatching buses to lanes in order

to minimize shunting efforts in the departure time of vehicles. Nevertheless, Cornelsen

and Di Stefano [56] opt for graph algorithms to this problem whereas Hamdouni et

al. [57] develop a robust formulation that is unlikely to be affected by incoming arrivals.

Beygo [2] develops a formulation that includes many real life constraints.
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Some papers make use of routing as well as parking and matching in depot.

Yet, they may utilize different approach while handling these problems. Lentink et

al. [58] decompose this problem into separate components while Hartog [59] tackles

this problem with an integrated approach.
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3. PROBLEM DEFINITION AND MOTIVATIONS

We introduce an integrated maintenance scheduling problem that incorporates

single dead-end track parking in hangar into vehicle maintenance scheduling under

SLA. Since this integrated problem contains three parts, which are single dead-end

track parking, vehicle maintenance scheduling considering preventive cycles and SLA,

we explain them separately. We formulate the problem and then we show that even

only the hangar parking scheduling at the track is NP-Hard in the strong sense.

Our maintenance hangar consists of one single dead-end track. Hence, vehicles

are parked to track according to the LIFO rule. In general, this type of track is called

LIFO track, while tracks without a dead-end is named free track [1]. An example of it

along with free tracks can be seen in Figure 3.1. In the figure, dead-end track and free

track represented as stack and deque, respectively.

Figure 3.1. Two Configurations of a Shunt Track [1]

.

As we mentioned earlier, parking stay time of each vehicle could be longer due

to crossing. Its example can be seen in Figure 3.2. Vehicle n prevents departure of

vehicle m which prolongs block m’s stay time. Therefore, the time a vehicle occupies a

capacity on the track does not only depend on the maintenance time. It distinguishes

this problem from train unit shunting problem literature in which crossings are not

allowed. Yet, parking is treated differently in this study because safety measures that
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are taken during vehicle maintenance allow crossings. It follows that, we can not assign

an exact stay time for each vehicle beforehand which makes it harder to schedule

maintenance operations.

Figure 3.2. Crossing Example [2]

We work on LIFO track, so we make some definitions to transform situations arise

in parking into our problem structure. We assume that vehicles are of equal length.

Hence there are fixed positions on the track. Suppose a vehicle is parked in a track

location k. During its stay, possible arriving and departing vehicles form a structure.

We specify it as a block. Each later incoming vehicle has also its own block, so the

structure is recursive. If no other vehicle visits the track during the parked vehicle’s

maintenance time, the vehicle leaves the track after its stay time. We call this case

as a simple block. Simple block structure naturally occurs once the vehicle is parked

into a last track position, m. Because last parked vehicle leaves the track after its

maintenance time. Each vehicle has one maintenance job, so we name the vehicle at

the root of the block as a base job. When any vehicle is parked into location k + 1

during base job’s maintenance duration, we define the vehicle as a child job. It results

in a parent-child relationship where base job is a parent of the child job. In general,

for two consequent track positions, we define some terms as follows:
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pj : Maintenance duration of job j

bi : Base job of block i

ci : Last arriving child of bi

Pi : Makespan of ith block

Pmax : Schedule makespan

Ii : Idle time of second track position at block i

Wi : Waiting time of bi at block i

Sj : Begin time of job j

CMj : Maintenance finish time of job j

C(S) : Finish time of block schedule S.

ZS : Objective value of schedule S

4i = CMbi − CMci (3.1)

Three cases arise in block schedule with regard to 4i value. They are given as

below:

a. 4i > 0 : Second track position remains idle 4i time then Ii = 4i.

b. 4i < 0 : As soon as bi’s processing time is finished, it has to wait −4i time owing

to the fact that the job at the second track position blocks the departure of bi.

Hence, Wi = −4i. This is called crossing.

c. 4i = 0 : No idle time of second track position or waiting time for bi.

One can see a block example where m = 2 and base job and first child job begins

at the same time in Figure 3.3.

Block makespan, Pi, is dependent on whether a block is simple or not. If it

is simple, then it equals to the processing time of the base job. Otherwise, it has a

parent-child relationship. In this case, Pi is determined by the value of 4i. Provided

that 4i ≥ 0, Pi is equal to pbi . Otherwise, Pi equals to sum of pbi and Wi.
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Figure 3.3. Various Block Schedules

SLA satisfaction is crucial and its breach necessitates penalty. Number of de-

manded vehicles vary by time so it results in a temporal SLA schedule. An instance

for this can be seen in Figure 3.4. In this depiction, x-axis indicates time points whereas

y-axis states the number of vehicles at t, that is, SLAt.

Figure 3.4. SLA Schedule Example

Maintenance departments make use of spare vehicles so as to relieve the effect of

unscheduled breakdowns and planned maintenance on SLA. Spare vehicles are number

of vehicles that are not required for maximum service. They can be measured by

operating spare ratio (OSR). It is the ratio of number of spare vehicles to vehicles that

are used in a peak service [60]. For example, consider an agency that has 100 vehicles,

keep 80 of them are needed in the peak service and the remaining 20 are kept for

possible breakdowns. The spare ratio for the agency is 20 / 80 or 25%. The spare ratio



17

changes from one system to another. Oregon public maintenance department [61] uses

15% whereas Metrofleet [62], which is a Washington train service provider, utilizes 20%.

Generally rail transit systems utilize OSR ranging from 10% to 30% that depends on the

age and condition of vehicles, vehicle fleet size, and the effectiveness of the maintenance

program [63]. OSR can be considered as a measure of distance of peak SLA demand

to total number of vehicles. We show an example of it in Figure 3.5. In the figure,

dotted line denotes the number of vehicles while solid line corresponds to SLA. OSR

is the ratio of spare vehicles and peak SLA value which is shown at the end of lower

part of the arrow. When we consider spare vehicles in a temporal fashion, the number

of available spare vehicles at each time changes as a result of distance between upper

and lower lines.

Figure 3.5. Spare Vehicles and SLA

Each vehicle has regular maintenance cycles because it is performed at certain

mileages. As an example, at every x km, a vehicle must be maintained. Yet, a main-

tenance can be processed within interval of x + −10% of x. If one assumes that, on

average a vehicle runs y km/hr, we can turn lower and upper limits of the interval into

hour by dividing them to y. Lower and upper limits of maintenance intervals depend

on both the vehicle and the maintenance type. Executing maintenance too early leads

to lots of excessive maintenance in total. Besides, it fails to minimize unused km’s till
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maintenance, which is a common objective in aircraft related papers ( [24], [25], [27]).

On the contrary, we cannot surpass the upper limit as it yields the rolling stock out

of service. In order to avoid from that situation, we define a due time which is the

time that a vehicle should be taken to maintenance. Because once that time is passed,

we are susceptible to a danger that we might violate a latest maintenance start time.

Hence, we aim at calling vehicles from the service as closest extent to it. An example

of the maintenance interval is shown in Figure 3.6.

Figure 3.6. Preventive Maintence Interval and Scheduling Due time

In real life, a planner builds a schedule for a current scheduling period (SP). Yet,

some events might occur at previous time that disrupted latest schedule. In our case,

these events are corrective maintenance jobs. In order to handle these deteriorating

effects, we need a reactive schedule. Besides, even if there is no corrective job, we should

consider that upcoming preventive jobs could alter the current schedule. Addressing

this issue, we utilize a rolling horizon. To do so, we implement current solution, update

job data for consequent time periods, and perform a reschedule again, and so forth [64].

In other words, we employ a rescheduling strategy in which we perform a periodic

update with complete regeneration [65]. In our work, we ascertain implementation

time of the schedule as one day and decision period or SP as seven days, which is used

in [12]. It means that we make a reschedule on every day from scratch with updated

data.

In detail, we determine a maintenance list that is comprised of preventive jobs and

corrective jobs at the beginning of SP. We name it as critical jobs. We only deal with

critical jobs and rest of vehicles are not in the maintenance list. So, they are uncritical.

In addition, if any job operation begins on previous day but not have finished yet, we

continue its processing on current day. We specify them as ongoing jobs. We schedule
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critical jobs according to some priority. During rolling horizon implementation, we

only execute first day of the schedule, slide the SP by one day and update critical jobs

with respect to first day realization and new SP. Changes over SP is depicted in Figure

3.7. Arrows denote corrective job arrivals. First roll ranges from day t−1 to day t+ 6.

When we produce a schedule, we defer roll one day in time. Thus, second roll begins

from day t and ends in t + 7. In this roll, we also take corrective jobs that arrive in

day t − 1 into account. From day t’s point of view, current SP covers day t to t + 7.

Current schedule and its relation with past day is shown in Figure 3.8. Jobs 1,11,7,5,9

and 2 are corrective jobs whereas rest of them are preventive jobs. Shaded parts of 7

and 5 are completed on the very beginning of the current schedule. Afterwards, we

consider corrective jobs 2 and 9 which are shown with arcs and comes on previous day.

We allocate them to appropriate positions in current SP.

Figure 3.7. Rolling Horizon Scheme

Figure 3.8. Weekly Schedule based on Critical Jobs
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If we extend two consecutive day example which is mentioned above, it can be

displayed as in Figure 3.9. Here, we have already executed first two days. Current SP

corresponds to roll 3 and covers day t + 1 to t + 8. In this work, we propagate this

scheme till end of the planning horizon.

Figure 3.9. Extended Rolling Horizon Scheme

If we only focus on preventive jobs, critical jobs consist of preventive jobs. In

Figure 3.10, since there are no corrective jobs, 2 and 9, which we mention in Figure 3.8,

they do not push preventive jobs 13 and 17 further in time. So, they can be scheduled

right after ongoing jobs. Besides, rolling horizon scheme is the same but we do not

take arrows in Figures 3.7 and 3.9 into account.

Figure 3.10. Weekly Schedule based on Preventive Jobs

Fulfillment of SLA depends heavily on maintenance scheduling. In preventive

maintenance, the number of vehicles at the hangar track diminishes available number

of vehicles for service, i.e., net capacity. At first, we study the case in which we only
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take preventive jobs into account. The relationship between parking capacity and SLA

can be seen in Figure 3.11. If we look at the figure, solid line represents the capacity,

m, that remains the same during the planning horizon. Let n denote fleet size. Dotted

line stands for net capacity, that is, n− SLA assuming that there is no out of service

preventive jobs at the beginning of SP. So, it is a function of SLA and seems as if we

looked at the SLA in reverse direction. Dyed region is the net parking capacity such

that its value at each time instant is the minimum of dotted and solid line values.

Because we do not want to violate SLA and parking capacity.

Second, we extend first case by attaching corrective jobs and out of service pre-

ventive jobs at the beginning of SP. They are called as out of service jobs. The case is

shown in Figure 3.12. If we look at the picture, dotted line states a little bit different

meaning than before. Let us denote n′ as the number of operational vehicles, which is

the number of vehicles that are not out of service, such that n′ < n. Since we satisfy

SLA from operational vehicles, number of vehicles remaining after SLA satisfaction

is depicted as dotted line. Whenever it goes below zero in y-axis, we encounter SLA

violation which indicates that we could not manage to satisfy SLA at the particular

point. In the figure, we observe such situations in [6-11] and [18-20] time intervals. We

also append a dashed line that portrays number of out of service jobs in our parking

track. As we process them, it declines to zero. So, it goes till a predetermined point

(23) parallel with dyed region. After that point, dyed region deviates from the dashed

line due to the fact that we assign preventive jobs that are not out of service. Con-

sequently, this case is reduced to first case. It can be seen from time 24 to 5 in the

picture. As a summary, dyed area is not only affected by solid straight and dotted

lines, but also by dashed line, because out of service jobs tend to be scheduled at the

earliest times of SP.

Given n vehicles, m track locations in a single dead-end track, maintenance job

list, preventive job maintenance intervals that comprises earliest and latest maintenance

start times with a due time in between them, maintenance processing times, breakdown

time of corrective jobs and the SLA, the problem is to find a schedule on a single dead-
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Figure 3.11. Relationship between SLA and Parking Capacity without Corrective

Jobs

Figure 3.12. Relationship between SLA and Parking Capacity with Corrective Jobs
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end track that minimizes deviations of maintenance begin time of preventive jobs from

their due time, weighted tardiness of corrective jobs and penalized SLA and latest

maintenance start point breaches.

Finally, we prove complexity of the problem. Simplest version of the problem is

the minimum makespan of all vehicles at hangar parking track. The following Theorem

3.1 shows that it is NP-Hard in strong sense in terms of optimization version.

Theorem 3.1. P2 || LIFO track || Pmax problem is NP-Hard in strong sense.

Proof. 3-Partition problem reduces to P2 || LIFO track || Pmax problem. Let’s write

3-Partition problem as follows [66]:

b

4
< aj <

b

2
j = 1, ..., 3t (3.2)

3t∑
j=1

aj = tb (3.3)

do there exist three element subset Si ⊂ 1, ..., 3t such that

∑
j∈Si

aj = b i = 1, ..., t? (3.4)

Reduce this problem into our problem in polynomial time by taking
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pj = aj j = 1, ..., 3t (3.5)

pj = b j = 3t+ 1, ..., 4t (3.6)

3t∑
j=1

pj = tb (3.7)

and assume m = 2 for track capacity. There exists a schedule with Pmax = tb if and

only if for each i block, we can find three jobs from 3.5 and assign them to second track

position such that sum of their job processing time equal to b while allocating any job

with pj = b as a base job. It is possible if and only if 3-Partition has a solution.
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4. MATHEMATICAL FORMULATIONS AND THE

SOLUTION APPROACH

In this chapter, we present MILP model that solves weekly vehicle maintenance

scheduling problem. We discuss how we formulate and improve its time efficiency. We

devise a polynomial time heuristic algorithm. Thereafter, we introduce two approaches

to handle corrective jobs efficiently. They also utilize the MILP model but recommend

extra adjustments considering anticipated stochastic arrivals in future time periods.

4.1. MILP Model

In any block, base job constitutes root job of the block. Inspiring from this, we

open bins at each track position as number of critical jobs and call each bin as base.

We try to allocate a job into it in the model. Once a job is allocated, it becomes the

base job of the block. So in our model, we will define each block with reference to

its base number. According to job assignments to bases, we form an assignment plot.

In this plot, each box means a specific base and numbers in bases point out allocated

job indices to relevant base while empty boxes indicate no job allocation to that base.

Should there exists a parent-child relationship, we show it via an undirected arc. An

example schedule and its assignment plot can be seen in Figure 4.1. In the figure,

we observe some portion of the schedule in part a whereas part b demonstrates its

assignment plot. In part a, 1 is the base job and jobs 5,4 are its children. Hence, we

represent this relationship in part b through undirected arcs between 1 and 4,5.

Figure 4.1. Schedule and its Assignment Plot
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4.1.1. Assumptions

(i) Scheduling period covers only critical jobs.

(ii) Each vehicle has unit length.

(iii) Each vehicle has one combined maintenance job during the scheduling period.

(iv) Maintenance hangar comprises of one dead-end track so trams can only approach

it according to LIFO.

(v) Jobs are taken from customer service to maintenance track immediately.

(vi) Preemption is not allowed.

4.1.2. Sets

J Vehicle maintenance jobs, j ∈ J

PM Preventive jobs

U Corrective jobs

CR Critical jobs, CR = PM
⋃
U

NC Noncritical jobs, NC = J\CR

T Time Horizon, t ∈ T

C Track positions, i ∈ C

B Bases, b ∈ B s.t |B| = |CR||C|

OB Bases where ongoing jobs reside, b ∈ OB

OJ Ongoing jobs, j ∈ OJ

Bi Bases at track i s.t Bi = {(i− 1)|CR|, ..., i|CR| − 1}

4.1.3. Parameters

SLAt Number of required vehicles to satisfy SLA at time t

Y min
j Begin time of maintenance interval of job j

Y max
j End time of maintenance interval of job j

pj Maintenance duration of job j

rminj = max
(
Y min
j , 0

)
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rmaxj = max
(
Y max
j , 0

)
dj Due time of job j

M Large number

ε Penalty per one unit violation of dj, j ∈ U

σ Penalty per one unit violation of Y max
j , j ∈ PM

γ Penalty per one unit violation of SLA schedule

4.1.4. Decision variables

yab 1 if a is a child of b where b ∈ Bi, a ∈ Bi+1, else 0

zab 1 if Fa > Sb +
∑

j∈CR xbjpj given that yab = 1, else 0

wb 1 if Fb = Sb +
∑

j∈CR xbjpj, else 0

xbj 1 if job j is assigned to base b, else 0

Tj Tardiness time of job, j ∈ PM

Time between breakdown of a vehicle and its maintenance start time, j ∈ U

Ej Earliness time of job j

ejt 1 if job j exits from maintenance hangar at the end of time period t, else 0

bjt 1 if job j’s maintenance work begins at time period t, else 0

ajt 1 if job j is at maintenance hangar at time period t, else 0

ojt 1 if job j is out of service at time t, else 0

npj 1 if job j is delayed to next period, else 0

4SLA−t Number of trams fails to satisfy SLAt demand

4Y max+
j Number of time units that Y max

j is violated

Pb Park time of base b

Sb Start time of base b

Fb Finish time of base b

Lbj Linearization of xbjFb

Bbj Linearization of xbjSb

Sj Maintenance start time of job j

Cj Exit time of job j from maintenance hangar
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4.1.5. Mathematical Model

Min
∑
j∈PM

(
Tj + Ej + σ4 Y max+

j

)
+ ε
∑
j∈U

Tj + γ

|T |∑
t=1

4SLA−t (4.1a)

s.t.∑
b∈B

xbj + npj = 1 j ∈ CR

(4.1b)∑
j∈CR

xbj ≤ 1 b ∈ B

(4.1c)∑
j∈CR

xbjpj ≤ Pb b ∈ B

(4.1d)∑
b∈Bi

yab ≤ 1 a ∈ Bi+1, i<|C|

(4.1e)

yab ≤
∑
j∈CR

xbj b ∈ Bi, a ∈ Bi+1, i<|C|

(4.1f)

yab ≤
∑
j∈CR

xaj b ∈ Bi, a ∈ Bi+1, i<|C|

(4.1g)

xaj ≤
∑
b∈Bi

yab j ∈ CR, a ∈ Bi+1, i<|C|

(4.1h)
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∑
j∈CR

xaj ≥
∑
j∈CR

x(a+1)j a ∈ Bi (4.2a)

Fb ≤ Sb +
∑
j∈CR

xbjpj b ∈ Bi, i = |C| (4.2b)

Fb ≤ Sb +
∑
j∈CR

xbjpj +M

 ∑
a∈Bi+1

yab

 b ∈ Bi, a ∈ Bi+1, i<|C| (4.2c)

Fb ≥ Sb + Pb b ∈ B (4.2d)

Fb ≥
∑

j∈PM |Ymin
j >0

xbjY
min
j + Pb b ∈ B (4.2e)

zab ≤ yab b ∈ Bi, a ∈ Bi+1, i<|C| (4.2f)

Fb ≥ Fa −M(1− yab) b ∈ Bi, a ∈ Bi+1, i<|C| (4.2g)

Fb ≤ Fa +M(1− zab) b ∈ Bi, a ∈ Bi+1, i<|C| (4.2h)

Fb ≤ Sb +
∑
j∈CR

xbjpj +M(1− wb) b ∈ Bi, i<|C| (4.2i)

∑
a∈Bi+1

zab + wb = 1 b ∈ Bi, i<|C| (4.2j)

Sa ≤ Sb +
∑
j∈CR

xbjpj − 1 +M(1− yab) b ∈ Bi, a ∈ Bi+1, i<|C| (4.2k)

Sb ≤ Sa +M(1− yab) b ∈ Bi, a ∈ Bi+1, i<|C| (4.2l)

Sb+1 ≥ Fb b ∈ Bi, i ∈ C (4.2m)

Bbj ≤ Sb b ∈ B, j ∈ CR (4.2n)

Bbj ≥ Sb −M(1− xbj) b ∈ B, j ∈ CR (4.2o)

Bbj ≤Mxbj b ∈ B, j ∈ CR (4.2p)

Lbj ≤ Fb b ∈ B, j ∈ CR (4.2q)

Lbj ≥ Fb −M(1− xbj) b ∈ B, j ∈ CR (4.2r)

Lbj ≤Mxbj b ∈ B, j ∈ CR (4.2s)

Sj ≥ Y min
j (1− npj) j ∈ PM |Y min

j > 0 (4.2t)

Sj =
∑
b∈B

Bbj j ∈ CR (4.2u)

Cj =
∑
b∈B

Lbj j ∈ CR (4.2v)
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Tj ≥ Sj + |T | − dj − |T |(1− npj) j ∈ CR (4.3a)

Ej ≥ dj − Sj − |T |npj j ∈ PM (4.3b)

Tj −4Y max+
j ≤ Y max

j − dj j ∈ PM (4.3c)∑
t∈T

tejt = Cj j ∈ CR (4.3d)

∑
t∈T

ajt = Cj − Sj j ∈ CR (4.3e)

∑
t∈T

bjt + npj = 1 j ∈ CR (4.3f)

∑
t∈T

ejt + npj = 1 j ∈ CR (4.3g)

∑
t∈T

tbjt = Sj j ∈ CR (4.3h)

ajt ≤ 1−
t∑
l=1

ejl j ∈ CR, t ∈ T (4.3i)

ajt ≤
t∑
l=1

bjl j ∈ CR, t ∈ T (4.3j)

∑
j∈CR

1− (ajt + ojt) +4SLA−t ≥ SLAt − |NC| t ∈ T (4.3k)

ojt = 1−
t∑

i=rmin
j

bji j ∈ PM, t ≥ rmaxj (4.3l)

ojt = 1−
t∑

i=rmin
j

bji j ∈ U, t ∈ T (4.3m)

xbj = 1 b ∈ OB, j ∈ OJ (4.3n)

Bbj = 0 b ∈ OB, j ∈ OJ (4.3o)

Lbj ≥ pj j ∈ OJ (4.3p)
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ajt, ejt, bjt, npj = {0, 1} j ∈ CR, t ∈ T (4.4a)

xbj = {0, 1} j ∈ CR, b ∈ B (4.4b)

yab = {0, 1} b ∈ Bi, a ∈ Bi+1, i<|C| (4.4c)

Sb, Fb, Pb ≥ 0 b ∈ B (4.4d)

Tj, Cj, Sj ≥ 0 j ∈ CR (4.4e)

Bbj, Lbj ≥ 0 b ∈ B, j ∈ CR (4.4f)

The objective function (4.1a) minimizes sum of tardiness, earliness, penalize Y max
j

violations for planned jobs, tardiness of corrective jobs and failure of SLAt satisfaction.

(4.1b) states that base assignment is performed for each job as long as npj = 0. (4.1c)

accounts for at most one job assignment to a given base. (4.1d) yields a lower bound

for a block makespan in terms of base job j. Each child has at most one parent and this

is satisfied by (4.1e) constraints. (4.1f) - (4.1h) constraints are used for linking parent-

child variable yab to xbj. A base number assignment for each job does not matter once

they belong to same track position i and preserve their order among themselves. This

issue brings about a symmetry. (4.2a) constraint is used to eliminate symmetry at each

track position i. (4.2b)-(4.2e) constraints ensure base finish time. In detail, (4.2b) and

(4.2c) determine Fb given that block is a simple block. (4.2d)-(4.2e) identify a lower

bound for Fb regarding maximum of Sb and Y min
j of assigned job. (4.2f) clarifies that zab

could be employed once yab = 1. (4.2g) guarantees that child of a block finishes before

its parent. (4.2h) - (4.2j) make sure that Fb is maximum of child block’s finish time and

Sb +pj. (4.2k) specifies that child begin time is no later than Sb +pj−1. (4.2l) assures

that begin time of a child base cannot start earlier than its parent. (4.2m) identifies

the following base can start after its immediately before base is finished. (4.2n)-(4.2p)

are linearization constraints of xbjSb. (4.2q)-(4.2s) are linearization of xbjFb. (4.2t)

certifies that job begin time must be after than its ready time provided that npj = 0.

(4.2u) - (4.2v) deal with maintenance job start and finish time, respectively.
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(4.3a) and (4.3b) are tardiness and earliness constraints, respectively and they

are reliant on npj value. (4.3c) identifies an upper bound for a tardiness and is a soft

constraint for Y max+
j point violation. (4.3e) makes sure that sum of ajt times of a given

job must be equal to its stay time at maintenance hangar. (4.3d) links exit time of

a given job to maintenance finish time of the base that this specific job is assigned

to. On the condition that npj = 0, (4.3f) guarantees the initialization of maintenance

decision whereas (4.3g) assures that maintenance of each job must end somewhere in

the scheduling period. Otherwise, they cannot be scheduled on hangar. (4.3h) links

maintenance start time period of a job to maintenance begin time of the base that this

specific job is assigned to. (4.3i) states that a job cannot be at maintenance hangar

after its maintenance is finished. (4.3j) specifies that a job cannot be at maintenance

center before its maintenance starts. (4.3k) is a soft constraint that satisfies SLA

demand. A vehicle cannot be at passenger service if it is in ajt = 1 or ojt = 1 state.

Having 4SLA−t larger than zero is penalized in objective function. (4.3l) makes sure

that if the job maintenance has not begun till t ≥ rmaxj , job remains out of service

state. The same point is employed at (4.3m) where t ≥ rminj . (4.3n) - (4.3p) schedule

remaining maintenance process times of ongoing jobs at pertinent tracks. (4.4a) -

(4.4c) are binary variables while (4.4d) - (4.4f) are continuous variables. Finally, big

M is selected as |T | as it is the tightest parameter that all variables are defined until

this value.

4.2. Model Improvements

4.2.1. Optimality Conditions

Definition 4.2.1. Pasc is a set where jobs in CR are ordered in nondecreasing order

of their processing times

wkb: Begin time of the current week

m: Number of track locations

wke: End time of the current week

begi: (i− 1) |CR| , i ∈ C
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endi: i|CR| − 1 , i ∈ C

Jtard:
{
j ∈ CR|j ∈ U

⋃
j ∈ PM s.t Y max

j ≤ wkb
}

NP :
{
j ∈ PM | Y max

j ≥ wke
}

pmax: maxj∈CRpj

PW :
{
j ∈ CR| Y min

j ≤ wkb + pmax
}

IB: {b ∈ B|b = 0, .., begk} where k = min (m, |Jtard|)

posb: Least number of assigned jobs till base b beginning from base 0 where posb =

(b− begi + 1) + (i− 1)

cub: Maximum possible number of children for any base b ∈ Bi, i < m based on

processing times

Kb: Upper bound value for b’s number of children such that Kb > 0 and Kb = |CR| −

posb

Lemma 4.1. Optimum schedule is composed of distinct successive blocks.

Proof. Assume a moment in time frame such that both track positions are empty given

that m = 2. Then while a base job is parked on first track position, we obtain either a

block with a parent-child relationship or a simple block. After Pi time, the vehicle(s)

at the block leaves the track. As a result, we again have a situation that both track

positions are unoccupied. Therefore, all jobs can be parked into track as successive

blocks. Since optimum schedule is a feasible schedule, it is also formed from successive

blocks.

Lemma 4.2. There exists an optimal schedule where every b ∈ Bi, i < m can have a

child job at bases ranging from begi+1 to begi+1 +Kb − 1.

Proof. As a result of inequality (4.2a) in Model, we deduce that at least posb jobs are

allocated to the track where posb = (b− begi + 1) + (i− 1). First term in parenthesis

states number of jobs have been assigned till b ∈ Bi beginning from begi whereas second

parenthesis explains that b is filled as a child of any b′ ∈ Bi−1 given that i > 1. So,

there remains Kb = |CR| − posb unassigned jobs which are candidate to be allocated
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as a children of b. It follows that if Kb > 0, children base numbers begin from begi+1

and end with begi+1 +Kb − 1.

Lemma 4.3. There exists an optimal schedule where every b ∈ Bi, i < m can have cub

children at the most adverse case.

Proof. At the most extreme case, assume at any base b ∈ Bi, i < m, there exists

a job j such that pj = pmax. Besides, its children are allocated to the track in the

nondecreasing order of their pj times in such a way that it follows the index order of

Pasc set. We thereby define cub as follows:

cub−1∑
i=1

pi < pmax

cub∑
i=1

pi ≥ pmax

Corollary 4.4. Lemma 4.2 and 4.3 lead to the conclusion that number of children for

any base b ∈ Bi, i < m equal to min (Kb, cub) in an optimal schedule.

Lemma 4.5. There exists an optimal schedule where number of bases at each track

i > 1 is at most |CR| − (i− 1).

Proof. Every base b ∈ Bi, i > 1 is a child of any base b′ ∈ Bi−1. It means that i − 1

jobs are already assigned till track i. Thereby we can allocate at most |CR| − (i− 1)

bases at track position i for possible job assignments.

Lemma 4.6. For jobs j, j′ ∈ Jtard such that p′j ≥ pj, if they form a parent-child

relationship in the same block, then there exists an optimal schedule where j is a child

job of j′.
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Proof. Let we have two jobs j, j′ ∈ Jtard such that p′j > pj in Bi and m = 2. Assume

that we have an optimal schedule S where j is a base job, j′ is a child job, Sj′ ≥

Sj,Wi > 0 in block Bi. Note that Wi > 0 always occurs as p′j > pj. According to

Sj′ and Sj values in S, we define dist = Sj′ − Sj. If we interchange j and j′, we have

a schedule S ′ where j′ is a parent job of j such that Sj ≥ Sj′ . Since both jobs are

displaced dist in time and they are identical, Z value is not affected by new begin times

of these jobs. Yet, there may be free space changes between these schedules. Let we

introduce a new term space = {(C(S)− C(S ′))m}. Two cases can occur in S ′ with

respect to 4i value:

� Case 1: Ii > 0 in S ′

If dist = 0, then we obtain a schedule S ′ where C(S) = C(S ′) thus space = 0.

Since Ii > 0, we attain a free space to schedule other jobs in CR. One can see an

example of it in Figure 4.2. If not, both space > 0 and Ii creates an ample space

to schedule other remaining jobs. An instance of it is depicted in Figure 4.3. So

the change results in Z ′S ≤ ZS with regard to both dist values which means that

we obtain a schedule at least as good as S.

Figure 4.2. Case 1 Change in Parent-Child Relationship when dist = 0

Figure 4.3. Case 1 Change in Parent-Child Relationship when dist > 0
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� Case 2: Wi is diminished in S ′

We get a schedule S ′ in which C(S ′) < C(S). This results in space > 0 which

increase free space as we mentioned in Case 1. Thus, S ′ is at least as good as S.

See Figure 4.4 to see an instance of this issue.

Figure 4.4. Case 2 Change in Parent-Child Relationship

Lemma 4.7. In an optimal schedule, k = min (m, |Jtard|) of jobs j ∈ PW are allocated

to blocks b ∈ IB unless there exists an ongoing job from previous day

Proof. Jtard jobs are out of service such that they are required to be scheduled as early

as possible. Since we have m track capacity, first bases at each track are employed so

as to minimize tardiness of jobs in Jtard. Yet, we cannot guarantee that all of them

are assigned to first bases as ∃j ∈ PW, j /∈ Jtard such that it can also be located in

these bases. Provided that |Jtard| < m, |Jtard| of them are employed. Else, we utilize

m as we have more Jtard jobs than capacity. Therefore, number of such bases are

min (m, |Jtard|) and these bases are indicated by IB. Should there exists a job j ∈ OJ ,

it fills one of IB blocks so this allocation could not happen.

4.2.2. Model II

With a further analyze, we update the MILP model presented in Section 4.1.5.

The changes and their proofs are given below.

� We remove Fb ≥
∑
j∈CR

xbjY
min
j + Pb constraint (4.2e) and insert
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Sb ≥
∑

j∈PM |Ymin
j >0

xbjY
min
j instead of it.

This constraint specifies begin time of the block provided that xbj = 1. We

come into conclusion due to preliminary computational experiment results that

this constraint diminishes computational time more if we replace old one with

this.

� We replace (4.2b) constraint with Lbj ≤ Bbj + xbjpj, which is a disaggregation of

it.

� We substitute proposition 4.8 equalities for (4.3e), (4.3i) and (4.3j).

Proposition 4.8.

ajt =
t∑

l=rmin
j

bjl rminj < t < rminj + pj, j ∈ CR

ajt =
t∑

l=rmin
j

bjl −
t∑

l=rmin
j +pj

ejl t ≥ rminj + pj, j ∈ CR

are valid equalities.

Proof. We know that job cannot exit from maintenance hangar if it has not

started. Therefore, ajt = 0 so long as
∑t

l=rj+pj
bjl = 0. Once bjt′ = 1 at some t′,

then from t′ till Cj − 1, ajt = 1 because the job is still at hangar and not finished

yet. Earliest time that ejt can become 1 is rj + pj, so second equality starts right

after that threshold. When Cj = k, then ejk = 1 that leads to ajt = 0 where

t ≥ k which is in consistent with (4.3i).

� We delete (4.1e) from our model.

� We replace (4.1g) - (4.1h) inequalities with following equalities:

∑
j∈CR

xaj =
∑
b∈Bi

yab (4.5)

It is true because we can talk about a parent-child relationship only if there exists

an assigned job in any of the candidate children bases.
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� Dimensionality Reduction I

We employ lemma 4.5 to decrease number of bases at every track. Regular

candidate child job allocations can be seen on left side of Figure 4.5. Once lemma

is employed, it results in candidate children assignments as shown in right part

of the picture. Colored bases denote that it is impossible to locate any job there.

Figure 4.5. Possible Assignments to Track Locations with respect to Lemma 4.5

In order to diminish redundant relations between parent and children bases, we

define following additional terms:

numb: k th number of base at track i < m, numb = b− begi + 1

numa: k th number of base at track i+ 1, numa = a− begi+1 + 1

tb = Threshold for possible number of children of base b such that tb = numbcub

B
′
i : begi....endi − (i− 1)

B
′
i+1 : begi+1....endi+1 − posb

B
′
i−1 : begi−1....endi−1 − (numa + i− 2)

B
′
i and B

′
i+1 follow from lemma 4.5 and lemma 4.2, respectively. B

′
i−1 is true

because endi−1− ((i− 1)− 1) is different version of B
′
i. numa is subtracted from

that value because it is ath candidate children with respect to possible base at

i− 1.

By means of Corollary 4.4, for almost every parent-child relationship in the model,

we select b ∈ B′i, a ∈ B
′
i+1 such that numa ≤ tb. Furthermore, we define following

equalities so as to rule out cases beyond these sets.
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yab = 0 b ∈ B′i, a ∈ B
′

i+1, numa > tb (4.6)

zab = 0 b ∈ B′i, a ∈ B
′

i+1, numa > tb (4.7)

We present Figure 4.6 to clarify equations 4.6 and 4.7. We take cub = 2 and gray

areas denote the locations that we cannot assign any job since posb jobs have

already been assigned till any base b ∈ Bi. Minus sign is for bases that we are

not eligible to assign any jobs. In left picture, tb′ = 2, consequently for third

and fourth bases in i = 3, we put a minus sign. On the right, we take b′′ as a

root base. Since tb′′ = 4, it seems that we could appoint a job with respect to

equations 4.6 and 4.7 but as Kb = 3, we suspend three bases beginning from last

base in i+ 1 = 3, so the minus sign follows.

Figure 4.6. Possible Parent-Child Assignments based on b′ and b′′

Only for our newly defined equation 4.5, for every a ∈ B′i, i > 1 and we sum yab

over b ∈ B′i−1 provided that there exists a job in a. In order to clarify this, for

a given a in i = 3, four bases from b ∈ B′i−1 can be a parent of a. It is denoted

in the left side of Figure 4.7. However, once we move onto a′ in B
′
i, number of

candidate parent bases diminishes to three as depicted in right side of Figure 4.7.

Figure 4.7. Possible Parent-Child Assignments based on a
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� Dimensionality Reduction II

Here, we intend to find b′, b∗ ∈ Bi such that it becomes impossible to dispatch a

job to bases b′ > b∗. We update aforementioned posb according to track indices

and name it as wnb. We give equations for each base b as below where A =

dnumb

cub
e.

wnb = numb + A b ∈ Bi, i = 2 (4.8)

wnb = numb + A+ d A
cub
e b ∈ Bi, i = 3 (4.9)

The point in equation 4.8 is that b is parked above numAth base in i− 1th track.

Because if each parent has cub children at worst case, there must have been A

parents which is the minimum number of bases at track location i − 1 to reach

base b in track location i. Using that logic, we extend it to equation 4.9. In

equation 4.9, b in track 3 is above Ath base in track 2 which is also on the top

of d A
cub
eth base in track position 1. By means of this method, we can generalize

these equalities as follows:

wnb = numb +
i−1∑
k=1

χk

where χ0 = A and χk = dχk−1

cub
e for a given i > 1

Afterwards, we determine b∗ such that wn∗b ≤ |CR| and wnb∗+1 > |CR|. Note

that base numbers begin from 0. For instance, we have |CR| = 8 and cub = 2.

So, we depict in Figure 4.8 that b∗ = 12 is the last point for assignment. Because

numb∗ = 5 which makes wnb∗ = 8 with reference to equation 4.8. It follows that

from b′ = 13 to b′′ = 14, we fix xbj = 0 which are shown as minus sign.

At track position 3, seven jobs have already been allocated till b = 19 with regard

to equations 4.9. Hence, we do not allocate any jobs to bases with minus sign

which are shown at Figure 4.9. Note that gray areas show the places where it is
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Figure 4.8. Maximum Job Assignments to Second Track Position Example

impossible to allot any kind of job. In conclusion, we derive equality 4.10 so as

to prevent job allocations to these bases.

Figure 4.9. Maximum Job Assignments to Third Track Position Example

xbj = 0 b ∈ B′i, b > b∗, j ∈ CR (4.10)

� Dimensionality Reduction III

In the worst case, we have already appointed wnb jobs till block b, b ∈ Bi due

to Dimensionality Reduction II (equations 4.8 and 4.9). Hence, we can at most

assign |CR|−wnb jobs as children of that particular base. Yet, we can build a child

arc from that base till base b′, b′ ∈ Bi+1 such that b′ ≤ tb because of Dimensionality

Reduction I. Therefore, we call this amalgam rule as Dimensionality Reduction

III. For a depiction, in the left part of Figure 4.10, two base positions in the third

track are candidate to be children of the base b. When we apply dimensionality

reduction III for b, wnb = 5 so 6 − 5 = 1 base in third track position lefts to be

a potential child candidate. It leads to right part of the picture.
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Figure 4.10. Possible Job Assignments to Track Position 3

We have shown techniques to diminish parent-child relations in our model. We

give a simple instance in Figure 4.11 to see effects of these techniques. In picture

a, as we modelled, all relations exist between parent-child bases. Once we apply

Lemma 4.5 to decrease relations, our relation map results in picture b. Thereafter,

we can employ dimensionality reduction I and II to come up with a relation map

as picture c. All in all, we diminish number of relations from 17 to 7 and finally

3. Therefore, these reductions help us reduce problem size substantially.

Figure 4.11. Dimensionality Reduction Example
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� Other inequalities

Proposition 4.9. The following equalities are valid:

ejt = 0 t<rminj + pj, j ∈ CR (4.11)

ajt = 0 t<rminj , j ∈ PM (4.12)

bjt = 0 t<rminj , t ≥ |T | − pj, j ∈ PM (4.13)

bjt = 0 t ≥ |T | − pj j ∈ U (4.14)

ojt = 0 t<rmaxj , j ∈ PM (4.15)

Proof. Since earliest end time for a job j is rj + pj, ejt values before that point

can be set to zero like (4.11). In (4.12), earliest time that job can enter to track

is rminj . So ajt and bjt values are fixed to zero prior to it. Furthermore, latest

start for a job is |T |−pj−1. So, from that point onwards, bjt = 0 for jobs in CR.

Finally, (4.15) maintains that a preventive job cannot be out of service before

rmaxj .

We replace (4.3d) - (4.3h) inequalities in Model with preposition 4.10.

Proposition 4.10. Following inequalities are valid.

∑
t≥rmin

j +pj

tejt = Cj j ∈ CR (4.16)

∑
t≥rmin

j

tbjt = Sj j ∈ PM (4.17)

∑
t≥rmin

j

bjt + npj = 1 j ∈ PM (4.18)

∑
t≥rmin

j +pj

ejt + npj = 1 j ∈ CR (4.19)

Proof. This preposition depends on preposition 4.9. Since ejt and bjt values are

zero before rminj + pj and rminj , respectively, deletion of these terms from model

does not change anything.
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Proposition 4.11. Given that dj ≥ |T |, npj = 1 is a valid inequality.

Proof. Since dj ≥ |T |, Tj = 0 is trivially correct. Yet, Ej > 0 in this case. In

objective function, Ej is minimized. It follows that, start time of maintenance

job must be as close as possible to dj which is ensured if upkeep operation begins

at next period. Thus, npj = 1.

Proposition 4.12. Let us define following terms:

adj = |T | − dj
bdj = |T | − pj − 1

Given that dj > bdj and dj − bdj > adj, then npj = 1 is a valid equality.

Proof. Model minimizes sum of earliness and tardiness in objective function for

preventive jobs, so we focus on the vicinity of dj. If dj ≤ bdj, we cannot know

exactly that whether the job is scheduled in this period or not. Yet, if dj > bdj, the

model either chooses to schedule jobs in this SP or delay to next period. Latest

time that a job is scheduled within this period is bdj that results in earliness.

Beyond this point, model delays it to next period so which causes tardiness as

adj. Therefore, model selects minimum of them and if adj < dj−bdj, job is delayed

to next period. So, npj = 1.

Proposition 4.13. Should Y min
j + pj ≥ |T |, then npj = 1 is a valid inequality.

Proof. The earliest time for Cj is Y min
j + pj in our block schedule. Cj relies on

t value w.r.t (4.3d). Since largest value that t can have is |T | − 1, a job cannot

assigned to maintenance hangar. This produces that npj = 1.

Proposition 4.14. Lemma 4.7 results in the inequalities given below:

∑
j∈PW

xbj = 1 b ∈ IB (4.20)

ybb′ = 1 b, b′ ∈ IB, b ∈ Bi+1, b
′ ∈ Bi (4.21)

Proposition 4.15. For each t, define ISt =
{
j ∈ PM |t < Y min

j

}
If |NC|+ |ISt| ≥ SLAt then 4SLA−t = 0.
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Proposition 4.16. Given that j ∈ NP , then 4Y max+
j = 0.

Proposition 4.17. Given that j ∈ PM such that j ∈ Jtard, then Ej = 0.

4.2.3. Optimality Cuts

Proposition 4.18. Following inequality follows from lemma 4.6

∑
j∈Jtard

xbjpj ≥
∑

j∈Jtard

xajpj−pmax(1−yab)−pmax(1−
∑

j∈Jtard

xbj) b ∈ Bi, a ∈ Bi+1, i<|C|

(4.22)

is an optimality cut.

4.2.4. Valid Inequalities

Proposition 4.19.

Cj ≥ Sj + pj(1− npj), j ∈ CR

is a valid inequality.

Proof. Given that npj = 0, job is scheduled. Hence Sj + pj yields a lower bound for Cj

because job may stay longer after Sj +pj due to hangar parking conditions. If npj = 1,

this is trivial because Cj ≥ Sj as Cj = Sj = 0. This completes the proof.

Proposition 4.20.

Lbj ≥ Bbj + pjxbj, j ∈ CR, b ∈ B

is a valid inequality.
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Proof. Once xbj = 0, Lbj = Bbj = 0 according to linearization constraints in our model

I. Suppose that xbj′ = 1 at some b and j′. It means that job j′ is in block b. Since Pb

is bounded below by pj regarding (4.1d), given inequality satisfies the model.

Proposition 4.21. Corollary 4.4 brings about the inequalities given below:

∑
a∈Bi+1

yab ≤ cub cub < Kb, b ∈ Bi, i < |C|

is a valid inequality.

4.3. Heuristic Algorithm

We develop a general heuristic scheme in Figure 4.12. Our main intention is to find

a feasible and efficient heuristic solution. If we succeed in finding such a solution, we

provide CPLEX the solution as a starting point. Because it diminishes computational

time of the exact approach [67]. This heuristic has O(|T ||CR|2) time complexity. It

stems from line 57 of Core Heuristic Algorithm. Note that |Set| on algorithms means

a cardinality of pertinent set.

Heuristic algorithm consists of two nested loops. In the inner loop, we run Core

Heuristic algorithm. In this algorithm, we iterate over t. At every t, we keep distance

of every job j to their due time and name it as slackj. We also define a neighborhood

parameter, neigh. neigh is given by outer loop. We at first select urgent jobs that are

either corrective or out of service. For other jobs, we select jobs such that slackj ≤

neigh and order other jobs in the order of increasing slackj because our aim is to

minimize deviation from due time. We combine these sets and form a candidate set,

Jt. We keep track of idle capacity of hangar and name it as hangarslack. At every t,

we pick either hangarslack jobs from Jt or all jobs from Jt if |Jt| < hangarslack and

form another set, say J ′t and order it in the decreasing order of pj times because we

would like to allocate job with bigger pj first. At t = 0, we assign ongoing jobs first

and then dispatch jobs from J ′t if there still exists idle track position. For t > 0, if
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hangarslack > 0, we send jobs in J ′t to track one by one. Yet, if a candidate job j in

J ′t leads to crossing with job at track position m− 1 and |J ′t| ≥ m, we do not allocate

the job. Because it means that lots of critical jobs could be delayed later in time if we

assigned that job that causes crossing. We obtain a feasible solution by means of inner

loop. In the outer loop, we increase neigh by five and reapply core algorithm again.

If objective value of feasible solution decreases, we keep increasing neigh by five until

we see no improvement in the incumbent objective value. This way, we devise a best

feasible solution in a very short amount of time.

In summary, we give priority to jobs that are out of service first and then jobs

that are close to their due time over other jobs at every time t. We assign them as long

as we have an idle capacity. We select jobs with bigger pj first during assignment. Yet,

by changing neigh parameter in the outer loop and implementing core heuristic again,

we try to dispatch jobs earlier and improve objective value of the heuristic algorithm.

4.3.1. Sets

T Time

CR Critical Jobs

4.3.2. Parameters

dj Due time of job j to pull it to maintenance hangar

pj Maintenance duration of job j

Y min
j Begin time of maintenance interval

neigh Maximum allowed slack value for jobs to pull them to maintenance hangar

m Number of track locations
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4.3.3. Dynamic Sets

Ht Jobs at maintenance hangar at time t

Jt Jobs at time t

Exit Jobs that have abandoned maintenance hangar so far

slackj Distance of jobs to their corresponding due date, slackj = t− dj
Hangarcandid Jobs that are candidates to be pulled to hangar

Base Set of bases where each base contains info like start,length and finish time

along with appointed job j

ParentChild Set that keeps child and parent pairs

Urgents Preventive jobs that out of service at time t and all corrective jobs

Ongoings Ongoing jobs in heuristic

4.3.4. Some Variables

ej Maintenance finish time of job j

bj Maintenance begin time of job j

numbertohangar Number of railcars that can be appointed to maintenance hangar

at time t

obj Objective function value

pinc Best incumbent solution so far

pnew New solution of CoreHeuristic

nextper Number of jobs skipped to next period

hangarslack Unused capacity in the track in any time instant
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neigh = 0

pinc⇐ CoreHeuristic(neigh)

repeat

4: Increase neigh by 5 and pnew ⇐ CoreHeuristic(neigh)

if pnew.obj < pinc.obj then

pinc⇐ pnew

continue

8: else

break

end if

until break

12: Final: Feed pinc to MILPStart

Figure 4.12. General Heuristic Algorithm

4.4. Alternative Methods for Handling Corrective Jobs

In the existence of stochastic breakdowns, schedule that is generated by model

could be undermined by future corrective job arrival. So, it results in a decrease

in proactive planning efficiency [68]. Hence, we can say that model yields a myopic

schedule. It may have a negative impact on key performance indicators (KPI) in the

long term. In order to alleviate the effect, we propose two methods to tackle this issue.

4.4.1. Introduction of Buffer Time

First, we introduce a buffer method to protect our system against uncertainty in

the future as well as utilizing our track in an efficient way. By virtue of this method,

we act proactively which makes sure a robust schedule. In order to implement it, we

assume that we already have a solution. We define Ŝj as realized maintenance begin

time in weekly schedule. Since we execute solutions where Ŝj < 24, we take solutions

into consideration in which Ŝj < 24+ ζ. Then we reschedule them by pulling jobs back

in time at most ζ hours. This displacement could be deemed as buffer time, that is ζ.
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1: Initialize Sets and values

2: H0 ⇐ ∅

3: Jt ⇐ CR ∀t

4: nextper = 0

5: for t = 1 to T do

6: Initialization of sets at the beginning of time t

7: for all j ∈ Ht do

8: if ej == t then

9: Ht−1 ⇐ Ht−1 − j

10: Exit⇐ Exit
⋃
j

11: end if

12: end for

13: Ht ⇐ Ht−1

14: Jt ⇐ Jt −Ht − Exit

15: Decrease slack of every job by 1

16: for all j ∈ Jt do

17: if slackj ≤ neigh then

18: if t+ pj ≥ T then

19: Jt ⇐ Jt − j

20: nextper + +

21: else if t < Y min
j then

22: Jt ⇐ Jt − j

23: end if

24: else

25: Jt ⇐ Jt − j

26: end if

27: end for

Figure 4.13. Core Heuristic Algoritm
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28: if |Exit|+ nextper == |CR| then

29: break

30: else

31: nextper = 0

32: end if

33: numbertohangar = min {|Jt|, hangarslack}

34: if t == 0 then

35: numbertohangar = max {numbertohangar, |Ongoings|}

36: end if

37: if numbertohangar == 0 then

38: continue

39: end if

40: Order jobs in Jt

41: Select Urgents jobs and remove them from Jt

42: Order rest of the jobs in this set in the order of decreasing slack times and

name this set as J ′t

43: Sort jobs in Urgents in the order of increasing pj times and name this set

as Urgents′.

44: J ′t ⇐ J ′t
⋃
Urgents′

45: if |J ′t| ≥ m&|Ht| ≥ m− 1 & last job of J ′t blocks departure of last job of Ht

then

46: continue

47: end if

48: Select last numbertohangar jobs from J ′t and form a set Hangarcandid

49: Sort jobs in Hangarcandid w.r.t decreasing order of pj’s and set this new set

as Hangarcandid′

Figure 4.13. Core Heuristic Algoritm(cont.)
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50: if t == 0 then

51: Perform assignments of jobs in Ongoings to Base and Parentchild then

appoint jobs in Hangarcandid′ if hangarslack > 0

52: else

53: Perform assignments of jobs in Hangarcandid′ to Base and Parentchild

54: end if

55: end for

56: Finalize assignments: Allocate finish and lengths of jobs in Base

57: Calculate obj

Figure 4.13. Core Heuristic Algoritm(cont.)

We say at most because jobs may not be able to be driven left in time due to schedule

feasibility.

In Figure 4.14, we show an example. In part a, ζ = 0 because it is a solution in

which all jobs are preventive obtained by CPLEX solver. Since we set ζ = 20 we focus

on jobs where Ŝj < 44. Next, we pull jobs back which leads to part b in the figure.

Jobs 0 and 12 are dragged till zero and remaining jobs which were not planned to be

executed before on first day is now processed within the day. Note that jobs 1 and 13

could have been driven back more but they could not be pulled back further because

jobs 12 and 0 already occupies first 15 hours after movement. Therefore, we assure a

feasibility. Furthermore, job 24 is moved back in time 20 hrs, which is the maximum

quantity that it can be dislocated.

Figure 4.14. Buffer Time Method Example



53

4.4.2. Anticipation of future events

We introduce another method to diminish preventive tardiness KPIs in the pres-

ence of corrective events. In this method, model remains same but we change objective

function of main model to assign jobs earlier in our model using MILP approach. To

do so, we insert ω coefficient to Tj in equation (57). For instance, if we apply this

technique, solution in part a turns into part b as given in Figure 4.15.

Figure 4.15. Anticipation Solution of SP
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5. COMPUTATIONAL EXPERIMENT DESIGN

In this chapter, we point out how we randomly generate problem parameters and

determine critical jobs. After that, we specify warmup period, ascertain single run

length along with batch size. We fine-tune CPLEX parameters. We compare MILP

model and its extensions computationally. Finally, we present an experiment plan for

comprehensive simulations.

5.1. Service Level Agreement Generation

In this work, SLA is an agreement between city and tram service provider. In

order to produce SLA, we investigate different kinds of examples from all over the

world. For Istanbul, we requested SLA schedules from tram service provider of Istanbul,

MetroIstanbul. We also take a look at a timetable of tram service lines of other cities

which are London-Victoria line [69] and Berlin-U7 line [70] and other relevant works

( [71], [72], [62]). We generally observe that most of these schedules are comprised

of two peak times and one off-peak time in between them. After some point (usually

after 24.00) SLA value declines to very small number or zero. Therefore, we devise a

schedule to represent such an SLA and name it as a core schedule, that is SLAc. One

can see it in Figure 5.1. Without loss of generality, we set maximum value of it to 100.

By looking at the distribution of the schedule over time, we dissect time in four parts

as below:

� Morning : [6, 12]

� Afternoon : [12, 18]

� Evening : [18, 24]

� NoServive : [24, 6]

We will use this schedule as a base to produce random daily SLA schedules. In

order to do so, let us define following terms:
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Figure 5.1. Core SLA Schedule

n : Number of vehicles in our system

e : A coefficient to determine n

SLAmaxc : Maximum value in SLAc

SLAb: Daily total SLA demand

a : A coefficient to determine SLAb

δ1 = dSLAmaxc fe

δ2 = dSLAmaxc de

We have two SLA types. We differentiate one type from another by virtue of a

variability. It is a distance of off-peak time to maximum peak time, namely Afternoon

to Morning in our instance. Since SLAc includes a variability, we actually make use of

it to produce a Case 2 schedule while preserving SLAc pattern. To do so, we perturb

Morning and Afternoon sections by - UNIF [0, δ1] whereas Evening is perturbed

by - UNIF [δ1, 2δ1]. On the other hand, Case 1 schedule has a different pattern, so

we just utilize SLAmaxc to derive a new SLA. We treat Morning and Evening same
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because they constitute two peaks of the schedule and we require our schedule as plain

as possible. Addressing this issue, we perturb SLAmaxc by - UNIF [0, δ1]. In contrast

to it, we change SLAmaxc by - UNIF [0, δ2] in Afternoon. As a consequence, we obtain

a temporary schedule. It is either Case 1 or Case 2 schedule.

SLAb is obtained by multiplication of total number of vehicle in SLAc and a.

So, for every produced temporary schedule, we harness adjustment algorithm to specify

final schedules such that daily SLA demand equals to SLAb. Adjustment algorithm

works on Morning, Afternoon and Evening intervals and gives priority in the order

of Afternoon, Evening and Morning ones so as to calibrate temporary schedule. In

conclusion, we make sure that total SLA demand of every final random daily SLA

schedule equals to SLAb. To determine n, we need to set a fixed value which is

independent from random SLA. Therefore, we set n = SLAmaxc (1 + e).

In our case, we fix parameters as follows: a = 0.95, d = 0.10, e = 0.05, f = 0.05.

An example for Case 1 and Case 2 schedules can be seen in Figure 5.2 and Figure 5.3,

respectively.

Figure 5.2. Case 1 Schedule
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Figure 5.3. Case 2 Schedule

Finally, we extend these daily schedules throughout scheduling period via repeat-

ing them every day (see Figure 5.4 and 5.5).

Figure 5.4. Weekly Case 1 Schedule
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Figure 5.5. Weekly Case 2 Schedule

5.2. Preventive Job Generation

For each vehicle in the fleet, there exists critical maintenance intervals. Begin

time (Y min
j1 ) of first preventive interval is created according to UNIF[0, β]. Generally,

vehicles should be maintained after target Π time that depends on maintenance type.

However, it is very hard to achieve it due to dynamic passenger service and maintenance

hangar conditions. Hence, we define v as positive and negative deviation coefficient

from our target level Π inspiring from [23]. Besides, taking v variability into account

during vehicle arrivals, Y min
j of the next interval can be between Π and (1+v)Π which

is generated by UNIF [Π, (1 + v)Π]. Let z be zth maintenance interval of a specific

vehicle, θ1 be the coefficient that determines the length of maintenance interval, %

be the coefficient to ascertain due time and V be the vehicle set. Aforementioned

equations and other interval parameter calculations are given below:
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Y min
j(z+1) = Y min

jz + UNIF [Π, (1 + v)Π] j ∈ V, z = 1, , l (5.1)

Y max
jz = dY min

jz + θ1vΠe j ∈ V, z = 1, , l (5.2)

djz = dY min
jz + %vΠe j ∈ V, z = 1, , l (5.3)

If we set Π = 720, v = 0.1, θ1 = 2 and β = 672, we obtain Figure 5.6. Left side

of the figure matches Y min
j1 generation. We generate it by UNIF[0, β]. From possible

intervals, one of them is realized where Y min
j1 = 500. The point is denoted with cross.

Next, we produce second interval through 5.1. Second cross is realized at Y min
j2 = 1115.

Y max
j of intervals are calculated by means of 5.2.

Figure 5.6. First Two Preventive Maintenance Intervals for a Vehicle

5.3. Corrective Job Generation

Corrective maintenance arrival is a time when vehicle arrives to the hangar due

to a breakdown. In our problem, we assume that vehicles come to system according

to Poisson process. It can be assumed that preventive maintenance eliminates wear-

out failures but random ones still exist [73]. Let τ be a mean time between failures,

L be a planning horizon length. For any vehicle, let uz ∼ UNIF [0, 1], Xz be a zth

time between failures, Y min
jz is the time of zth breakdown. Poisson process entails that

Xz ∼ Exp( 1
τ
). Using inverse transform technique for exponential distribution, Banks

et al. [74] conclude that Xz = −τ ln(1 − uz). Thus, we produce events accordingly as

long as Y min
jz < L. As a result, we obtain number of events for every vehicle and it

is denoted by evj. In fact, corrective event is just one time incident and do not have
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an interval like preventive job but we insert an interval so as to create maintenance

stays in our test system for warmup period determination. Y min
j and other parameters

related to corrective job maintenance interval length are found as below:

Y min
jz = Xz + Y min

j(z−1) j ∈ V, z = 1, , evj (5.4)

Y max
jz = Y min

jz + θ2 j ∈ V, z = 1, , evj (5.5)

Since we use Poisson process, we can derive τ according to desired expected num-

ber of corrective job arrivals to our system. Let us denote Pr {Xz < 24} as failure prob-

ability of vehicle in first 24 hours and E[fail|Xz < 24] as the expected number of vehicle

fleet breakdowns within first 24 hours. For any vehicle, Pr {Xz < 24} = 1−exp
(−1
τ

24
)

follows from exponential distribution. By binomial expectation, E[fail|Xz < 24] =

nPr {Xz < 24}. We equate E[fail|Xz < 24] to φ. Using equations given below, we

derive the result as follows:

n(1− exp(−1

τ
24)) = φ (5.6)

exp(
−1

τ
24) = 1− φ

n
(5.7)

−24

τ
= ln(1− φ

n
) (5.8)

⇒ τ =
−24

ln(1− φ
n
)

(5.9)

5.4. Job Duration Generation

Job durations are variable as standard times are difficult to be identified accord-

ing to Kelroy Solutions [75] and jobs deviate from standard times due to some reasons.
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Besides, some extra defects are observed after maintenance stop [76]. It may neces-

sitate the need for checking neighboring and deteriorated components of main failed

component [3]. In addition to it, we may encounter predictive maintenance issues like

replacement and overhaul of some parts depending on their condition [68]. Thus, we

take κ as a possible noise to standard times of preventive and corrective jobs. Uniform

random value is appropriate for these job length distributions, and they are generated

after corrective or preventive job is produced. Maintenance time depends on its type.

Let us define p as minimum time required to perform the preventive maintenance task

and pcor as a minimum time to execute corrective maintenance task. Depending on

these definitions, preventive jobs are distributed as UNIF [p, p + κ] while corrective

jobs have UNIF[pcor, pcor + κ] hrs.

5.5. Determination of Critical Jobs

During critical job determination, we at first inherit jobs from previous day’s

maintenance list if they are failed to be allocated to track on yesterday. Sometimes,

some jobs could be appointed a track but their job has not been finished by the begin-

ning of the current day. In other words, they are ongoing jobs. Let us we have jobs A

and B such that they have a parent-child relation. Addressing this issue, three cases

occur on two adjacent track positions as given below:

(i) Case I: A finishes maintenance on previous day whereas B goes on maintenance

process. It is displayed part a in Figure 5.7. On current day, we observe part b.

B continues its process two more hours on second day while A waits it till that

point. It is denoted by arrow in the right side of the figure.

(ii) Case II: A and B ends maintenance on current day. It is shown part a in Figure

5.8. It follows that only remaining pj times are fulfilled in current SP.

(iii) Case III: A ends maintenance on current day but B is not an ongoing job. We

show it in part a of Figure 5.9. So on current day, we only take remaining part

of pA into account and fix it on our model.
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Figure 5.7. Ongoing Jobs Case I Example

Figure 5.8. Ongoing Jobs Case II Example

Figure 5.9. Ongoing Jobs Case III Example
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Besides, we look at maintenance intervals of other jobs such that their mainte-

nance due times lies in current SP. If a job satisfies preposition 4.12, we do not append

the job to critical jobs. Otherwise, job is inserted into critical jobs. Figure 5.10 shows a

good demonstration that how we select these jobs. If we look at the figure from above,

we fetch first two jobs in this SP because their due time lies away from end point of

SP. For third job, even though its due time lies in SP, we do not append it to critical

jobs because it satisfies preposition 4.12. Since due time of fourth job is out of SP, we

do not consider it either.

Figure 5.10. SP and Preventive Maintenance Intervals

During corrective job selection, we only consider breakdowns that has occurred

the last day. Because these vehicles have already become out of service and stay at

somewhere in hangar to be maintained on the track.

In real life, conflict of preventive and corrective job maintenances are inevitable

because any planned vehicle is prone to breakdown. Therefore, this issue causes con-

fusion such that a vehicle may exist at the same scheduling period as preventive and

corrective job. You can see an example in Figure 5.11 where preventive intervals are

depicted as lines with brackets, vehicle breakdowns are shown as crosses and a pre-

ventive ongoing job at the hangar is shown as a rectangle. This figure portrays four

various conflict cases.

In order to solve these cases, we look at the picture from planner’s standpoint.

In day t, the planner is aware of corrective jobs due to rolling horizon. For vehicle

1, it plans to be processed as a preventive job in SP but broke down on yesterday.
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Figure 5.11. Overlapping of Maintenance Jobs for a Vehicle

So, we combine preventive job with a corrective one and regard this job as corrective

in our maintenance list. For vehicle 3, we again apply the same procedure because

the vehicle has not been managed to be taken into consideration until t. Vehicle 2

has likewise failed to be allocated to track till its latest maintenance start point, thus

become out of service. It implies that it cannot be prone to breakdown. Hence, we

discard the corrective event. Vehicle 4 is a little bit different than the previous cases.

Because it is an ongoing job so its operation has already begun. Thus, we ignore the

corrective event and continue its process on day t. These changes result in Figure

5.12. Furthermore, when a vehicle is in corrective job list, a new corrective event

might occur for it on account of independent job production process. In this regard,

we cancel the generated event. Because a vehicle that stays on hangar cannot undergo

extra corrective maintenance action. In conclusion, we obtain conflict free vehicle

maintenance operations for every vehicle.

Figure 5.12. Conflict Free Maintenance Job Asssignments for a Vehicle
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5.6. Warmup Period Determination

We are interested in long term behavior of the system, so we ignore the time till

the system reaches a steady state. This time is warmup period and we gather statistics

after that time. We build another test system to fetch the time where the system gets

saturated. Experimental design parameters and their values can be seen in Table 5.1.

We fix corrective and preventive job generation parameters as follows:

θ2 = 24

β = Π

% = 1.5

θ1 = 2

Table 5.1. Warmup period experimental factors

Levels

Factors

Π 600 720

τ 2508 10068

v 0.10 0.20

Maintenance Prev Prev+Cor

In warmup analysis, we specify an auxiliary performance indicator. Our perfor-

mance indicator is a cumulated average jobs on maintenance hangar where hangar has

no capacity. We set planning horizon length as one year, i.e 8760 hrs. We select time

unit as hour. During this analysis, we have two creation processes. Let z be the zth

interval. In preventive arrivals, Y min
jz and Y max

jz are determined w.r.t (5.1) and (5.2),

respectively. So we generate an arrival event at time tzarr between Y min
jz and Y max

jz and

a random processing time, p. Then, a departure time, tzdep from maintenance system

equals to tzdep = tzarr + p. Same logic is also made use of in corrective job stays where

Y min
jz is produced with respect to (5.4) and Y max

jz is created with respect to (5.5). If

we fix p = 8, Π = 600, v = 0.10, β = 672, this give rises to an example interval like in

Figure 5.13. Between Y min
jz = 360 and Y max

jz = 432, an event generated uniformly at
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time tzarr = 365 and the vehicle departs the system at tzdep = 373.

Figure 5.13. Preventive Interval and Stay

Given that we set θ2 = 24, pcor = 10, we produce a corrective interval at Figure

5.14. Let we are at kth interval of the corrective job. It follows that Y min
jk = 720 and

Y max
jk = 744, an event generated uniformly at time tzarr = 732 and the vehicle departs

the system at tzdep = 742.

Figure 5.14. Corrective Interval and Stay

Yet, as creation processes are independent, we delete intersections between them.

In detail, if their stay times overlap with each other, we pick the job which comes

first and discard other one. It is similar to the method we utilize in Section 5.5 but

we implement it over maintenance stays instead. Thereafter, we calculate number of

jobs present in the system at each t by looking their visit intervals, and get cumulated

average number of jobs in the system till that time.

We pick three representative systems with same random seed to experiment.

First two systems are related with minimum and maximum loaded preventive systems,

respectively. In the presence of corrective jobs, System 3 causes most congested system.



67

They are presented below:

(i) System 1: Π = 720, v = 0.2

(ii) System 2: Π = 600, v = 0.1

(iii) System 3: Π = 600, τ = 2508, v = 0.1

If we take a closer look at the graphs in Figure 5.15, system converges to steady

state after the point from which stems a perpendicular line. We detect it 1440 hrs

which equals to 1440/24 = 60 days. We make this transformation because on each day

of the real system, we solve an instance. Hence, at each parameter combination during

our experiments, we do not collect statistics till it. After that, we will record statistics

by the end of planning horizon.

Figure 5.15. Average Cumulative Stays in Test System

5.7. Single Run Length and Batch Size

In our system, we want to find out effects of problem parameters throughout

the planning horizon. Due to rolling horizon, we solve the problem on every day.
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It follows that reaching to 60 days takes much time. In this circumstance, we can

make a very long single run and batch some parts of the run instead of performing

independent replications [77]. Hence, we conduct some experiments to ascertain batch

size. In a single batch run, each batch is regarded as a single replication. Our aim is

to find uncorrelated batches by looking at autocorrelation of every batch mean. For

our case, System 1 with m = 2, SLA = Case1 is picked for examination. Again,

we ignore corrective arrivals and only design our system with reference to preventive

maintenance cycles. We fix total number of days to 160 and perform a single run.

We record outcomes after 60th day(warmup period). We choose batches which are

comprised of 10 day outcomes. We plot its correlation graph in Minitab 16 statistical

package software which yields a graph in Figure 5.16. It shows us that bars stay within

limits. It means that correlation between batches are eliminated. Therefore, we will

conduct statistical tests on 10 different batch means after the warmup period.

Figure 5.16. Autocorrelation Graph for 10 Batch Size

5.8. Cplex Parameter Fine-Tuning

Since the problem is computationally intractable for large instances, we propose

here to change CPLEX parameters to diminish computational time. First, we im-
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plement a priority rule for variable branching in CPLEX. Prioritized variables which

are presented in the decreasing order of their importance are as follows: xbj, yab, zab.

Second, we apply preprocessing and probing on a moderate level by means of CPLEX

parameter fine-tuning options.

5.9. Computational Study

In this section, we compare three methods in terms of time. Model corresponds

to our main model. Model2 represents Model with all model improvements and fine-

tuned CPLEX parameters. Lastly, Heur+Model2 denotes the methodology where we

utilize heuristic to feed an initial heuristic solution to the model. We hypothesize that

Heur+Model2 is the best method. Hence, we need to perform some tests to prove it.

We select three preventive systems for testing. Their settings are shown below:

� System 1: Π = 720, v = 0.2,m = 3, SLA = S

� System 2: Π = 600, v = 0.1,m = 2, SLA = F

� System 3: Π = 480, v = 0.1,m = 2, SLA = F

Note that S denotes Case 1 SLA while F corresponds to Case 2. We execute

Heur+Model2 on these systems till the end of planning horizon where we utilize 2

mins time limit for each day in the horizon. We collect results after warmup period

and find average load of 100 days where each day represents a problem instance. As a

result, system 1,2 and 3 yield 52.88%, 81.64% and 95.31% Load, respectively. Hence,

we classify them as low, medium and high load systems, respectively. Since we even

have to solve 160 problems for one system, we set 2 mins time limit to solve each

problem. Yet, we also would like to observe how computational performance of these

methods would change under more time limit. Thus, we set 10 mins time limit for

alternative scenario.

For every system, we record 100 instances after warmup period. We pick 10

random day instances out of 100. We compare methods under Zf and Gap(%) per-
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formance measures. Zf means objective value of feasible solution of model given time

limit whereas Gap(%) implies optimality gap obtained from CPLEX given time limit.

At first, we examine that whether Model outcomes follow a normal distribution under

low load with 2 mins time limit. H0 hypothesis states that data follow a normal dis-

tribution in α = 0.05. We reject it if p < α [78]. We plot the gap using Minitab with

Anderson-Darling test in Figure 5.17. It exhibits that data points are not centered

around normal fit line and p < α = 0.05. We conclude that data is not normal. So, we

do not execute t-test while comparing methods and use box-plots instead.

Figure 5.17. Gap(%) Normality Plot

5.9.1. 2 mins Time Limit

We examine low load system. According to Zf results in Figure 5.18, Model2

displays a little bit more variability than Model. However, there does not seem a

significant difference between two treatments. Yet, Heur+Model2 has almost no dis-

persion and yields dramatically significantly small Zf values. Concerning gaps, we

plot results in Figure 5.19. Model and Model2 have similar intervals and close to 100%

whereas Heur+Model2 diminishes gaps below 90% if we disregard outliers. Hence, it

gives the best gap.

We now study middle load system. Zf results in Figure 5.20 suggests that last

fourth quartile of Model is less than minimum whisker point of Model2. Hence, Model
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Figure 5.18. Low Load System Comparison under Zf with 2 mins Time Limit

Figure 5.19. Low Load System Comparison under Gap(%) with 2 mins Time Limit
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performs a little bit better in Zf . Should we append an initial heuristic to Model2,

we come up with profoundly lower Zf outcomes than other two methods. Regarding

gaps, we portray results in Figure 5.21. For Model and Model2, we observe outcomes

that are so close to 100%. Oppositely, Heur+Model2 has a considerably wider range

from 100% to 74% and almost all data points are significantly lower than other ones.

In conclusion, it yields the best result in terms of gap and Zf

Figure 5.20. Middle Load System Comparison under Zf with 2 mins Time Limit

Lastly, we investigate results under high load. Zf outcomes could be seen in

Figure 5.22. Median of Model2 is significantly lower than Model. Besides, its range

is less than Model. It indicates that Model2 is better than Model. Heur+Model2

produces best outcome because its first quartile matches with minimum whisker points

of Model and Model2, so 75% of data is lower than them. We portray gap results

in Figure 5.23. If we compare Model and Model2, Model2 could reduce gap till 85%

including outlier whereas Model does the same thing until 95%. So, Model2 performs

better. Heur+Model2 brings about best solution because even its median is around

80% that is less than all data points of other treatments. It has a high range from 100

to 55%.

If we look at these systems, gap range increases, particularly for Heur+Model2 as

load increases. In contrast to it, we observe no general pattern for Zf . Heur+Model2
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Figure 5.21. Middle Load System Comparison under Gap(%) with 2 mins Time Limit

Figure 5.22. High Load System Comparison under Zf with 2 mins Time Limit
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Figure 5.23. High Load System Comparison under Gap(%) with 2 mins Time Limit

results in best procedure in all systems and performance indicators. When we question

model improvement impact, we obtain different outcomes. Since we give low time

limit, cuts fail to show their effectiveness up to medium size instances. Yet, for high

load, cuts and dimensionality reduction techniques prove their efficiency in terms of

results. We tabulate average results in Table 5.2. It suggests that Zf rises as we

increase load but gaps do not follow the same pattern. Although Model2 Zf mean

value is less than Model under low load, box plot produces opposite result in terms

of medians. So this happen as a result of dispersion of Model2 data which can be

seen in Figure 5.18. Finally, we draw a conclusion that gaps are very large even under

Heur+Model2, Heur+Model2. Yet, Zf values of Heur+Model2 are very promising

because it diminishes Zf dramatically. Zf ratios of Model to Heur+Model2 are 77.60,

66.78 and 4.8 for low, medium and large load systems, respectively. Ratio decreases

as load increases but it is almost 5 times better than Zf of Model even under lowest

ratio.

5.9.2. 10 mins Time Limit

Model2 is not better than Model according to Zf values in Table 5.2 up to medium

load. This may happen because Model2 might not show its efficacy under two mins time



75

Table 5.2. Time comparisons of methods under 2 mins time limit

Load Methods Zf Gap(%)

Low

Model 3864 99.91

Model2 3766.7 89.89

Heur+Model2 49.6 81.1

Medium

Model 10998.2 99.82

Model2 11698.2 99.83

Heur+Model2 164.7 85.27

High

Model 45577.1 98.47

Model2 39354.4 95.21

Heur+Model2 9493.9 80.21

limit. We need more time to reach a better conclusion about these methods. Hence,

we now focus on comparison between Model2 and Model with 10 mins time limit. In

terms of gaps, Figure 5.25 is similar to 5.19. For Zf , Model2’s median is significantly

lower than Model according to Figure 5.24 whereas it was higher in Figure 5.18. So,

we see a meaningful improvement under low load with 10 mins time limit.

We now investigate Zf in medium load with 10 mins time limit. We show results

in Figure 5.26. Median value of Model2 is lower than all values of Model. It was much

worse in Figure 5.20 under two mins time limit. Besides, Model2 gap in Figure 5.27 is

significantly better than Model because it has wider range than Model whereas it was

almost same in Figure 5.19. Hence, we observe a great deal of development in Model2

performance under 10 mins time limit compared to 2 mins.

We treat methods under high load and 10 mins time limit. We show results

with reference to Zf value in Figure 5.28. Model2 median is lower than Model and

Model2 is less scattered than Model. Its range is almost one half of Model so it is more

reliable. In comparison with Figure 5.22, although median value is same, its box-plot
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Figure 5.24. Low Load System Comparison under Zf with 10 mins Time Limit

Figure 5.25. Low Load System Comparison under Gap(%) with 10 mins Time Limit
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Figure 5.26. Middle Load System Comparison under Zf with 10 mins Time Limit

Figure 5.27. Middle Load System Comparison under Gap(%) with 10 mins Time

Limit
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range is diminished profoundly. Concerning gap, results in Figure 5.29 is similar to

Figure 5.23. Yet, we detect a little improvement because although median is almost

same, box-plot is more right-tailed. In general, although Model2 outweighs Model with

10 mins time limit under this load, difference between 2 mins and 10 mins time limit

regarding performance indicators are slim.

Figure 5.28. High Load System Comparison under Zf with 10 mins Time Limit

Figure 5.29. High Load System Comparison under Gap(%) with 10 mins Time Limit

We generally infer from box-plots that Model2 performs much better than Model

with 10 mins time limit than 2 mins under low and medium loads but difference is

limited under high load. It is expected because higher the load, harder it becomes to
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solve the problem. Furthermore, Heur+Model2 as always show the best performance

in all performance measures. We also portray mean outcomes in Table 5.3. It de-

notes that Model2 reduces Model Zf with 14.3%, 40.89% and 21.14% in low, medium

and large loads, respectively. It was worse than Model in medium load in Table 5.2.

Yet, now Model2 shows the best performance diminishing Model Zf with increased

time limit under this load. Besides, it yields less gaps than Model under both time

limits. Therefore, we deduce that model improvements diminishes Zf of the model

while ensuring a better solution quality. Nevertheless, increased time limit does not

yield better Zf values for Heur+Model2 under low and high load and barely improves

middle load with 7% compared to results in Table 5.2. Since it is the best method and

time increment could not manage to lead to significantly better results, we will use

Heur+Model2 in comprehensive simulations with two mins time limit.

Table 5.3. Time comparisons of methods under 10 mins time limit

Load Methods Zf Gap

Low

Model 3475.5 89.87

Model2 2977.6 89.83

Heur+Model2 49.6 81.71

Medium

Model 10728.78 99.8

Model2 6340.89 98.83

Heur+Model2 152.67 83.6

High

Model 44241.1 97.97

Model2 34888.7 94.01

Heur+Model2 9493.9 76.53

5.10. Experiment Plan

We build a discrete-event simulation environment to demonstrate the performance

of the solution method under several solution parameters. We employ C++ program-

ming language to build the environment, develop heuristics and solve problems. We
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call CPLEX 12.7 from C++ environment while solving models. We run simulations on

a computer with Intel(R) Xeon(R) CPU(E5620 2.40 Ghz) processor and 12 GB RAM,

running a 64-bit Windows Server 2008 R2 Enterprise operating system.

We have four factors that we will use in every setting. These are SLA, m, Π and

v. We consider all of them in preventive maintenance and add τ to them in preventive

and corrective maintenance. We have Heur+Model2 and two alternative methods to

handle stochasticity. Hence, we experiment on three methods and test them under

preventive and corrective maintenance. Totally, we aim at running 24 + 253 = 112

parameter combinations. We show the experiment design in Table 5.4.

Table 5.4. Simulation experimental factors

Levels

Factors

SLA Case 1 Case 2

m 2 3

Π 600 720

v 0.10 0.20

τ 2508 10068

Maintenance Prev Prev+Cor

Method Heur+Model2 Buffer(ζ = 10) Anticipation

We name each parameter combination as scenario. For every scenario, we build a

particular system. Under every scenario, we utilize mersenne-twister random number

generator while producing problem parameters. We selected Heur+Model2 as the

solution method according to Section 5.9. For each scenario, we run Heur+Model2

dynamically in a rolling horizon fashion. We give two minutes time limit to solve each

problem in the horizon and fetch best feasible solution obtained till that time.

While generating job processing times, we set p = 8 for preventive jobs, pcor = 10

for corrective jobs and variability as κ = 2 hrs. In a model, we determine coefficients

as follows: σ = 4 , ε = 5, γ = 10. Tardiness coefficient in anticipation method is set
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as ω = 4. Preventive jobs are created according to following parameters: β = 672,

% = 1.5, θ1 = 2. Fleet size is taken as n = 105. Given φ = 1, first τ value in table is

realized as 2508 whereas φ = 0.25 results in 10068. Finally, in order to generate SLA,

we fix these coefficients: a = 0.95, d = 0.10, e = 0.05, f = 0.05.

We determine seven KPIs. They are listed with their abbreviations as follows:

(i) Prevearl: Total Preventive Earliness

(ii) Prevtard: Total Preventive Tardiness

(iii) Cortard: Total Corrective Tardiness

(iv) Ymaxviol: Total Y max
j violation

(v) Slaviol: Total SLA violation

(vi) Load: Shop Load %

(vii) Wait: Total Wait Time

We calculate them according to first day of the scheduling period. Results of first

five are directly fetched from model. Shop load and total wait times are determined

by hand. Shop Load % is an indicator that how much the capacity is used on first day.

We calculate it through the following formula: Load% =
∑

j∈CR

∑
t<24 âjt

24m
(100) where âjt

is a realized value of respective variable. Finally, wait time is an indicator that how

much time vehicles are stayed idle at the track due to crossings. It is calculated via

sum over wait times of each job at the track after maintenance finish.
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6. RESULTS AND DISCUSSIONS

6.1. Preventive Maintenance

We use one-way anova tests to test the effect of every factors. To statistically

compare different levels of the factors, we make use of two sample t-test with an

assumption that they come from population with unequal variances. Each factor level

constitutes a sample group from batch means. For instance, batch means with m = 2

forms first group whereas m = 3 shapes second one. Since this group size is large, they

are always distributed normal according to central limit theorem [79]. In this work,

we usually employ upper tailed t-test, so it can be stated as follows: Let µ1 and µ2 be

true population means. Then, null hypothesis is H0 : µ1 = µ2 is compared with one

sided alternative where H1 : µ1 > µ2. We set α = 0.05.

Let x̄1 and x̄2 be the first and second sample means. n1 and n2 are sample size

of first and second means. S1 and S2 be standard deviation of first and second sample,

respectively. Then we calculate test statistic TS and degree of freedom, df , as follows:

TS =
x̄1 − x̄2√
S2
1

n1
+

S2
2

n2

(6.1)

df =
(
S2
1

n1
+

S2
2

n2
)2

(S2
1/n1)2

n1−1 +
(S2

2/n2)2

n2−1

(6.2)

According to this case, we reject H0 if TS > t1−α. Instead, we employ p-value in

this work. Because t-statistic comparison equals to checking p-value against α [80]. As

a definition, it is defined as follows [81]: “p-value is the smallest level of significance

where we can still reject H0”. By means of this value, we reject H0 only if p < α = 0.05.

Note that lower tailed t-test examines H1 using < inequality in H1. We perform all
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these tests using Matlab R2011a.

6.1.1. Effect of Track Capacity

We tabulate average results in Table 6.1. Change of m does not affect Slaviol

because it is zero in all experiments. We employed upper tailed t-test where first sample

depends on m = 2 and second m = 3. Table 6.1 demonstrates significant decrease

in Prevtard, Prevearl and Load values and they are validated statistically because

their 4.91x10−6, 7.72x10−12, 1.62x10−10 p-values . We can say that capacity expansion

brings about more freedom to schedule jobs. So, it generally leads to improvements in

performance measures. According to the table, Wait is increased. When we employ

lower tailed t-test, we reject null hypothesis with p = 1.61x10−36. So, we infer that

increase in m boosts Wait as well. It happens as extra crossings exist because of

capacity expansion. For Ymaxviol, although m decreases Ymaxviol significantly with

p-value 0.0496, it is a very tiny difference with respect to the table.

Table 6.1. KPI values depend on m change

m Prevearl Prevtard Ymaxviol Wait Slaviol Load

(hrs) (hrs) (hrs) (vehs) (hrs) (%)

2 5.70 11.55 0.011 2.70 0 72.12

3 0.81 6.85 0.003 9.42 0 57.82

6.1.2. Effect of Service Level Agreement

Table 6.2 shows average results. In the table, difference between results seem

slim. In order to investigate these deviations significantly, we make use of lower tail

t-test where first sample is Case 1 and second is Case 2. For Ymaxviol, Wait and Load,

we fail to reject H0 with p-values 0.8639, 0.3673 and 0.4920, respectively. According

to table, we see a decline in Prevearl and Prevtard in contrast to our anticipation.

Nevertheless, once we perform an upper tail t-test, they are not found significant with

p-values 0.2002 and 0.2098, respectively. We actually expected before experiments that

Case 2 impairs KPI values due to its variability. Yet, according to p-values, we fail to
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reject H0. Average load is 65% in all scenarios, so it is probably the reason behind this

result.

Table 6.2. KPI values depend on SLA change

SLA Prevearl Prevtard Ymaxviol Wait Slaviol Load

(hrs) (hrs) (hrs) (vehs) (hrs) (%)

Case 1 3.57 9.64 0.01 5.95 0 64.95

Case 2 2.94 8.76 0.005 6.17 0 65.00

6.1.3. Effect of Preventive Interarrival Times

Table 6.3 displays average results according to Π change. We observe a very

close outcomes in Ymaxviol and Wait. We utilize upper tailed t-test where first sample

depends on Π = 600 and second Π = 720. Statistical tests yield that we fail to reject

H0 with Ymaxviol with p=0.2917 and Wait with p=0.2856. Slaviol is zero, so no need to

make a test for it. Π = 720 outweighsΠ = 600 under Prevtard, Prevearl and Load with

p-values 0.0029, 0.0027 and 2.65x10−6, respectively. Since rise in Π means decrease in

maintenance job arrival per scheduling period, we guessed some decline in KPI values.

Usually results confirm our guesses. Although the change reduces tardiness, Ymaxviol

is not influenced considerably. The reason behind this that average Ymaxviol is very

low compared to other performance measures according to Table 6.3.

Table 6.3. KPI values depend on Π change

Π Prevearl Prevtard Ymaxviol Wait Slaviol Load

(hrs) (hrs) (hrs) (vehs) (hrs) (%)

600 4.29 10.68 0.008 6.24 0 70.33

720 2.22 7.72 0.006 5.88 0 59.62

6.1.4. Effect of Variability Factor in Preventive Intervals

The effect of v change is presented in Table 6.4. According to it, there is no much

difference except Prevearl. We perform upper tailed t-test where first sample depends

on v = 0.1 and second v = 0.2. According to tests, v = 0.2 performs better under
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Prevearl with p=0.0225. For Ymaxviol, Prevtard, Wait and Load, we fail to reject

H0 with p-values 0.1361, 0.2585, 0.5738 and 0.2321, respectively. Prevtard is also

decreased as a mean but it does not turn out to be significant. Earliness is decreased

as estimated because larger allowance decrease risk of a vehicle being out of service.

Thus, optimization model drags start time right in time while not influencing Prevtard.

Table 6.4. KPI values depend on v change

v Prevearl Prevtard Ymaxviol Slaviol Wait Load

(hrs) (hrs) (hrs) (vehs) (hrs) (%)

0.1 4.004 9.55 0.01 6.00 0 65.86

0.2 2.51 8.85 0.005 6.12 0 64.09

6.1.5. Regression Analysis

We append this part to analyze factor effects using multiple linear regression. We

disregard their interaction and only focus on factors and regard them as variables. Let

we set variables as follows:

x1 : 0 if m = 2, else 1

x2 : 0 if SLA = Case 1, else 1

x3 : 0 if Π = 600, else 1

x4 : 0 if v = 0.1, else 1

We execute linear regression on Minitab. Slaviol is very low so we ignore it. No

variable is found significant in the regression under Ymaxviol. Hence, we do not write

the equation. Under Prevtard, the equation is as follows: 13.8 − 4.70x1 − 0.875x2 −

2.96x3 − 0.703x4. So m and Π are found to be significant variables. Under Prevearl,

we obtain following equation: 7.80 − 4.89x1 − 0.630x2 − 2.07x3 − 1.49x4. According

to it, m is the most significant variable and it is followed by Π. For Wait, regression

yields following result: 2.72 + 6.71x1 + 0.216x2 − 0.361x3 + 0.119x4. Here only m has

a remarkable impact. Lastly for Load, we have following equation: 78.3 − 14.3x1 +

0.05x2 − 10.7x3 − 1.77x4. According to it, m is the most profound variable and Π
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comes after it. In consequence, we could see that m influences almost all KPI values

profoundly. Second Π and third v changes KPIs in the order of decreasing effect.

6.1.6. Marginal Analysis

We have compared Π = 600 and Π = 720 systems concerning KPI values so

far. In this section, we first analyze interaction effects under these systems then add

Π = 480 as a third level for Π factor. If we take a look at in Table 6.3, there exists

no much difference between KPI values of Π = 600 and Π = 720. We wonder how

decreasing Π from Π = 600 affects KPIs. Hence, we set Π = 480 to observe outcomes.

Since we increase arrival frequency, we expect rise in KPIs.

We use lower tailed t-test where first sample is Π = 720 and second one is

Π = 480. We conclude that Π = 480 increases Ymaxviol, Prevtard, Prevearl and

Load remarkably with 0.0002, 6.69x10−9, 2.79x10−7, 1.36x10−7 p-values, respectively.

We see no difference in Slaviol and Wait with 0.159 and 0.447 p-values, respectively.

We then apply lower tailed t-test where first sample is Π = 600 and second one is

Π = 480. Π = 480 raises Ymaxviol, Prevtard, and Prevearl considerably with 0.0002,

1.85x10−6, 0.038 p-values, respectively. There is no difference in Slaviol, Wait and Load

KPIs with 0.159, 0.715, 0.239 p-values, respectively. The results can be seen in Table

6.5. It is interesting to note that once we change Π = 600 to Π = 480, mean Load rises

from 70.33 to 84.52 but there is no significant difference between these values according

to t-test results. Yet, it lifts Prevtard and Ymaxviol too much so system gets beyond

control.

Table 6.5. KPI values depend on Π change

Π Prevearl Prevtard Ymaxviol Wait Slaviol Load

(hrs) (hrs) (hrs) (vehs) (hrs) (%)

480 10.2 51.067 7.32 5.74 0.002 84.52

600 4.29 10.68 0.008 6.24 0 70.33

720 2.22 7.72 0.006 5.88 0 59.62
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6.1.7. Multifactor Effect

We inspect interaction of problem parameters and portray results in Figure 6.1.

Note that S denotes Case 1 while F corresponds to Case 2. Generally, we see that when

v = 0.1, Case 1 SLA has a worse impact on Prevtard and Ymaxviol than Case 2 whereas

v = 0.2 changes this relationship oppositely according to these KPIs. This can be seen

clearer once Π = 480. Regarding Slaviol, only SLA = F,m = 2, Π = 480, v = 0.1

system has a tiny Slaviol according to Figure 6.2. If we compare loads, we can observe

from Figure 6.3 that Π = 480 raises loads close to 15% and consists of loads close

to 100%. Besides, figure and statistical tests suggest that rise of m and Π leads to a

decrease in it.

Figure 6.1. Four Performance Indicators under Preventive Maintenance

Figure 6.2. Slaviol under Preventive Maintenance
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Figure 6.3. Shop Load % under Preventive Maintenance

6.2. Preventive and Corrective Maintenance

We now analyze the system in the existence of vehicle breakdowns. We show the

results in Figure 6.4.

6.2.1. Effect of Track Capacity

We show results in Table 6.6. We see decreases in all values but Wait. We em-

ploy upper tailed t-test where first sample depends on m = 2 and second m = 3.

We fail to reject H0 in Slaviol and Cortard with 0.0553 and 0.0623 p-values, re-

spectively. Lower tail t-test for Wait yields that jobs wait more under m = 3 with

p = 6.96x10−79. m = 3 beats m = 2 under Ymaxviol, Prevtard, Prevearl and Load

with 0.003, 1.30x10−10, 1.69x10−8, 1.82x10−26 p values. It could be stated that we

obtain similar results with base preventive case.

Table 6.6. KPI values depend on v change under preventive and corrective

maintenance

m Prevearl Prevtard Ymaxviol Cortard Wait Slaviol Load

(hrs) (hrs) (hrs) (hrs) (hrs) (vehs) (%)

2 2.73 50.18 11.92 10.63 2.44 0.73 83.11

3 0.82 12.49 0.13 9.27 10.07 0 66.06
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6.2.2. Effect of Service Level Agreement

We show results in Table 6.7. We see a decline in Prevearl but a considerable

growth in Ymaxviol , Prevtard and positive value in Slaviol. We utilize lower tail

t-test like we did in preventive maintenance. It turns out that only raise in Ymaxviol

is significant with p=0.0482. We fail to reject H0 in Prevtard with p=0.0734. Yet, we

can say that change in SLA causes almost a significant increase in Prevtard. Change in

Slaviol is failed statistically with p=0.0553. We reject a significant increase for Cortard,

Wait and Load values with 0.1141, 0.3679 and 0.2495 p-values, respectively. Yet, Case

2 decreases Prevearl with p = 0.0048. We come into conclusion that variability in SLA

has a bad influence on our system unlike preventive maintenance.

Table 6.7. KPI values depend on SLA change under preventive and corrective

maintenance

SLA Prevearl Prevtard Ymaxviol Cortard Wait Slaviol Load

(hrs) (hrs) (hrs) (hrs) (hrs) (vehs) (%)

Case 1 2.23 26.99 3.19 9.42 6.17 0 73.99

Case 2 1.32 35.68 8.86 10.49 6.34 0.73 75.18

6.2.3. Effect of Preventive Interarrival Times

We display results in Table 6.8. We use upper tailed t-test where first sample

depends on Π = 600 and second Π = 720. As a result of tests, we fail to reject H0

in Slaviol, Cortard and Wait with p-values 0.0553, 0.4480 and 0.1509, respectively.

Π = 720 outweighs Π = 600 under Ymaxviol, Prevtard, Prevearl and Load with p-

values 0.0051, 0.0001, 0.0040 and 4.77x10−9, respectively. Here, increase in Π decreases

Ymaxviol significantly which did not occur at preventive maintenance. Besides, Cor-

tard value is not influenced by the change because corrective jobs are always superior

than preventives regarding priority.
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Table 6.8. KPI values depend on Π change under preventive and corrective

maintenance

Π Prevearl Prevtard Ymaxviol Cortard Wait Slaviol Load

(hrs) (hrs) (hrs) (hrs) (hrs) (vehs) (%)

600 2.24 42.60 10.40 10.01 6.52 0.73 79.50

720 1.32 20.07 1.65 9.89 6.00 0.73 69.66

6.2.4. Effect of Variability Factor in Preventive Intervals

We display results in Table 6.9. We perform upper tailed t-test in which first

sample depends on v = 0.1 and second v = 0.2. According to tests, we could not

ascertain any difference between those means in Slaviol, Cortard and Wait with p-

values 0.0553, 0.7011 and 0.4227. v = 0.2 diminishes Ymaxviol, Prevtard, Prevearl

and Load with 0.0004, 0.0040, 0.0033 and 0.0237 p-values, remarkably. This can be

observed from Table 6.9. We deduce that all preventive maintenance based performance

measures are affected. We explained Prevearl in preventive maintenance. We know

that larger interval allowance ensures smooth arrival of preventive jobs to maintenance

hangar. So, once interval allowance is diminished to 0.1, Prevtard and Ymaxviol rise.

Because due time become tighter that leads to frequent maintenance begin lateness.

As a consequence, jobs are tried to be taken to maintenance as early as possible that

escalates daily hangar load significantly.

Table 6.9. KPI values depend on v change under preventive and corrective

maintenance

v Prevearl Prevtard Ymaxviol Cortard Wait Slaviol Load

(hrs) (hrs) (hrs) (hrs) (hrs) (vehs) (%)

0.1 2.25 39.27 11.71 9.72 6.31 0.73 76.32

0.2 1.30 23.40 0.34 10.19 6.21 0 72.85
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6.2.5. Effect of Mean Time Between Failures

In order to compare KPIs under different cases, we compare τ effect with pre-

ventive maintenance. Once we utilize upper tailed t-test with selecting τ = 10068 as

first sample and preventive maintenance as second, we find that Prevtard and Load

metrics are significantly higher with 1.09x10−4, 8.25x10−3 p-values, respectively. We

fail to reject H0 in Ymaxviol, Prevearl and Wait with p-values 0.111, 0.952 and 0.436,

respectively. Once we use lower tailed t-test, Prevearl in preventive maintenance is

found significantly higher with p=0.0476. When we compare τ = 2508 and preventive

maintenance, τ = 2508 ascends Ymaxviol, Prevtard and Load measures meaningfully

with 0.0002, 1.67x10−11, 8.89x10−19, respectively. It fails to ascend H0 in Slaviol and

Wait with 0.055 and 0.256 p-values, respectively. Yet, τ = 2508 reduces Prevearl

meaningfully with p = 3.41x10−7 with respect to lower tailed t-test.

We now utilize upper tailed t-test in which first sample depends on τ = 2508 and

second τ = 10068. As a result of these tests, we fail to reject H0 in Slaviol, Prevearl

and Wait KPIs with 0.0553, 1 and 0.3060 p-values. Nevertheless, left tailed t-test

yields that τ = 2508 lowers Prevearl meaningfully with p=2.63x10−5. Furthermore,

τ = 2508 escalates Ymaxviol, Prevtard, Cortard and Load considerably with 0.0002,

1.96x10−9, 1.35x10−55, 8.35x10−11 p-values, respectively.

We tabulate average results in Table 6.10. If we take a distinction between

Prev and τ = 10068 into consideration, there is a slim difference under Prevtard and

Load even though there exists a significant difference between these factors. However,

provided that τ = 2508, KPIs worsened profoundly. Since average load increase from

69.15 to 80.02 on account of τ descend, other KPIs are degraded as well. We see an

eccentric ascend in Prevtard and Ymaxviol values with respect to τ = 10068 whereas

Prevearl is halved. In general, Prevtard goes up because corrective jobs are superior

to preventives in terms of priority so Prevearl plunges as a consequence of it. Cortard

is increased significantly as expected because more corrective jobs comes to system.
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Table 6.10. Comparison of KPIs under preventive maintenance and preventive and

corrective maintenance

Prevearl Prevtard Ymaxviol Cortard Wait Slaviol Load

(hrs) (hrs) (hrs) (hrs) (hrs) (vehs) (%)

Prev 3.26 9.20 0.01 0 6.06 0 64.97

τ = 10068 2.48 13.78 0.05 3.81 6.13 0 69.15

τ = 2508 1.08 48.89 12.00 16.10 6.38 0.73 80.02

6.2.6. Regression Analysis

As we did in preventive case, we perform a linear regression. We define variables

as follows:

x1 : 0 if m = 2, else 1

x2 : 0 if SLA = Case 1, else 1

x3 : 0 if Π = 600, else 1

x4 : 0 if τ = 2508, else 1

x5 : 0 if v = 0.1, else 1

Under Ymaxviol, we obtain following equation: 25.1−11.8x1 + 5.66x2−8.75x3−

11.9x4 − 11.4x5. We can infer that SLA. τ and v are most effective parameters

determining Ymaxviol. For Prevtard, we get this result: 82.6 − 37.7x1 + 8.68x2 −

22.5x3 − 35.1x4 − 15.9x5. It means that m, Π and τ are most effective parameters.

For Cortard, the equation is like this: 16.1 − 1.36x1 + 1.07x2 − 0.116x3 − 12.3x4 +

0.467x5. Only τ has impact on the KPI. For Prevearl, we obtain that equation:

3.42 − 1.91x1 − 0.908x2 − 0.932x3 + 1.41x4 − 0.952x5. Here, m and τ are the most

effective variables that ascertain Prevearl. For Wait, analysis yields the equation:

2.79 + 7.63x1 + 0.169x2 − 0.516x3 − 0.254x4 − 0.097x5. Equation suggest that only

m is effective variable that influences Wait. For Load, the analysis brings about fol-

lowing equality: 94.6 − 17.1x1 + 1.19x2 − 9.84x3 − 10.9x4 − 3.47x5. m, Π and τ are

most powerful parameters. For all KPIs, we deduce that m and τ are the most crucial
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parameters.

6.2.7. Multifactor Effect

We show detailed KPI change according to four factors in Figure 6.4. As we

observe from picture, parameter values become substantially larger if we change τ to

2508. If we look at KPI results under that value, it seems that m = 3 diminishes values

profoundly. After that, change in Π and v leads to similar effects.

Most congested system, τ = 2508,m = 2, Π = 600, v = 0.1, is loaded close to

100 % according to Figure 6.6. Figure 6.4 shows that SLA type change from Case 1 to

Case 2 increases Ymaxviol and Prevtard dramatically. Besides, it is the only system

that Slaviol is different from zero which is observed in Figure 6.5. This is interesting,

because this change generally has no considerable impact on the system as we observe

in different settings of Figure 6.4 and preventive maintenance but here there is an

erratic increase in relevant KPIs. Therefore, we infer that Case 2 could ruin KPIs

enormously under extreme system load.

Figure 6.4. Four Performance Indicators under Preventive and Corrective

Maintenance
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Figure 6.5. Slaviol under Preventive and Corrective Maintenance

Figure 6.6. Shop Load % under Preventive and Corrective Maintenance
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6.2.8. Comparison at High Load

In this section, we compare Π = 480 and τ = 2508 because they are close to 100%

according to Figure 6.9 at their most congested system. Note that τ = 1 points out

preventive maintenance. If we take a look at most loaded system τ = 2508,m = 2, Π =

600, v = 0.1, τ = 2508 in Figure 6.7, it drastically increases Prevtard and Ymaxviol

under SLA = F compared to same system with Π = 480. Yet, sla type change to S

diminishes values considerably in τ = 2508 system whereas it increases these values

in same preventive system with Π = 480. Besides, we observe a big difference in

Prevtard between F and S under τ = 1,m = 2, Π = 480, v = 0.2 system whereas there

is no such a big difference if we alter τ to 2508. So, we deduce that SLA influences

two systems differently given they have close loads. Generally, we see Prevearl bars

to some extent provided that Π = 480 but it diminished once we alter parameter to

τ = 2508. Finally, we see positive and considerable Slaviol in most loaded system with

SLA = F regarding Figure 6.8.

Figure 6.7. Four Performance Indicators under Π = 480 vs τ = 2508

We now compare these systems statistically. We perform upper tailed t-test in

which first sample is Π = 480 and second one is τ = 2508. We ascertain that Prevearl

and Load under Π = 480 is significantly larger with 1.78x10−15 and 0.0054 p-values,

respectively. We fail to reject H0 in Slaviol, Ymaxviol, Prevtard and Wait with 0.944,

0.887, 0.399 and 0.833 p-values, respectively. We present results in Table 6.11. If we
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Figure 6.8. Slaviol under Π = 480 and τ = 2508

Figure 6.9. Shop Load % under Π = 480 vs τ = 2508
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use a lower tailed t-test, we fail to reject H0 for Slaviol with p=0.056. It is so close to

α = 0.05. This results from most congested system that can be observed in Figure 6.8.

We have two inferences from these results. First, although Load seems similar with

reference to Figure 6.9, it turns out that there exists a significant difference. Second,

since Prevearl is diminished despite of less load under τ = 2508, this validates our

hypothesis that corrective jobs push preventive ones right in time.

Table 6.11. Comparison of two systems at high load

Prevearl Prevtard Ymaxviol Cortard Wait Slaviol Load

(hrs) (hrs) (hrs) (hrs) (hrs) (vehs) (%)

Π = 480 10.2 51.067 7.32 0 5.74 0.002 84.52

τ = 2508 1.08 48.89 12.00 16.10 6.38 0.73 80.02

6.3. Comparison of Solution Methods

Since we develop buffer time and anticipation method to combat stochasticity in

the system, we analyze their effects on preventive and corrective system. First, we ex-

amine them with reference to pure Heur+Model2 and with respect to each other under

every KPI. We name buffer method and anticipation as Method 1 and 2, respectively.

When we compare Method 1 and Heur+Model2 where Heur+Model2 is first sam-

ple and 1 is second, we found a significant difference between those values in Prevtard,

Load and Wait with 0.0036, 0.0165 and 3.87x10−9 p-values under upper tailed t-test,

respectively. Yet, Method 1 rises Prevearl significantly with p= 9.011x10−94 accord-

ing to lower tailed t-test. We unable to find a difference in Slaviol with p=0.06 and

Ymaxviol with p=0.109. Second, we consider distinction between Method 2 and 0. As

a consequence of two sample t-test, we come into conclusion that Method 2 outweighs

0 in terms of Prevtard and Wait measures with 0.0012 and 3.04x10−2 p-value, respec-

tively. However, Method 2 boosts Prevearl significantly with p=1.797x10−48 according

to lower tailed t-test. There is no significant difference between these methods under

Slaviol, Ymaxviol, Cortard with 0.164, 0.159 and 0.422 p-values, respectively. Finally,

if we compare Method 2 and 1 by means of upper tailed t-test where Method 2 is
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first sample and 1 is second, we find out that Method 1 diminishes Wait and Load

significantly with 2.61x10−5 and 0.0087, respectively. Yet, it escalates Prevearl pro-

foundly with p = 1.25x10−28. We could not discern these methods in Slaviol, Ymaxviol,

Prevtard and Cortard with 0.051, 0.390, 0.614 and 0.612 p-values, respectively. Aver-

age results can be seen in Table 6.12. If we prioritize Prevtard, these methods tackle

stochasticity better than Heur+Model2. Among themselves, Method 2 diminishes Pre-

vearl as well but increase Wait. Hence, we left the choice to decision maker.

Table 6.12. Method comparison

Methods Prevearl Prevtard Ymaxviol Cortard Wait Slaviol Load

(hrs) (hrs) (hrs) (hrs) (hrs) (vehs) (%)

Heur+Model2 1.78 31.34 6.03 9.95 6.26 0.36 74.59

Method 1 18.37 20.84 3.56 10.01 4.46 0.01 71.81

Method 2 9.90 19.84 3.98 9.83 5.63 0.13 74.80

Now, we focus on KPI changes of methods under τ . We define Z which is a

weighted sum of MILP model based KPIs according to objective function coefficients

of MILP model. First of all, we analyze results when τ = 10068. We perform left

tailed t-test where first sample is Heur+Model2 and second one is Method 1. We then

employ upper tailed t-test by changing the relationship. According to them, there

is no significant difference between methods in Ymaxviol and Cortard in both tests,

they are failed to be rejected with 0.126 and 0.841, respectively in left tailed test.

Method 1 significantly raises Prevearl and Z value with 1.81x10−76 and 2.10x10−6 p-

values, respectively. On the other hand, if we employ upper tailed t-test, it diminishes

Prevtard, Wait and Load with 2.4x10−6, 3.06x10−7 and 0.039 p-values, respectively.

We execute left tailed t-test in which first sample is Heur+Model2 and second one

is Method 2. Method 2 reduces Prevtard and Wait profoundly with 2.53x10−8 and

0.031 p-values, respectively. There is no significant difference between treatments in

Ymaxviol, Cortard, Load and Z with 0.478, 0.39, 0.74 and 0.89 p-values, respectively.

Yet, Method 2 escalates Prevearl with p = 8.89x10−34 regarding upper tailed t-test.

Finally, we compare two proposed methods. We utilize lower tailed t-test in which first

sample is Method 1 other one is Method 2. Method 1 is significantly lower than Method
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2 in Wait and Load with 0.0003 and 0.006 p-values, respectively. There is no significant

difference between them in Ymaxviol, Prevtard and Cortard with 0.877, 0.425, 0.235

p-values, respectively. Yet, Method 2 reduces Prevearl and Z with 3.77x10−26 and

4.95x10−5 p-values, respectively.

Second, we increase corrective job arrival frequency to τ = 2508. We compare

Heur+Model2 and Method 1 using lower tailed t-test where first sample is Heur+Model2

and second one is Method 1. Method 1 ascends Prevearl significantly with p =

1.02x10−38. If we utilize upper tailed t-test with same sample order, there is no sig-

nificant difference between treatments in Slaviol, Ymaxviol, Cortard, Load and Z with

0.06, 0.09, 0.71, 0.079 and 0.14 p-values, respectively. It turns out that Prevtard and

Wait falls under Method 1 with p-values 0.033 and 0.0003, respectively. Then, we study

difference between Heur+Model2 and Method 2 using lower tailed t-test in which first

sample is Method 2 and second one is Heur+Model2. We find out that Method 2

reduces Prevtard with p = 0.013. There is no significant difference between these val-

ues in Slaviol, Ymaxviol, Cortard, Wait, Load and Z with 0.164, 0.152, 0.407, 0.182,

0.33, 0.115 p-values, respectively. Nevertheless, Method 2 increases Prevearl with p

= 3.61x10−21 according to upper tailed t-test with same sample order. Finally, we

compare proposed methods. We make use of lower tailed t-test where first sample is

Method 1 and second one is Method 2. Method 2 escalates Wait with p=0.006. There

exist no difference between methods in Slaviol, Ymaxviol, Prevtard, Cortard, Load

and Z with 0.05, 0.35, 0.64, 0.78, 0.15, 0.58 p-values, respectively. But, it diminishes

Prevearl with p=7x10−12 with respect to upper tailed t-test with same sample order.

We display results in Table 6.13. When τ = 10068, Prevtard is decreased in

Method 1 and 2 with reference to Heur+Model2. However, they raise Prevearl. So,

we need to look at Z values before making a judgment. According to it, Heur+Model2

and Method 2 perform well under τ = 10068. Since these results are supported by

statistical analysis as given above, we conclude that Heur+Model2 and Method 2 are

best methods. Once τ becomes 2508, Method 1 and 2 significantly reduce Prevtard

while increasing Prevearl. It can be confirmed from tests and given table. Although
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they drop Z value in comparison with Heur+Model2, it is not statistically significant.

Hence, we cannot select best method in τ = 2508.

Table 6.13. Model based KPIs and Z values of methods

Methods Prevearl Prevtard Ymaxviol Cortard Slaviol Z

(hrs) (hrs) (hrs) (hrs) (vehs)

τ = 10068

Heur+Model2 2.48 13.78 0.05 3.8 0 35.5

Method 1 23.89 6.07 0.35 3.51 0 48.9

Method 2 12.95 6.34 0.05 3.73 0 38.14

τ = 2508

Heur+Model2 1.07 48.89 12 16.1 0.73 185.73

Method 1 12.85 35.6 6.78 16.52 0.02 158.36

Method 2 6.85 33.35 7.92 15.93 0.26 154.16
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7. CONCLUSION

We investigate maintenance system where there exists a single dead-end track at

the maintenance hangar and vehicles fulfill their passenger service according to SLA.

The question is how we manage maintenance while satisfying customer service as much

as possible. In order to manage this, we build MILP model and create an environment

to study how parameters influence several defined KPIs. Model builds a weekly main-

tenance schedule considering track, SLA and preventive cycle constraints. It minimizes

deviation from due time for preventive maintenance and penalizes soft constraint vio-

lations. We show that the problem is NP-Hard. Thus, we propose new improvements

on the model along with CPLEX parameter fine-tuning and call it as Model2. Finally,

we provide Model2 a heuristic as a starting solution and name it as Heur+Model2.

We determine three kind of system loads and compare these models under problem

instances which are fetched from these systems. We solve these instances under two

and ten mins time limits, respectively. Under Zf performance indicator, Model2 fails

to outweigh Model up to middle load but it beats Model under ten mins time limit.

So, we conclude that model improvements affect solution quality positively. Yet, this

improvement is limited compared to heuristic because Heur+Model2 reduces Zf dra-

matically. In terms of solution gaps, Model2 slightly succeeds in diminishing gaps but

Heur+Model2 reduces significantly. Yet, it generally reduces gaps to 80%s. We could

say that improvement in Zf is the main cause of it. Since Heur+Model2 outperforms

all methods, we select it as a best method. In conclusion, we increase solution quality

considerably by improving model and deriving an efficient heuristic. Since Zf value

barely changes under Heur+Model2 when time limit rises, we utilize Heur+Model2

with two mins time limit within comprehensive discrete-event simulations.

We build scenarios for each parameter combinations. Because in practice, tram

service providers work under one of them. By means of discrete-event simulations, we

offer practitioners alternatives to see effects of factors on KPIs that otherwise they

probably do not study due to their primary focus on daily maintenance operations.
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We solve problem in rolling horizon manner using Heur+Model2 with two mins limit.

Heur+Model2 produces a weekly schedule. We implement a schedule that occurs within

first day of the scheduling period and report these statistics. We study statistically

that how parameter changes affect KPIs. When we solve pure preventive maintenance

problem, regression results suggest that m is the parameter that mostly affects our

system. Capacity expansion generally diminishes KPIs except Wait because it brings

about extra crossings. It is followed by Π. In general, all parameters but SLA, they

have an impact on some KPIs. We hypothesized before experiments that Case 1

generally yields better results than Case 2 regarding KPIs but the effect changes from

one system to another. For instance, for particular system, Case 1 lowers KPIs whereas

for another, it could raise them so much. So, we fail to find a statistical difference

between them. Average load in all experiments is found as 64.97% and it could be

regarded as low. Thus, we test additional Π = 480 parameter level as a marginal

analysis. Although it escalates load, it is not found statistically significant. Yet, it

considerably raises Prevearl and cause a steep increase in Prevtard and Ymaxviol.

Hence, we infer that it is the point where the preventive maintenance system gets out

of control.

In real life, we always encounter breakdowns. Hence, this issue needs to be

investigated. To do so, we conduct a research in the presence of vehicle breakdowns

and name it as preventive and corrective maintenance. As a result of regression analysis,

m and τ are determined as the most important parameters with regard to KPIs. Π

and v follows them. As a difference, Case 2 causes a statistically significant rise with

regard to Case 1 in KPIs, unlike preventive maintenance. The effect is obvious in

mostly congested system, τ = 2508,m = 2, Π = 600, v = 0.1. Because SLA transition

from Case 1 to 2 escalates Ymaxviol and Prevtard dramatically. Hence, we infer

that variability in SLA degrades KPIs of the system that works close to full capacity.

In order to reduce such abnormal KPIs, we recommend m = 3, Π = 720 or v = 0.2

parameter changes in the decreasing order of priority. If we focus on τ effect, the results

are almost similar to preventive maintenance when corrective job arrivals are few.

Yet, once corrective job frequency increases, that is τ = 2508, KPIs rise considerably,



103

especially tardiness related ones, Prevtard and Ymaxviol. In addition, we carry out

a further analysis because both Π = 480 and τ = 2508 based scenarios lead to close

shop loads. We would like to find out an answer to question that whether there is a

significant difference between KPIs under these scenarios when they have close loads.

As a consequence of t-tests, we observe that Π = 480 elevates Prevearl significantly.

Besides, its load is significantly more than τ = 2508. Hence, we conclude that the

solution method tackles preventive jobs by pulling them back in time under Π = 480

in comparison with τ = 2508.

We develop two methods to ensure a robust schedule under corrective job arrivals.

We conjecture before experiments that these treatments decrease Prevtard for the cost

of increasing Prevearl. Statistical results confirm our hypothesis. If we look into

results elaborately, we investigate performances with regard to τ parameter. We define

Z as the amalgam objective function value which is calculated according to objective

function coefficients of the MILP model and their related KPI results. When τ = 10068,

Heur+Model2 and Method 2 perform better than Method 1 regarding Z value. Once

arrival frequency ascends to τ = 2508, it leads to higher load so KPIs are worsened.

Although new methods manage to diminish Z value compared to Heur+Model2, it is

not found to be statistically significant. So, no method outperforms each other. In

general, if the decision maker wants to drop Prevtard to come up with more robust

schedule, these methods are better than Heur+Model2. Yet, we cannot decide which

one is better because Method 2 diminishes Prevearl but increase Wait compared to

Method 1. Therefore, decision maker should select most appropriate method according

to own selection criteria.

This thesis has three main deliverables that practitioners could benefit from.

First, we introduce Heur+Model2 that maintenance managers could utilize to build

weekly schedules. Thanks to model improvements, CPLEX parameter fine-tuning and

the heuristic, it yields a good solution under given short time limit. Second, we analyze

effects of parameter change on maintenance using discrete-event simulation. We explain

most significant parameters under relative KPIs and find out most influential ones by
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taking into account of all scenarios. Besides, we look at their interaction effects. Thus,

maintenance planners could alter their system with the help of these results. Finally,

we propose two alternative methods to handle corrective jobs as well as Heur+Model2.

We discuss them in terms of robustness and overall performance measures.

As a future study, we can examine scheduling on a free track. Besides, it could

be intriguing to extend one single dead-end track to multi dead-end tracks for larger

instances.
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