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Abstract—Literature on renewable energy alternative of wind 

turbines does not include a multidimensional benchmarking 

studythat can help investment decisions as well as design 

processes. This paper presents a data-centric analysis of 

commercial on-shore wind turbines and provides actionable 

insights through analytical benchmarking through Data 

Envelopment Analysis (DEA), visual data analysis, and 

statistical hypothesis testing. The paper also introduces a novel 

visualization approach for the understanding and the 

interpretation of reference sets, the set of efficient wind 

turbines that should be taken as benchmark by inefficient 

ones.  
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I.  INTRODUCTION 

Wind power refers to the conversion of wind energy into 
a useful form, such as electricity, using wind turbines. This 
power typehas been used for at least 5,500 years; yet the first 
modern wind turbine is developed at the beginning of 
1980’s. Wind energy is plentiful, renewable, widely 
distributed, clean and it reduces greenhouse gas emissions 
when it displaces fossil fuel derived electricity. 

Wind turbines are mechatronic devices that convert wind 
energy into electrical energy via mechanical energy (Figure 
1). Due to the fact that the potential commercially viable 
wind energy is estimated to be 72 terawatts [1], these 
environmentally friendly devices started to gain increasing 
importance by the end of the 1980’s. The European Wind 
Energy Association reports that wind power could generate 
up to 16% of Europe’s electricity by 2020 [2]. 

The importance of wind power is widely understood and 
accepted in many countries around the world. At the end of 
2010, the worldwide installed wind power capacity has 
increased to 196,630 megawatts (MW) [3]. In 2011, this 
number has become 238,351 with a 20.6% increase rate [4].  
Top three countries in terms of wind power can be listed as 
China (62,733 MW), United States (46,919 MW) and 
Germany (29,060 MW) [4]. Top five wind turbine 
manufacturers in the world, ranked by annual market share, 
are the following: Vestas (12.7%), Sinovel (9%), Goldwind 
(8.7%), Gamesa (8%) and Enercon (7.8%) [5]. 

 
Figure 1.  Components of a wind turbine. 

Figure 1 demonstrates the basic components of a wind 
turbine. A successful wind turbine design depends on five 
critical issues: load calculations, power control, 
aerodynamics, wind climate and systems that control the 
turbine. A successful design includes some certain aspects: 
Blades are designed with aerodynamic calculations, rotor is a 
rotational device that turns the shaft and starts the energy 
producing cycle, the generator is where the energy is finally 
produced. There are both low-speed shafts and high-speed 
shafts in a successful wind turbine design, gears in the gear 
box make the shafts turn at the correct speed and brakes 
work for emergency stopping or slowing down of the 
turbines. Anemometer is a device that calculates wind speed. 
Some turbines include a controlling device that catches the 
wind speed from the anemometer and adjust the shaft speed. 
Also, the yaw control system is another element that 
increases wind turbine efficiency. This element helps 
minimize non-symmetrical loads and increasing power 
output [6]. 

The goal of this paper is to develop a better 
understanding of wind turbines through data-centric 
analytical methods. The methods used are Data Envelopment 
Analysis (DEA) for multi-dimensional benchmarking; visual 
data analysis for insight discovery and statistical hypothesis 
testing for drawing conclusions. 

The remainder of the paper is organized as follows: 

Section 2 provides a brief review of some relevant literature 

as the background. Section 3 discusses the methodologies 

used in the study. Section 4 is devoted to the results and 

analysis of the study, where new insights are obtained with 



regards to wind turbines benchmarking. Finally, Section 5 

presents some conclusive remarks. 

II. LITERATURE 

In the previous researches, multi-criteria analysis in 
renewable energy is found to be a popular research topic and 
an effective tool for policy makers. [7]reviewed over 90 
papers of multi-criteria decision making (MCDM) analysis 
in the renewable energy field, and suggested that multi-
criteria analysis can help to justify the choices in the 
renewable energy sector by providing technical and scientific 
decision-making support tools. [8]claimed that traditional 
single criteria analysis can no longer deal with the 
complexity of current renewable energy systems. 
[9]provided a selection of criteria and options for the 
renewable energy technologies assessment based on the 
analysis and synthesis of parameters. His study also 
presented a priority rating among the selected options of 
energy systems. [10]used a multi-criteria method to make an 
assessment regarding the feasibility of installing mini wind 
energy turbines. 

There exist several algorithms in the literature for 
selecting the best location for wind turbine installation. 
[11]developed a genetic algorithm that is capable to handle 
multi-objective optimization problems, and claimed that the 
proposed strategy finds out the optimal location for wind 
farms. [12]also created a decision support system using 
Geographic Information System (GIS) tool for site selection 
of wind turbines. [12]claimed that decision makers should 
consider not only economic feasibility, but also the 
environmental fitness. [13]also implemented a GIS based 
multi-criteria site selection to determine suitable locations 
for wind turbines. [13]analyzed a specific area, namely 
Eskisehir, Turkey, and studied renewable energy efficiency 
prospects. [14]presented an integrated approach with 
traditional Data Envelopment Analysis (DEA) that enables 
the energy policy makers to select the best possible location 
in terms of lowest possible cost. [14]used DEA method to 
rank various locations capabilities with specific input and 
output indicators. [15]applied a multi-criteria method to 
select a site to install wind energy turbines in the Italian 
island of Salina. In [15], not only the energy profile, but also 
the local environmental conditions were analyzed to evaluate 
feasible solutions. 

In addition to the multi-criteria analysis, there exist other 
algorithms that can be applied to evaluate the performance of 
renewable energy systems. [16]evaluated both the energy 
and environmental performances of a wind farm by 
implementing a life cycle assessment (LCA). [16]points out 
that the main environmental impacts of a wind farm caused 
during the manufacturing. [17]used an integrated DEA - 
PCA (Principle Component Analysis) approach for 
performance assessment and optimization of power 
distribution units in Iran. [18]analyzed the performance of 
Portuguese wind farms considering ownership and 
unobserved managerial ability factors. [19]benchmarked the 
wind farms in the same country by measuring the 
efficiencies using DEA and Stochastic Frontier Analysis 
(SFA) methods. [20]compared small-scale and large-scale 

approaches to find out which one can achieve the most 
socially, economically and environmentally (SEE) efficient 
way. [20]indicated that small-scale schemes are the most 
efficient in terms of SEE.  

To the best of our knowledge, ours is the first study in the 
literature that performs a benchmark of commercial wind 
turbines. Again, to the best of our knowledge, the 
visualization of the reference sets in the DEA results is 
visualized as a directed graph for the first time in literature 
within this paper. These two applications are the unique 
contributions of this paper with regards to earlier literature. 

III. METHODOLOGY  

In this section, the methodologies used, namely, data 
envelopment analysis (DEA), data visualization, and 
hypothesis testing,are described. 

A. Data Envelopment Analysis (DEA) 

Multi-dimensional benchmarking is a fundamental 
problem in a diverse range of fields, and a multitude of 
qualitative and quantitative methods have been proposed in 
the literature for this problem. Among the quantitative 
methods, Data Envelopment Analysis (DEA) is a very 
popular choice by both researchers and practitioners 
[21][22]. DEA uses an optimization based algorithm to 
determine three types of benchmark results for each of the 
entities within a group [23]. For each entity in the group, also 
named as a Decision Making Unit (DMU), the efficiency 
score value between 0 and 1 represents the relative 
performance of that entity (DMU) compared to the other 
entities in the group. The efficiency of a DMU increases with 
the generation of higher values of its outputs given lower 
values of its inputs. A DMU is said to be efficient if its 
efficiency score is equal to 1, and inefficient if it is less 1. 
The reference set of a DMU is the set of efficient DMUs that 
the DMU should take as benchmark. The reference set for an 
efficient DMU consists of itself, whereas the reference set of 
an inefficient DMU consists of two or more efficient DMUs. 
The final benchmark result provided by DEA is the set of 
projections, which tells how much of each input the DMU 
should decrease and/or each output the DMU should increase 
so that it becomes efficient. 

B. Visual Data Analysis  

Data analysis is an indispensable part of all applied 
research and problem solving in industry. The most 
fundamental data analysis approaches are data visualization 
(histograms, scatter plots, surface plots, tree maps, parallel 
coordinate plots, etc.) [24][25][26], statistics (hypothesis test, 
regression, PCA, etc.) [27], data mining (association mining, 
etc.) [28][29], and machine learning methods (clustering, 
classification, decision trees, etc.) [30]. Among all these 
approaches data visualization, or in other words, visual data 
analysis, is the one that relies most on the cognitive skills of 
human analysts, and allows the discovery of unstructured 
actionable insights that are limited only by human 
imagination and creativity. The analyst does not have to 
learn any sophisticated methods to be able to interpret the 
visualizations of the data. Data visualization is also a 
hypothesis generation scheme, which can be, and is typically 



followed by more analytical or formal analysis, such as 
statistical hypothesis testing. 

Using data visualization to analyze the outputs of DEA 
was performed in [31][32][33]. Meanwhile, visual 
benchmarking can be performed using other methods, such 
as Kohonen maps [34]. 

C. Hypothesis Testing 

Statistical hypothesis testing is the most common form of 
supporting or refuting hypotheses that are proposed in 
empirical research. Hypothesis tests are of various forms. In 
this paper, we will be using two main types of hypothesis 
tests, goodness of fit test and sample mean comparison test 
[35]. The Shapiro-Wilk goodness of fit test suggests whether 
a data sample follows normal distribution or not [36]. This 
test is crucial for the selection of the appropriate comparison 
of means tests. The parametric t-test or the nonparametric 
Mann-Whitney test [37] is used for testing whether two data 
samples have same mean values or not. The parametric 
ANOVA or the nonparametric Kruskal-Wallis test is used 
for testing whether the mean of any sample among a group 
of samples is different than the others. If the normality of any 
of the samples involved (in the comparison of means tests) is 
rejected with a high confidence level, then nonparametric 
methods are used. Parametric tests are used only if all the 
samples follow the normal distribution [35]. 

IV. ANALYSIS AND RESULTS  

In this section, we describe how the analysis was 
performed and present the results obtained. 

Our study progressed through the following steps: 
1) Data was collected for on-shore wind turbines of 

leading manufacturers in the world. 
2) Two DEA models were constructed and results 

were obtained. 
3) Visual data analysis was performed using scatter 

plots [38], surface plots, and graph visualization [39][40]. 
4) Formal statistical hypothesis testing was carried out 

to test the hypothesis generated through the scatter plots.  
Actionable insights, which can help in the better design 

and improvement of wind turbines, have been identified and 
documented throughout the process. These insights and their 
implications are presented in this paper. 

 
A. The Dataset  

The data in our study consists of the commercial on-
shore wind turbines of the top ten wind turbine 
manufacturers in the world[5]. On-shore wind turbines are 
those that are constructed on land, as opposed to the off-
shore turbines that are constructed on the sea. While the data 
for both on-shore and off-shore turbines were collected, the 
analysis in the study focused only on the on-shore ones, due 
to the association of the first author with an on-shore wind 
turbine project. A total of 74 on-shore turbines were listed on 
the Internet for the following companies: Vestas, GE, 
Gamesa, Suzlon, Siemens, Goldwind, Sinovel, Ming Yang 
Power, Mitsubishi Heavy Industries, Enercon. 

Missing data was a major issue in the data collection 
process; none of the companies, except Vestas, had put out 

their complete technical data openly on the Internet.  
However, complete data was available for 74 wind turbines 
for three critical attributes: Diameter, Nominal Wind Speed 
and Nominal Output. Diameter refers to the diameter of the 
circle formed by the wind blades. Nominal Wind Speed 
refers to nominal speed at which the wind turbine operates, 
and Nominal Output refers to the power (in kW or MW 
where 1 MW = 1000 kW) generated by the wind turbine. 
These three attributes are critical because they can be 
sufficient to build a basic DEA benchmarking model. While 
price is a very important benchmarking attribute, it was not 
included, since it was not readily available and since it would 
be very difficult to obtain it. Once the data collection was 
completed, the data was cleaned based on the taxonomy 
given in [41]. 

B. DEA Results  

Two DEA models were constructed, and the complete 
data for the models and their results are made available 
online in the supplement file package [42]. Both models take 
each wind turbine as a DMU, and consider Diameter and 
Nominal Wind Speed as the inputs and Nominal Output as 
the output. The first model, hereafter referred to as Model A, 
includes all the 74 on-shore turbines. The second model, 
hereafter referred to as Model B, includes only the 32 
turbines that can operate under low wind (regardless of the 
whether they operate in medium or high wind). The BCC-O 
(BCC Output Oriented) model was selected, since a major 
design goal for wind turbines is output oriented, trying to 
maximize the power generated under given physical and 
natural constrains. The constructed DEA models were 
analyzed and their results were generated using the 
SmartDEA Solver software [43].  

Model A resulted in 4 efficient DMUs among the 74 
included. Model B resulted in 5 efficient DMUs among the 
32 included.   

C. Visual Analysis: Scatter Plots 

The first step of visual data analysis involved scatter 
plots using Orange data mining software [44]. Figures 2-8 
visualize the DEA results for Model A (all on-shore 
turbines). 

Figure 2 illustrates the efficiency scores for the wind 
turbines of different manufacturers. It can be visually seen 
that the turbines of Enercon and GE tend to have higher 
efficiency scores. Thus one can hypothesize that there exist 
significant differences in the mean efficiency scores for 
turbines of different manufacturers. This hypothesis, together 
with others, will be formally investigated through statistical 
hypothesis testing. 

Figure 3 plots efficiency score vs. nominal output. Two 
visual insights can be observed in this figure: (a) One can 
find efficient turbines, regardless of nominal output values;  
(b) While efficiency seems to correlate with nominal output, 
there is a cluster of turbines with 1500 kW nominal output, 
which have higher efficiencies than the regular linear pattern. 

Figure 4 plots efficiency score vs. cut-in wind speed. 
Cut-in wind speed is the minimum wind speed at which a 



turbine can start to operate. While there are very few 
observations for cut-in speeds of 2 and 2.5, there are many 
observations for cut-in speeds of 3, 3.5, and 4. Thus one can 
hypothesize difference in means of the efficiency scores for 
different cut-in wind speeds. 

 

 
Figure 2.  Efficiencies of the wind turbines of different manufacturers. 

 
Figure 3.  Efficiency vs. Nominal Output. 

 

 
Figure 4.  Efficiency vs. Cut-in Wind Speed 

 

Figure 5.  Efficiency vs. Diameter. 

 

Figure 5 plots efficiency score vs. diameter. There are 

three outlier patterns in this figure: (a) The turbine with the 

minimum diameter is efficient; (b) The turbine with the 

second minimum diameter has a high efficiency score; (c) 

While efficiency seems to correlate with diameter, there is a 

cluster of turbines with diameter 70-85 meters, which have 

higher efficiencies than the regular linear pattern. 

 



 
Figure 6.  Efficiency vs. Blade Material. 

 

Figure 7.  Visualization of reference sets. 

Figure 6 plots efficiency score vs. blade material. Wind 
turbines with blades that include glass fiber material seem to 
have higher efficiency scores, calling for a formal hypothesis 
test. 

Figure 7 visualizes the reference sets of each of the 
DMUs. The y-axis shows each DMU, the x-axis shows the 
DMUs in the reference sets, and the sizes (areas) of the 
points reflect the weights for that reference. There are three 
patterns that can be observed in here: (a) The DMUs 
(turbines) on this line are the efficient ones, with efficiency 
scores of 1; (b) Some DMUs, such as DMU_49, should 

primarily take as example only one of the efficient DMUs; 
(c) Some other DMUs, such as DMU_66, have a balanced 
weight distribution for the efficient DMUs in their reference 
sets. 

Figure 8 visualizes the projections for each of the DMUs. 
The y-axis shows the efficiency of the DMUs. Each DMU is 
represented by three points, which refer to the projections for 
the total of three input plus output attributes. The x-axis 
shows the percentage change that is needed for each of the 
attributes, so that the DMU becomes efficient. There are two 
basic insights from this figure: (a) Some of the DMUs 
require both a decrease in the inputs, and an increase in the 
outputs, and this can be detected very quickly through 
visualization; (b) Most of the DMUs in this particular case 
study need only to increase their outputs. 

 

Figure 8.  Visualization of the projections. 

A. Visual Analysis: Surface Plots 

The next type of visual analysis is surface plots, where a 

surface is constructed to reflect the z values, based on the x 

and y values. In our two surface plots, we have also mapped 

efficiency scores to the color of the surface, which enabled 

new insights. Figures 9 and 10 visualize the DEA results for 

Model A (all on-shore turbines) using Miner3D software 

[45]. 

 

Figure 9 presents the surface plot where one can observe 

the interaction between diameter, nominal wind speed, and 

nominal output, and how this interaction affects efficiency 

scores. The highlighted region and the design parameter 

intervals are observed to result in low efficiency scores, and 

thus should be avoided. 

Figure 10 explores the impact of diameter, cut-in wind 

speed, and nominal output on the efficiency scores. Regions 



(a) and (c) should be avoided as much as possible. While the 

efficiency scores are better in region (b), there are other 

regions where the efficiency scores are much better. So the 

most fundamental insight from this surface plot is that 

higher values of cut-in wind speed bring inefficiencies and 

one should try to design or invest in wind turbines with cut-

in wind speeds of 3 or 3.5. 

B. Visual Analysis: Graph Visualization 

The final visualization is novel in the field of DEA, and 

suggests the representation of the reference sets as a graph. 

In this newly proposed scheme, each DMU is represented as 

a node in a graph, and each directed arc represents a 

reference relationship from an inefficient DMU node to an 

efficient DMU node. 

 

Figure 9.  Surface Plot. 

 

Figure 10.  Surface Plot. 

Figure 11 visualizes the reference sets for Model B (on-

shore turbines that can operate under low-wind), using yEd 

software [46]. One can immediately observe a central 

cluster of DMUs, where DMU_15, _18, and _49 are “best” 

designs (the reader is referred to [23] for the appropriate 

interpretation of efficiency scores). Also, one can observe 

two small independent outlying clusters where DMU_24 or 

_68 are the best designs. 

C. Hypothesis Testing 

While the hypothesis tests accept or reject the proposed 

hypothesis, these results cannot be interpreted as the 

ultimate proof or disproof of causal relationships. Rather, 

they only support or oppose causal relationships. Statistical 

support for differences between group means only suggest 

that the differences are due to the groups [47].  

Statistical tests allow us to formalize the insights that 

were obtained through the visualizations. Our tests 

confirmed some of the visual insights: There are statistically 

significant differences in mean efficiency scores with 

respect to manufacturers (Figure 2) and cut-in wind speed 

(Figure 4), as well as cut-out speed (not visualized in this 

paper). The difference with respect to blade material was 

not statistically significant. The detailed analysis and 

significance values are available in the supplement file 

package [42]. 

 

Figure 11.  Graph visualization of the reference sets. 

 

V. CONCLUSIONS 

This paper presented a data-centric benchmarking and 

analysis of commercial wind turbines in the global energy 

market for the first time, using data envelopment analysis 

and data visualization. A new graph-based visualization 

scheme was proposed for displaying reference sets in DEA, 

and its usefulness was demonstrated, in addition to the 

application of traditional visual methods and statistical tests. 

The discovered insights can help managers in their 

investment decision making and design engineers in 

improving their turbine designs. 
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