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v 

SUMMARY 

 

 
Graphs associated with group structures have been actively investigated and 

many fascinating results have been obtained. Let 𝐺 be a finite group and 𝐼𝑟𝑟(𝐺) be 

the set of irreducible characters of 𝐺. The set 𝑐𝑑(𝐺) = {𝜒(1): 𝜒 ∈ 𝐼𝑟𝑟(𝐺)} is called 

the character degree of 𝐺. We associate with 𝑐𝑑(𝐺) three undirected graphs which 

are the prime vertex graph Δ(𝐺), the common divisor degree graph Γ(𝐺) and the 

bipartite divisor graph 𝐵(𝐺). These graphs are strongly related and share many 

combinatorial properties. In this thesis, we discuss the strong interplay between the 

structure of a finite group 𝐺 and the graphs associated with its character degree set. 

In particular, we claim that there does not exist any nonsolvable group 𝐺 whose 

prime vertex graph is a path of length three or a cycle of length four. Furthermore, 

we give a classification of all graphs with four vertices that can arise as the common 

divisor degree graph Γ(𝐺) when 𝐺 is nonsolvable. Moreover, we consider finite 

groups whose prime vertex graphs have no triangles and obtain a classification of 

finite graphs with five vertices and no triangles that can occur as the prime graph for 

a finite group 𝐺. We follow in this thesis paper [Hafezieh, 2017] and we focus on 

studying some group theoretical properties of 𝐺 when 𝐵(𝐺) is a path, a union of 

paths or a cycle. 
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ÖZET 

 

 
Grup yapıları ile ilişkili çizgeler aktif olarak araştırılmış ve pek çok ilginç 

sonuç elde edilmiştir. 𝐺 sonlu bir grup ve 𝑙𝑟𝑟(𝐺), 𝐺’nin indirgenemez karakterlerinin 

kümesi olsun. 𝑐𝑑(𝐺) = {𝜒(1): 𝜒 ∈ 𝐼𝑟𝑟(𝐺)} kümesi, 𝐺’nin karakter derecesi olarak 

adlandırılır. Biz, asal köşe çizgesi, ortak bölen derecesi çizgesi ve iki-parçalı bölen 

çizgesi şeklindeki üç yönsüz çizgeyi 𝑐𝑑(𝐺) ile ilişkilendiririz. Bu çizgeler güçlü bir 

şekilde ilişkilidir ve birçok birleştirici özelliği paylaşır. Bu tezde, bir sonlu grup olan 

𝐺’nin yapısı ve onun karakter derece kümesi ile ilişkili çizgeler arasındaki etkileşimi 

tartışacağız. Özellikle, asal köşe çizgesi dört uzunluklu bir döngü ya da üç uzunluklu 

bir patika olan çözülemez herhangi bir 𝐺 grubun var olmadığını iddia ediyoruz. 

Ayrıca, 𝐺 çözülemez olduğu zaman, ortak bölen derece çizgesi Γ(𝐺) olarak ortaya 

çıkabilen dört köşe ile tüm çizgelerin bir sınıflandırmasını veririz. Dahası, üçgen 

içermeyen asal köşe çizgelerin sonlu gruplarını ele alıp ve beş köşeli ve sonlu bir 

𝐺 grubu için asal köşe çizgesi olarak ortaya çıkan üçgen içermeyen sonlu çizgelerin 

bir sınıflandırmasını elde ediyoruz. Bu tez yazısında [Hafezieh, 2017]’u takip 

ediyoruz ve 𝐵(𝐺) bir patika, patikaların birleşimi ya da bir döngü olduğu zaman, 

𝐺’nin bazı kuramsal grup özeliklerini çalışmaya odaklanıyoruz. 
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1. INTRODUCTION

Over the past few decades, there have been many papers that discussed the

strong bond between the structure of a finite group G and its character degree set cd(G).

For instance, the celebrated Ito-Michler’s Theorem states that if a prime p divides no

character degree of a finite group G, then G has an abelian normal Sylow p-subgroup.

Another interesting result is due to J. Thompson who proved that if a prime p divides all

the nontrivial character degrees of a finite group G, then G has a normal p-complement.

One of the key tools for studying the character degree set of a finite group G is

by attaching some graph structure on cd(G). Mark Lewis provided in [Lewis, 2008]

an overview of various graphs associated with groups. Surprisingly, it was shown that

strong combinatorial information about these graphs can lead to structural information

about the groups and their representations. Lewis unified many results concerning these

graphs by first defining the prime vertex graph ∆(X) and the common divisor degree

graph Γ(X) for an arbitrary subset of positive integers X . He showed that for any X ⊆N,

the graphs ∆(X) and Γ(X) share many similar combinatorial properties. For example,

they have the same number of connected components and equal diameters. Inspired by

Lewis’s paper [Lewis, 2008], M. Iranmanesh and C. Praeger introduced in [Iranmanesh

and Praeger, 2010] the bipartite divisor graph B(X), for a subset of positive integers X .

Moreover, they discussed some basic invariants of the three graphs such as the number

of connected components, diameters and girths (the girth of a graph is the length of the

shortest cycle in the graph).

Studying group structures by using the arithmetical properties of their character

degree sets has been an active area in the recent years. In this field of study, there are

three main questions that arise naturally. Which sets of positive integers can occur as

cd(G) for some group G, what can be said about the structure of G and what graphs can

occur as ∆(G), Γ(G) and B(G) for a finite group G? Where by ∆(G), Γ(G) and B(G)

we mean the prime vertex graph, the common divisor degree graph and the bipartite

divisor graph associated with cd(G). One of the most extensive result regarding which

graphs can occur as ∆(G) when G is solvable is Pálfy’s Theorem (Theorem 18.7 in

[Manz and Wolf, 1993]). Pálfy claimed that among any three vertices in ∆(G), two

of them must be adjacent, which eliminated many graphs as possibilities for ∆(G)
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when G is solvable. Manz, Staszewski and Willems bounded the number of connected

components of ∆(G) by 3 (Theorem 6.4 in [Lewis, 2008]). In particular, Manz proved

that ∆(G) can have at most two connected components when G is solvable (Corollary

4.2 in [Lewis, 2008]).

In this study, we investigate the relationship between the structure of a finite group

G and the graphs associated with its character degree set. We start by giving some

preliminaries in group and graph theories. Then we mention some basic definitions and

results that will be used throughout the thesis.

In chapter 3, we claim that there does not exist any nonsolvable group G whose

∆(G) is a path of length three or a cycle of length four. We follow in this chapter paper

[Lewis and White, 2013].

In chapter 4, we discuss classifications of all graphs with three vertices that can

arise as the common divisor degree graph Γ(G) for a finite group G. Furthermore, we

classify all graphs with four vertices that can occur as Γ(G) when G is nonsolvable. We

follow in this chapter paper [LiGuo and GuoHua, 2015].

In chapter 5, we consider finite groups whose prime vertex graphs have no

triangles. We claim first that prime graphs of such groups have at most five vertices.

Then, we give a classification of finite graphs with five vertices and no triangles that

can occur as prime graphs of finite groups. Finally, we claim that the prime graph of

any finite group cannot be a cycle or a tree with at least five vertices. We follow in this

chapter Tong-Viet’s paper [Tong-Viet, 2013].

In chapter 6, we study finite groups whose bipartite divisor graphs are paths. In

particular, we see that any group satisfying this property is solvable and the length of its

bipartite divisor graph is at most 6. Furthermore, we discuss some group theoretical

properties of such groups.

In chapter 7, we investigate nonsolvable groups whose bipartite divisor graphs

are union of paths.

In the last chapter, chapter 8, we consider finite groups whose bipartite divisor

graphs are cycles. We claim that if B(G) is a cycle, then G is solvable and the length of

B(G) is either four or six. In addition, we discuss some group theoretical properties of

G when B(G) is a cycle of length four. We follow in chapters 6, 7 and 8 R. Hafezieh’s

paper [Hafezieh, 2017], which is our main paper.
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2. PRELIMINARIES AND BASIC RESULTS

2.1. Preliminary Definitions and Results in Group Theory

Definition 2.1. A subgroup N of a group G is normal if and only if for every g ∈ G we

have: gN = Ng.

Definition 2.2. A characteristic subgroup H of a group G is a subgroup that is mapped

to itself by each automorphism of G. It is denoted by H char G.

It is not hard to see that if H char G, then H EG.

Remark 2.3. If G is a finite group of order pαn where p is a prime, {α,n} ⊂ N∗ and

p - n. Then for each 1 ≤ i ≤ α , G has a subgroup of order pi. In particular, every

subgroup of order pα is called a Sylow p-subgroup of G and we denote by Sylp(G) the

set of all Sylow p-subgroups of G.

It is well-known that if P ∈ Sylp(G),then P char G if and only if PEG if and only

if P is the unique Sylow p-subgroup of G.

Definition 2.4. Let G be a group and K, LEG such that L ≤ K. Then K/L is a chief

factor of G if and only if there exists no MEG such that L < M < K.

Definition 2.5. Let G be a nontrivial group and S⊆ G, we define the centralizer of S in

G as follows: CG(S) = {x ∈ G : xs = sx, ∀ s ∈ S}, which is a subgroup of G. If SEG,

then CG(S)EG.

Definition 2.6. Let G be a nontrivial group. Then G is simple if and only if the only

normal subgroups of G are the trivial group and itself.

Definition 2.7. A group G is said to be almost simple, if and only if it verifies one of the

following equivalent conditions:

i) There exists a simple nonabelian subgroup S such that S≤ G≤ Aut(S).

ii) G has a nonabelian normal simple subgroup S such that CG(S) is trivial.
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In this case, we say that G is an almost simple group with socle S.

Definition 2.8. A maximal subgroup H of a group G is a proper subgroup, such that if

there exists H ≤ K ≤ G, then K = H or K = G.

Definition 2.9. Let G be a nontrivial group and {1} < H ≤ G. We say that H is a

minimal normal subgroup of G, if H is normal in G and for every K EG such that

{1} ≤ K ≤ H, we have K = {1} or K = H.

Definition 2.10. Let G be a nontrivial group. We say that G is characteristically simple,

if and only if G has no proper nontrivial characteristic subgroup.

Lemma 2.11. Let G be a finite group. If M is a minimal normal subgroup of G, then M

is characteristically simple.

Proof. If K char M, then by the minimality of M we have either K = {1} or K = M.

Thus M is characteristically simple.

Theorem 2.12. If G is a characteristically simple finite group, then it is the direct product

of a finite number of isomorphic simple groups.

Proof. Let S be a minimal normal subgroup of G. Let

T = {H EG : H = S1×S2× ...Sk; Si ∼= S; 1≤ i≤ k}. (2.1)

Notice that T 6= /0 as S ∈ T . Let N be a maximal normal subgroup in T . Since

N ∈ T , we can write N = S1× ...×Sr where Si ∼= S for every i∈ {1, ..,r}. We claim that

N = G. If N < G, then N is not a characteristic subgroup of G as G is characteristically

simple. Thus there exists φ ∈ Aut(G) such that φ(N) 6≤N. Hence, there exists 1≤ j≤ r

such that φ(S j) 6≤ N. Since φ is an automorphism of G and S j is a minimal normal

subgroup of G, we conclude that φ(S j) is a minimal normal subgroup of G, which

implies that N ∩ φ(S j)EG. Also N ∩ φ(S j) < φ(S) (φ(S j) 6≤ N). Therefore, by the

minimality of N we have N∩φ(S j) = {1}. It follows then that Nφ(S j) = N×φ(S j) =

S1× ...× Sr×φ(S j)EG. Thus Nφ(S j) ∈ T , which contradicts the maximality of N.
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Hence G = N = S1× ..× Sr. It remains to check that S is a simple group. Let LE S.

Since Si ∼= S for every i, we conclude that LESi for every i. Thus LEG = S1× ...×Sr.

But since S is a minimal normal subgroup of G, we deduce that L = {1} or L = S.

Corollary 2.13. A minimal normal subgroup of a finite group is the direct product of

isomorphic simple groups.

Proof. Combine the results of Lemma 2.11 and Theorem 2.12.

Definition 2.14. A Hall subgroup H of a group G is defined to be a subgroup whose

order is relatively prime with its index.

Definition 2.15. Let G be a group, N ≤ G and consider a prime p. We say that N is a

normal p-complement of G, if and only if:

i) N EG,

ii) (|N|, p) = 1,

iii) |G : N|= pα for some positive integer α .

Definition 2.16. Let G be a finite group, we define π(G) = {p : p is prime and p | |G|}.

Let γ be a set of primes. A group G is called a γ-group if and only if π(G)⊆ γ .

If H ≤ G, then it is called a γ-subgroup of G if and only if H is a γ-group.

Definition 2.17. Let G be a group and {x,y} ⊆ G. The commutator of x and y is defined

to be [x,y] = x−1y−1xy.

The subgroup generated by all commutators of G is called the commutator

subgroup and it is denoted by G′ or [G,G].

Definition 2.18. Let p be a prime. An abelian p-group G is called elementary abelian

p-group if and only if |x|= p for all x ∈ G\{1}.

Definition 2.19. Let (G,�) and (H,◦) be two groups. Let g1, g2 ∈ G and h1, h2 ∈ H.

i) The direct product of G and H is defined to be the group G×H with the following

operation: (g1,h1)∗ (g2,h2) = (g1 �g2,h1 ◦h2).

ii) Let φ : G −→ Aut(H) be a group homomorphism such that gφ = φ(g) := φg,

5



where g ∈G. Recall that (Aut(H),◦) is also a group. Consider H×K and define

the following operation: (g1,h1)∗(g2,h2)= (g1�g2,(h1(g2φ))◦h2). Then H×K

is a group with respect to this operation. It is called the semidirect product of H

and K with respect to φ , and it is denoted by Hoφ K or simply by HoK.

Theorem 2.20. (Recognition Theorem for Direct Products, Theorem 7.6 in [Rose,

2009]):

Suppose G is a group and H, K ≤ G such that:

i) H, K EG or each element of H commutes with each element of K,

ii) H ∩K = {1}, and

iii) G = HK = {hk : h ∈ H and k ∈ K}.

Then G = H×K.

Theorem 2.21. (Recognition Theorem for Semidirect Products, Theorem 7.17 in [Rose,

2009]):

Suppose G is a group and H, K ≤ G such that:

i) H EG,

ii) H ∩K = {1}, and

iii) G = HK.

Let φ be a homomorphism from K into Aut(H) such that φk(h) = k−1hk. Then

G = HoK.

Definition 2.22. Let G be a group,

i) A subnormal series of G is a finite chain of subgroups of G,

{1}= G0 ≤ G1 ≤ ...≤ Gr = G (2.2)

where Gi−1 EGi for every 1≤ i≤ r.

ii) A normal series of G is a finite chain of subgroups of G,

{1}= G0 ≤ G1 ≤ ...≤ Gr = G (2.3)

where Gi EG for every 1≤ i≤ r.

6



iii) A factor of a subnormal or a normal series is any quotient of the form : Gi/Gi−1

for some i≥ 1.

iv) A normal series of G is called a central series if

Gi/Gi−1 ≤ Z(G/Gi−1) (2.4)

for all 1≤ i≤ r.

v) The derived series of G is a sequence of subgroups of G which is defined as

follows: G(0) = G and G(n+1) = [G(n),G(n)] for all n≥ 1.

vi) G is a nilpotent group if and only if G has a central series.

If G is nilpotent, then the length of the shortest central series of G is called the

nilpotency class of G. It is denoted by n(G).

vii) G is a solvable group if and only if it verifies one of the following equivalent

conditions:

• G has a subnormal series such that Gi/Gi−1 is abelian for all 1≤ i≤ r.

• There exists a non-negative integer k such that the kth term of the derived

series, G(k), is trivial.

If G is solvable, then the length of the shortest subnormal series which

verifies the above property or the smallest integer k such that G(k) = {1} (in the

derived series) is called the derived length of G. It is denoted by dl(G).

Remarks 2.23.

• If G is a nilpotent group then it is solvable, however the converse is not necessarily

true.

• The direct product of two nilpotent groups is nilpotent.

• If G is a finite group, then it is nilpotent if and only if it is the direct product of its

Sylow subgroups.

• The semidirect product of two solvable groups is solvable.

• If G is solvable, then for every N EG, N and G/N are solvable.

• A subgroup H of G is called perfect if and only if H ′ = H.

• Let H EG. Then G/H is abelian if and only if G′ ≤ H.
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Theorem 2.24. (Burnside’s Theorem in [Alperin and Bell, 1991])

Let p and q be two primes. Let G be a group of order pαqβ . Then G is solvable.

Definition 2.25. The Fitting subgroup of a group G, F(G), is the subgroup generated by

all normal nilpotent subgroups of G. If G is finite, then it is the largest normal nilpotent

subgroup of G.

Definition 2.26. The upper Fitting series of a finite group G is a subnormal series of G:

F0(G) = {1} ≤ F1(G) = F(G)≤ ...≤ Fi(G)≤ .... (2.5)

where for every i, Fi(G) is defined as follows: Fi(G)/Fi−1(G) = F(G/Fi−1(G)).

Remark that, there exists r such that Fr(G) = G if and only if G is solvable. In

this case, the smallest integer h such that Fh(G) = G is called the Fitting height of G

and it is denoted by h(G).

Theorem 2.27. (Satz 10 in [Huppert, 1957]) If G is a solvable group, then h(G)≤ dl(G).

Definition 2.28. Let H be a proper subgroup of a finite group G. Assume that H ∩Hg =

{1} for every g ∈ G\H. Then H is called a Frobenius complement and the group G

which contains H is called a Frobenius group. Recall that Hg = {g−1hg : h ∈ H}.

Theorem 2.29. (Frobenius Theorem: Theorem 7.2 in [Isaacs, 1976]) Let G be a Frobe-

nius group with complement H. Then there exists N EG such that H ∩N = {1} and

G = HN.

The normal subgroup N whose existence is guaranteed by the previous theorem

is called the Frobenius kernel of G. Furthermore, by Theorem 7.3 in [Isaacs, 1976],

we can see that the kernel N is uniquely determined by the complement H. Also by

Theorem 2.21, we can write G as the semidirect product of H and N, that is G = HoN.

Definitions and Properties 2.30. ([Alperin and Bell, 1991]) Let G be any group and X

be any set. Let x ∈ X.
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• The left action of G on X is defined to be the following map:

. : G×X −→ X (2.6)

where .(g, x) = g.x, such that:

i) 1.x = x, for all x ∈ X,

ii) (g.h).x = g.(h.x), for all x ∈ X and g, h ∈ G.

• The stabilizer of x in G is a subgroup of G, which is defined as follows:

StG(x) = {g ∈ G : g.x = x}. (2.7)

• The orbit of x in G is the following subset of X:

OrbG(x) = {g.x : g ∈ G}. (2.8)

• For any group action we have:

⊔
x∈G

OrbG(x) = G. (2.9)

• Every group G acts on itself via conjugation by the following action: g.x = xg =

g−1xg where g, x ∈ G. In this case, we have StG(x) = CG(x) and we substitute

the notion of orbits by conjugacy classes which is denoted by clG(x).

• If X =V is a finite dimensional vector space over a field F. Then the action of G

on V is linear if and only if:

i) g.(v+w) = g.v+g.w for all g ∈ G and v, w ∈V ,

ii) g.(c.v) = c.(g.v) for all g ∈ G, v ∈V and c ∈ F.

Theorem 2.31. (The Orbit-Stabilizer Theorem: Corollary 5 in Section 3 of [Alperin and

Bell, 1991]) Let G acts on X and x ∈ X. Then there exists a 1-1 correspondence between

OrbG(x) and the set of right cosets of StG(x) in G. Furthermore, if |OrbG(x)|< ∞, then

|G : StG(x)|= |OrbG(x)|.

In the following we define characters of finite groups and some of its properties.
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For more information, you can see “Character Theory of Finite Groups” [Isaacs, 1976].

Definition 2.32. Let G be a finite group and V be a vector space of dimension n over

a field F. We define a representation of G in V of degree n to be a homomorphism of

groups:

ρ : G−→ GL(V ), (2.10)

where GL(V ) is the set of all invertible linear transformations of V .

Recall that GL(V )∼= GL(n, |F |) = {A ∈Mn(F) : |A| 6= 0}.

Proposition 2.33. (Propositions 1 and 6 of Section 12 in [Alperin and Bell, 1991]) There

is a 1-1 correspondence between the set of all linear actions of a group G on a finite

dimensional F-vector space V and the set of homomorphisms from G to GL(V ).

Definition 2.34. Let G be a finite group and V be an F-vector space.

A representation of G in V , ρ , is called irreducible if one of the following equiva-

lent conditions holds:

• OrbG(v) is a spanning set for all v ∈V .

• V has no nontrivial invariant subspaces.

Example 2.35. Any finite group G can be represented trivially in C by considering the

following homomorphism:

ρ : G−→ GL(C) (2.11)

such that ρ(g).z = z. Or, by considering the linear action of G on C which is defined as

follows: g.z = 1.z = z.

Definition 2.36. Let ρ be a representation of G in C of degree n. We define the character

of G associated with ρ to be the following map:

χ : G−→ C (2.12)
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where χ(g) = tr(ρ(g)).

Example 2.37.

i) The principal character of a finite group G is the character associated with the

trivial representation of G. In this case we have χ(g) = tr((1)1×1) = 1 for all

g ∈ G.

ii) For every representation of G in V , ρ , we have χ(1) = χ(ρ(1)) = tr(In) = n =

dimF(V ).

Definition 2.38.

i) A character which is associated with an irreducible representation is called an

irreducible character.

ii) The kernel of χ , kerχ , is a normal subgroup of G which is defined as follows:

kerχ = {g ∈ G : χ(g) = χ(1)}. (2.13)

iii) Irr(G) = {χ : χ is an irreducible character o f G}.

iv) If χ(1) = 1, then χ is called a linear character of G.

Note that the number of conjugacy classes of G is equal to the number of irre-

ducible characters of G (see Theorem 3 in Section 14 of [Alperin and Bell, 1991]).

Proposition 2.39. (Lemmas 6 and 13 in Section 15 in [Alperin and Bell, 1991]) If NEG,

then there is a 1-1 correspondence between the set of irreducible characters of G/N

and the set of irreducible characters of G whose kernel contain N.

Definition 2.40. Let χ, ψ ∈ Irr(G). The inner product of χ and ψ is defined as:

[χ, ψ] =
1
|G| ∑g∈G

χ(g)ψ(g). (2.14)

Definition 2.41. Let H ≤ G. Let ψ ∈ Irr(H). Then ψG which is defined by:

ψ
G(g) =

1
|H| ∑x∈G

ψ
◦(xgx−1) (2.15)
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is called the induced character of ψ on G, where ψ◦ is defined by: ψ◦(h) = ψ(h) if

h ∈ H and ψ◦(y) = 0 if y 6∈ H.

Definitions and Properties 2.42. Let H ≤ G.

• If χ ∈ Irr(G), then χH : H −→ C is a character of H where χH(h) = χ(h) for

all h ∈ H. It is called the restriction character of χ on H.

• If H EG, θ ∈ Irr(H) and g ∈ G, we define θ g : H −→ C such that θ g(h) =

θ(ghg−1). We have θ g ∈ Irr(H) and we say that θ g is a conjugate of θ in G.

• If H EG and θ ∈ Irr(H). Then

IG(θ) = {g ∈ G : θ
g = θ} (2.16)

is the inertia group of θ in G.

• If H EG and θ ∈ Irr(H) such that θ g = θ for all g ∈ G. Then θ is G-invariant

or we say that θ is invariant under G.

• Let H EG, θ ∈ Irr(H) and χ ∈ Irr(G). If χH = θ , then θ is extendible to G.

Theorem 2.43. (Clifford’s Theorem: Theorem 6.2 in [Isaacs, 1976]) Let H EG, χ ∈

Irr(G) and θ be an irreducible constituent of χH . Let θ = θ1, θ2, ..., θt be the distinct

conjugates of θ in G. Then

χH = e
t

∑
i=1

θi, (2.17)

where e = [χH , θ ].

It follows from Lemma 6.1 [Isaacs, 1976] that G acts on Irr(H) via ? : G×

Irr(H)−→ Irr(H) where ?(g, θ) = θ g. Thus IG(θ) is the stabilizer of θ via this action.

As |G : IG(θ)|= |OrbG(θ)| (Theorem 2.31), we can see that the index t in Clifford’s

Theorem is exactly |G : IG(θ)|.

Definition 2.44. Let φ be a character of a finite group G. Let χ ∈ Irr(G). Then χ is an

irreducible constituent of φ if and only if [χ, φ ] 6= 0.

Theorem 2.45. (Theorem 2.8 in [Isaacs, 1976]) Every character of a finite group G can
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be expressed uniquely as:

φ = ∑
χ∈Irr(G)

aχ χ, (2.18)

where aχ ∈ N for every χ .

Proposition 2.46. (Corollaries 2.14 and 2.17 in [Isaacs, 1976]) If χ and ψ are two

characters of G. Then [χ, ψ] = [ψ, χ]. Also, ψ is irreducible if and only if [ψ, ψ] = 1.

Furthermore, if θ 6= ψ is an irreducible character of G, then [ψ,θ ] = 0.

Definition 2.47. Let G be a finite group,

i) The character degree set, cd(G), is defined to be the set of all irreducible charac-

ter degrees of G, that is,

cd(G) = {χ(1) : χ ∈ Irr(G)}. (2.19)

ii) We define ρ(G) to be the set of all primes which divide some character degree of

G.

Notice that Proposition 2.39 implies that if N EG, then cd(G/N)⊆ cd(G).

Theorem 2.48. (Chapter 11 and Corollary 1.17 in [Isaacs, 1976]) Let G be a finite

group and χ ∈ Irr(G). Then

i) χ(1) | |G|,

ii) |G|= ∑χ∈Irr(G) χ(1)2.

Definition 2.49. The character table of a finite group G is the array (χi(gi))1≤i, j≤r,

where g1, ...,gr are representatives of the r conjugacy classes of G.

2.2. Preliminary Definitions and Results in Graph Theory

In this section, we give some definitions and results in graph theory that are

related to our study.

We follow in this section definitions and Theorems of [West, 2001].
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Definition 2.50. A graph Φ is an ordered pair (V (Φ),E(Φ)), where V (Φ) is a vertex

set, E(Φ) is an edge set and each edge is associated with two vertices.

Definition 2.51. A subgraph of a graph Φ is a graph Ω, where V (Ω) ⊆ V (Φ) and

E(Ω)⊆ E(Φ) such that the assignment of endpoints to edges in Ω is the same as in Φ.

We write in this case Ω⊆Φ.

If S ⊆ V (Φ), then we define the subgraph induced by S to be the subgraph of

Φ whose vertex set is S and whose edge set contains all edges of Φ that join any two

vertices in S.

Definition 2.52. Consider a graph Φ = (V (Φ),E(Φ)).

i) A walk on Φ is an alternating sequence of vertices and edges: v0, e1, v1, ...., ek, vk,

such that vi−1 and vi are the endpoints of the edge ei, for all i ∈ {1, ...,k}.

A walk is said to be closed if v0 = vk. The length of a walk is defined to be the

number of its edges. We denote an edge between two vertices u and v by u− v. In

this case we say that u and v are adjacent in Φ.

ii) A path of length n on Φ is a walk of length n where all vertices are distinct. In

this study, we use the notion Pn to denote a path of length n.

iii) A cycle of length n ≥ 3 on Φ is a closed walk of length n where all its vertices

are distinct except the endpoints. Usually, it is denoted by Cn.

iv) If there exists a path between any two vertices a and b, we say that they are

connected in Φ. Furthermore, the distance between a and b in Φ is defined to be

the length of a shortest path between them, and it is denoted by dΦ(a,b).

We call a triangle (resp. a square) any cycle of length three (resp. four).

Definition 2.53.

i) A loop is an edge connecting a vertex to itself.

ii) Multiple edges are two or more edges that are incident to the same two vertices.

iii) A simple graph is a graph that has no loops and multiple edges.

Definition 2.54. If Φ1 and Φ2 are two graphs, then their union Φ1∪Φ2 is also a graph

whose vertex set is V (Φ1)∪V (Φ2) and edge set is E(Φ1)∪E(Φ2).
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Definition 2.55. A graph Φ is said to be connected if and only if for every u 6= v ∈V (Φ)

there exists a u,v-path (a path whose endpoints are u and v). Otherwise, we say that

Φ is disconnected. In this case, we define the connected components of Φ to be its

maximal connected subgraphs, and we denote by n(Φ) the number of such components.

If x ∈V (Φ), then by [x]Φ we mean the connected component of Φ that contains x.

It is clear that every disconnected graph can be written as the union of its connected

components.

Definition 2.56. Let Φ be a connected graph. Then,

diam(Φ) = Max{dΦ(u,v) : u, v ∈V (Φ)}. (2.20)

If Φ is disconnected where Φ1, ...,Φr are its connected components, then

diam(Φ) = Max{diam{Φi} : 1≤ i≤ r}. (2.21)

Definition 2.57. Let Φ1 and Φ2 be two graphs, then Φ1 is isomorphic to Φ2 if and only

if:

i) V (Φ1) =V (Φ2).

ii) There exists an isomorphism f between V (Φ1) and V (Φ2) such that if u is

adjacent to v in Φ1, then f (u) is adjacent to f (v) in Φ2.

Definition 2.58. A complete graph of order n, Kn, is a simple graph on n vertices where

there is an edge between every pair of vertices.

Definition 2.59. Let Φ be a graph and v ∈V (Φ). The degree of v, degΦ(v), is defined to

be the number of edges connected to v. Note that if v has some loops, then each loop

will be counted as two edges.

If degΦ(v) = 0, then v is an isolated vertex.

Definition 2.60. A graph Φ is called bipartite if its vertex set can be written as the union

of two disjoint sets X and Y , such that each edge of Φ connects a vertex of X to a vertex

of Y .
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Theorem 2.61. (Theorem 1.2.18 in [West, 2001]) A graph Φ is a bipartite graph if and

only if it contains no odd cycles.

Definition 2.62. A tree is a connected graph with no cycles.

It should be mentioned that all graphs in this study are simple undirected graphs.

Remark that in an undirected graph there is no difference between the edge u− v and

v−u. However, in a directed graph the order matters.

2.3. Basic Definitions and Results

Definition 2.63. Let G be a finite group,

i) The prime degree (or vertex) graph or simply the prime graph, ∆(G), is an

undirected graph whose vertex set is V (∆) = ρ(G), and there is an edge between

two primes p and q in ρ(G) if pq divides some degree in cd(G).

ii) The common divisor degree graph, Γ(G), is an undirected graph whose vertex

set is V (Γ) = cd(G)∗ = cd(G)\{1}, and there is an edge between two distinct

vertices x and y if (x,y) 6= 1.

iii) The bipartite divisor graph, B(G), is an undirected graph whose vertex set is

V (B) = ρ(G)∪ cd(G)∗, and there is an edge between p ∈ ρ(G) and x ∈ cd(G)∗

if p | x.

Remark that if there exists x ∈ cd(G)∗ such that x is prime, then we count x as

two distinct vertices in V (B(G)).

Definition 2.64. If N EG. Then, cd(G|N) = {χ(1) : χ ∈ Irr(G|N)}, where

Irr(G|N) =
⋃

1N 6=θ∈Irr(N)

Irr(G|θ), (2.22)

and Irr(G|θ) is the set of all irreducible constituents of θ G. It is well-known that

cd(G) = cd(G/N)
⊔

cd(G|N). (2.23)

Lemma 2.65. ([Iranmanesh and Praeger, 2010]) Let B = B(G) be a bipartite graph
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with V (B) = ρ(G)∪ cd(G)∗. Let p, q ∈ ρ(G) and x, y ∈ cd(G)∗ such that [p]B = [q]B

and [x]B = [y]B.

Then:

i) dB(p,q) = 2d∆(p,q), dB(x,y) = 2dΓ(x,y);

ii) if p | x and q | y, then [p]B = [x]B = [p]∆∪ [x]Γ and dB(p,q)−dB(x,y)∈ {−2,0,2};

iii) n(B) = n(∆) = n(Γ);

iv) we have either:

• diam(B) = 2max{diam(∆),diam(Γ)}, and |diam(∆)−diam(Γ)| ≤ 1;or;

• diam(Γ) = diam(∆) = 1
2(diam(B)−1).

Proof. i) If dB(p,q) = k, then there exists a shortest path in ∆ of length k between p and

q, say (p0 = p, p1, ...., pk = q). Remark that pi and pi+1 are adjacent in ∆ if and only

if dB(pi, pi+1) = 2. Hence if so, then there exists a path of length 2k in B connecting

p and q, say (p0, x1, p1, ...., xk, pk). This implies that dB(p,q) ≤ 2k. But since p

and q belong to the same bipartition part of B, we deduce that dB(p,q) = 2l ≤ 2k. If

(p′0 = p,x′1, p′1, ...., x′l, p′l) is a shortest path in B between p and q then (p′0, p′1, ...., p′l)

is a path in ∆ of length l, hence k ≤ l. Therefore dB(p,q) = 2k = 2d∆(p,q). A similar

proof shows that dB(x,y) = 2dΓ(x,y).

ii) Suppose p | x and q | y. If the above path (p′0 = p,x′1, p′1, ....,x
′
l, p′l = q) can be

chosen such that x′1 = x and x′l = y , then by a similar argument to above we can

see that dB(p,q)−dB(x,y) = 2. Now, if only one of the following equalities: x′1 = x

or x′l = y holds, then dB(p,q) = dB(x,y). Finally if neither x′1 = x nor x′l = y, then

dB(p,q)−dB(x,y) =−2. Moreover, by the structure of a shortest path in B between p

and q and the two induced paths in ∆ and Γ which are respectively (p′0, p′1...., p′l) and

(x′1,x
′
2, ...,xl−1), we can deduce that [p]B contains {p,q,x,y} and [p]B = [p]∆∪ [x]Γ.

iii) Follows directly from part ii).

iv) Let m = max{diam(∆),diam(Γ)}. From part i) we can see that diam(B) ≥ 2m.

Let diam(B) = M where M ≥ 2m, and choose a, b ∈V (B) such that dB(a,b) = M. If

a and b are both in ρ(G) (respectively in cd(G)∗), then M = dB(a,b) = 2d∆(a,b) ≤

2diam(∆) ≤ 2m (respectively, M ≤ 2diam(Γ) ≤ 2m). In each case we can see that

M = 2m. Without loss of generality suppose that a ∈ ρ(G) and b ∈ cd(G)∗. From

the structure of B(G) we can conclude that M ≥ 2m+1. Let p ∈ ρ(G) be the vertex
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adjacent to b on a path on B(G) of length M with endpoints a and b. Then by the

definition of M, we can see that the p,a-subpath of this path must be the shortest

path between these two vertices. Thus M−1 = dB(a, p) = 2d∆(a, p) by part i) and so

M− 1 ≤ 2diam(∆). By a similar discussion, we can deduce that M ≤ 2diam(Γ)+ 1.

Hence diam(∆) = diam(Γ) = M−1
2 .

It remains to check that |diam(∆)−diam(Γ)| ≤ 1. Assume that diam(B) = 2m

and f = diam(∆). Let p0, p f ∈ ρ(G) such that d∆(p0, p f ) = f . It follows from part i)

that there exists a path on B of length 2 f connecting p0 and p f . Let x0 and x f be the

vertices on this path adjacent to p0 and p f respectively. Consider now that subpath

connecting x0 to x f . It is clear that this is the shortest path on B between x0 and x f .

Hence, diamB(x0,x f ) = 2 f − 2. On the other hand, we have diamΓ(x0,x f ) = f − 1

by part i). Thus diam(Γ) ≥ diam(∆)− 1. Similarly we can show that diam(∆) ≥

diam(Γ)−1. Hence |diam(∆)−diam(Γ)| ≤ 1.

Theorem 2.66. (Frobenius Reciprocity: Lemma 5.2 in [Isaacs, 1976]) Let H ≤ G and

suppose that ψ is a character on H and θ is a character on G. Then [ψ,θH ] = [ψG,θ ].

Theorem 2.67. (Gallagher’s Theorem: Theorem 6.17 in [Isaacs, 1976]) Let N be a

normal subgroup of G. Let χ ∈ Irr(G) such that χN = θ ∈ Irr(N). Then for every

β ∈ Irr(G/N), the characters β χ are irreducible, distinct for distinct β and are all of

the irreducible constituents of θ G.

Theorem 2.68. (Ito-Michler’s Theorem: Corollary 12.34 in [Isaacs, 1976]) Let G be a

solvable group and p be a prime. Then every element of cd(G) is relatively prime with

p if and only if the Sylow p-subgroup of G is normal abelian.

Theorem 2.69. (Pálfy’s Condition: Theorem 18.7 in [Manz and Wolf, 1993]) Let G be a

solvable group and π ⊆ ρ(G) such that |π| ≥ 3. Then there exists u, v ∈ π such that

uv | χ(1) for some χ ∈ Irr(G) (equivalently, u and v are adjacent in ∆(G)).

Proposition 2.70. Let G be a finite group and H be an abelian subgroup of G. Then for

all χ ∈ Irr(G) we have χ(1)≤ |G : H|.
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Proof. Let χ ∈ Irr(G). We know that χH is a character of H. If χH ∈ Irr(H), then χH

is a linear character and we have χH(1) = 1≤ |G : H|. Otherwise, let θ ∈ Irr(H) such

that [χH ,θ ] 6= 0. Then by Frobenius Reciprocity, we have [χ,θ G] = [χH ,θ ] 6= 0. This

implies that χ appears in the decomposition of θ G as the sum of irreducible characters.

Thus, χ(1)≤ θ G(1) = |G : H|θ(1) = |G : H| (see Definition 2.41).

Theorem 2.71. (Fermat’s Little Theorem [Andreescu et al., 2007]) If p is a prime and n

is any integer not divisible by p, then np−1 is divisible by p, which is equivalent to say

that np ≡ n (mod p).

Theorem 2.72. (Horosevskii Theorem: Corollary 3.3 in [Isaacs, 2008]) Let G be a

nontrivial finite group and σ ∈ Aut(G), then the order of σ in Aut(G) is less than |G|.
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3. NO NONSOLVABLE GROUP G WHOSE ∆(G)
IS A P3 OR A C4

In this chapter we see that there is no nonsolvable group G such that its ∆(G) is a

P3 or a C4. We start by classifying the almost simple groups G where S≤ G≤ Aut(S)

for some nonabelian simple group S and such that ∆(G) is a subgraph of C4. Then,

we claim that every nonsolvable group G with ∆(G) = P3 or C4 has a normal solvable

subgroup N such that G/N is almost simple, and ∆(G/N) is a subgraph of C4. Then,

we use the above classifications for proving that no such G exists.

Note that if G is an almost simple group with socle S, then S is normal in G

and hence ρ(S) ⊆ ρ(G) by Clifford’s Theorem. By Ito-Michler’s Theorem and the

simplicity of S we can deduce that ρ(S) = π(S). Therefore we consider the case where

S is a nonabelian simple group whose order is divisible by at most four primes. As

a group with at most two prime divisors is solvable (Burnside’s Theorem), we may

consider those nonabelian simple groups S such that π(S) = 3 or 4.

It should be mentioned that if θ ∈ Irr(S) and χ ∈ Irr(G|θ) then by Lemma 6.8

in [Isaacs, 1976] we can see that θ(1)|χ(1), thus ∆(S)⊆ ∆(G). Hence if ∆(S) is not a

subgraph of C4 then so is ∆(G).

To reach the desired classification we use the list of simple groups whose prime

degree graphs are incomplete [White, 2009] and the list of simple groups whose orders

are divisible by three or four primes [Huppert and Lempken, 2000]. We conclude then

that the only simple groups S whose |π(S)| = 3 or 4 are either PSL2(q) for a prime

power q or one of the groups listed in Table 2.1.

Remark that we did not consider those simple groups whose prime degree graphs

are complete graphs with three or four vertices since such graphs cannot be a subset of

C4.

We follow in this chapter lemmas and theorems of paper [Lewis and White, 2013].

Lemma 3.1. If G is a finite group with socle S such that S is a nonabelian simple group,

not isomorphic to PSL2(q) for any prime power q, then ∆(G) is not a subgraph of C4.

Proof. By the above notes, the only simple groups S whose |π(S)| = 3 or 4 and not

isomorphic to PSL2(q) for any prime power q are the groups listed in Table 3.1. From
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Table 3.1: S 6∼= PSL2(q), |ρ(S)| ≤ 4 and ∆(S) incomplete.

Group Order Degrees Triangle
M11 24.32.5.11 10,44,55 2,5,11
A8 26.32.5.7 14,20,35 2,5,7

PSL3(4) 26.32.5.7 35,45,63 3,5,7
PSL3(8) 29.32.72.73 72,584,657 2,3,73

PSU3(42) 26.3.52.13 12,39,52 2,3,13
PSU3(92) 25.36.52.73 72,584,657 2,3,73

2B2(8) 26.5.7.13 35,65,91 5,7,13
2B2(32) 210.52.31.41 775,1025,1271 5,31,41

the table, it is clear that for each S, ∆(S) contains a triangle. Hence ∆(S) cannot be a

subgraph of C4 and so is ∆(G) (which contains ∆(S)).

It is well known that for any q = p f for some positive integer f and a prime p,

• cd(PSL2(q)) = {1,q,q−1,q+1} if q is even,

• cd(PSL2(q) = {1,q,(q+ ε)/2,q−1,q+1} if q is odd where ε = (−1)
q−1

2 .

Therefore ρ(PSL2(q)) = {p}∪π(q−1)∪π(q+1).

Lemma 3.2. (Lemma 1.3 in [Huppert and Lempken, 2000]) Let p be a prime and f a

positive integer. Then, p2 f −1 has at most two distinct prime divisors, if and only if,

p f ∈ {2,3,4,5,7,8,9,17}.

By Theorem 3.1, we can see that if G is an almost simple group such that

S≤ G≤ Aut(S) where S is a nonabelian simple group. Then, ∆(G) is a subgraph of a

square if S∼= PSL2(q) for a prime power q. Therefore, till the end of this chapter we will

assume that S∼= PSL2(q), for a prime power q. Since PSL2(2)∼= S3 and PSL2(3)∼= A4

where both S3 and A4 are not simple, we may assume that q > 3.

We consider first the case where |π(S)|= 3.

Lemma 3.3. Let S = PSL2(q) where q = p f > 3 for some positive integer f and a prime

p. Then |ρ(∆(S))|= 3 if and only if p f ∈ {22,23,32,5,7,17}. In this case ∆(S) has at

most one edge. And for every almost simple group G with socle S, ∆(G) has exactly one

edge and is a subgraph of C4.

Before representing the proof of Lemma 3.3, we must mention some important
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remarks about the possible groups G such that PSL2(q)< G≤ Aut(PSL2(q)).

Definition 3.4. The outer automorphism group of a group G, Out(G), is defined to be

the quotient group Aut(G)/Inn(G), where Inn(G) = {σa : a ∈ G} and σa(g) = aga−1

for all g ∈ G.

Remark that for any finite group G, Inn(G) ∼= G/Z(G). Thus Inn(PSL2(q)) ∼=

PSL2(q) as Z(PSL2(q)) is trivial for all prime power q.

Note 3.5.

i) For G ∼= PSL2(p f ), we have: Out(G) ∼= Z2 if p > 3 is odd and f = 1, and

Out(G)∼= Z f if p = 2 and f > 1. Furthermore, for q = p f > 6,

Out(PSL2(p f )) = 〈δ 〉×〈ϕ〉 (3.1)

where δ is a diagonal automorphism of order (2, p f −1), and ϕ is a field auto-

morphism of order f .

ii) Subgroups of Aut(PSL2(q)) are discussed in [White, 2013] and can be summa-

rized as follows:

• If q is even:

PGL2(q) = PSL2(q), Aut(PSL2(q)) = PSL2(q)〈ϕ〉, and any subgroup of

Aut(PSL2(q)) which contains PSL2(q) strictly, is of the form: PSL2(q)〈ϕk〉

for some 1≤ k < f with k | f and G/PSL2(q) is cyclic.

• If q is odd:

PGL2(q) = PSL2(q)〈δ 〉, Aut(PSL2(q)) = PSL2(q)〈δ ,ϕ〉, and if PSL2(q)<

G 6 Aut(PSL2(q)), then G has one of the following forms:

i) δ ∈G so that PGL2(q)6 G and G = PGL2(q)〈ϕk〉 for some k | f with

1≤ k ≤ f ;

ii) G = PSL2(q)〈ϕk〉 for some k | f with 1≤ k < f ;

iii) G = PSL2(q)〈δϕk〉 for some k | f with 1≤ k < f and f | k is even.

Proof of Lemma 3.3. By using Lemma 3.2, it is clear that ∆(S) has exactly three

vertices if and only if p2 f − 1 is divisible by exactly two primes, if and only if q =
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p f ∈ {22,23,32,5,7,17}. Remark that PSL2(4) and PSL2(5) are isomorphic groups,

this group will be viewed as PSL2(4) in our discussion. By using character tables in

[Conway et al., 1984], it is clear that ∆(S) has no edges for q ∈ {4,8}, and has exactly

one edge for q ∈ {7,9,17}. By note 3.5, it is clear that for every p f ∈ {4,8,7,17},

the outer automorphism group of S is of order 2 or 3, hence [Aut(S) : G] = 1 and

G = Aut(S). For q ∈ {4,8,7,17} the character tables of Aut(S) are given in [Conway

et al., 1984] where it is shown that that for each case, ρ(G) = ρ(S) and ∆(G) has

exactly one edge. For the case q = 9, the outer automorphism group of S is isomorphic

to Z2×Z2 and the proper subgroups of Aut(S) are as mentioned above. For each

case the character table is known by [Conway et al., 1984] and shows that ∆(G) has

exactly one edge. To finish the proof, consider Aut(PSL2(9)) = PSL2(9)〈δ ,ϕ〉 where

δ and ϕ are automorphisms of order 2. Since q = 9 is odd and δ ∈ Aut(PSL2(9)),

we know by [White, 2013] that |Aut(PSL2(9)) : PGL2(q)|= d = 2am, where m is odd.

Furthermore, cd(Aut(PSL2(9))) = {1,9,(9+ ε)/2 : ε = (−1)(9−1)/2}∪ {(9− 1)2al :

l | m}∪{(q+1) j : j | d}. But since |Aut(PSL2(9)) : PGL2(9)|= f = 2 (see Note 3.5)

and Aut(PSL2(9)) contains strictly PSL2(9)〈δ 〉, we conclude by Theorem A of [White,

2013] that (9+ε)/2 = 5 6∈ cd(Aut(PSL2(9))), m = 1 and a = 1. Thus l = 1, j ∈ {1,2}

and cd(Aut(PSL2(9))) = {1,9,10,16,20}. Therefore 2−5 is the unique edge in this

case and the proof is completed.

Now consider the case were S = PSL2(q) such that q2−1 has exactly three prime

divisors, equivalently the case where ∆(S) has exactly four vertices. The cases where q

is even or odd will be treated separately.

For the even case, i.e., when q = 2 f , it is clear that S is not simple for f = 1, and

∆(S) has three vertices for f ∈ {2,3}, hence we may consider f ≥ 4. Since 2, 2 f −1

and 2 f +1 are pairwise relatively prime and 22 f −1 has three prime divisors, then one

of 2 f −1 or 2 f +1 is a prime power and the other is a product of two prime powers.

Precisely, by Lemma 1.2 of [Huppert and Lempken, 2000] one of 2 f −1 or 2 f +1 is a

prime.

Lemma 3.6. If S = PSL2(2 f ) such that |ρ(S)|= 4, then either:

i) f = 4, 2 f −1 = 3.5 and 2 f +1 = 17; or;

ii) f ≥ 5 is a prime, 2 f −1 = r is a prime and 2 f +1 = 3.tβ where t is an odd prime
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and β ≥ 1 is odd.

Furthermore, ρ(S) = {2,3,r, t}, 3− t is the only edge in ∆(S) and if G is almost

simple with socle S, then ∆(G) is not a subgraph of C4.

Proof. Parts i) and ii) follow directly from Lemma 3.5 in [Huppert and Lempken, 2000].

Since the character degrees of S are relatively prime, then 3− t is the only edge in

∆(S). Notice that for the even case, the outer automorphism group of S is a cyclic group

generated by a field automorphism of order f . Hence if G is almost simple group with

socle S, then |G : S| | f .

If f = 4, then |G : S| = 2 or 4 and ρ(G) = ρ(S) = {2,3,5,17}. For each case,

3.5.|G : S| ∈ cd(G) [Conway et al., 1984], therefore the primes 2, 3 and 5 form a triangle

in ∆(G) and it cannot be a subgraph of C4.

If f ≥ 5 is prime, then |G : S| = f . By Fermat’s Little Theorem we know that

2 f ≡ 2 (mod f ). Therefore 2 f +1≡ 3 (mod f ) and 2 f −1≡ 1 (mod f ). Since f ≥ 5,

then f is neither r nor t. Hence ρ(G) = {2,3,r, t, f}. Thus ∆(G) has five vertices and it

cannot be a subgraph of C4.

Suppose now that the prime vertex graph of S = PSL2(p f ) has four vertices for

some odd prime p and positive integer f , or equivalently q2−1 has three distinct prime

divisors. As q−1 and q+1 are both divisible by 2, then q2−1 is divisible by exactly

two odd primes r and t. So ρ(S) = {p,2,r, t}.

Lemma 3.7. (Theorem 3.2 and Lemma 3.4 in [Huppert and Lempken, 2000]) If q = p f

is an odd prime power such that q2−1 is divisible by exactly three primes, then one of

the following holds:

i) q ∈ {34,52,72};

ii) p = 3 and f is an odd prime integer;

iii) 11≤ p and f = 1.

Note 3.8. It follows from Lemma 3.4 in [Huppert and Lempken, 2000] that if q = 3 f and

|q2−1|= 3, then q−1 = 2rα and q+1 = 2tβ for some odd primes r 6= t and positive

integers α, β .

Lemma 3.9. Let S = PSL2(q) where q = p f for an odd prime p and a positive integer f
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such that q2−1 is divisible by exactly two odd primes r, t and ρ(S) = {p,2,r, t}. Let G

be an almost simple group with socle S. Then the graph ∆(G) is a subgraph of C4 if

and only if one of the following holds:

i) p = 3, f is an odd prime and G = S or G = PGL2(q);

ii) q ∈ {34,52,72} or 11≤ p is neither a Mersenne prime nor a Fermat prime and

f = 1. Recall that a Mersenne prime (resp. a Fermat prime) is a prime number

that can be written as 2n−1 (resp. 22n
+1) for some positive integer n.

In all cases where ∆(G) is a subgraph of C4, ∆(G) = ∆(S).

Proof. By Lemma 3.7, q ∈ {34,52,72}, q = p≥ 11, or q = 3 f for an odd prime f . If

either q+1 or q−1 is a power of 2, then the other is divisible by 2, r and t. Thus ∆(S)

contains a triangle, i.e., ∆(G) cannot be a subgraph of C4. Therefore, each of q+1 and

q−1 is the product of a power of 2 and a power of an odd prime. By Note 3.8, this holds

for q = 3 f with an odd prime f and clearly holds for q ∈ {34,52,72}. If q = p ≥ 11,

this holds if and only if q is neither a Mersenne prime nor a Fermat prime by definition.

Under the conditions of i) or ii), ρ(S) = {p,2,r, t} and ∆(S) is a subgraph of C4

which has exactly the following edges: 2− r, 2− t. Suppose that G is an almost simple

group with socle S, then by Theorem A of [White, 2013], each character of G is either

1, q or a divisor of either |G : S|(q+1) or |G : S|(q−1). Note that, if |G : S| is a power

of 2, then ∆(S) = ∆(G) is a subgraph of C4. Since q is odd, |Aut(S) : S|= 2 f . For each

of the cases q ∈ {34,52,72} or 11≤ q is a prime, f is a power of 2, hence so is |G : S|

(being a divisor of |Out(S)| = 2 f ). Consider now the case where q = 3 f for an odd

prime f and let G be an almost simple group with socle S. If G = PGL2(q), then |G : S|

is a power of 2 and ∆(G) is a subgraph of C4 (as above). Assume now that G 6= PGL2(q)

and |G : S| 6= 2, then f must divide |G : S|, precisely f ∈ ρ(G) by [White, 2013]. Since

f is an odd prime, then 3 f ≡ 3 (mod f ) and neither 3 f −1 nor 3 f +1 is divisible by 3.

Hence if f 6= 3, then ρ(G) = {2,3,r, t, f}, i.e., ∆(G) has five vertices and it cannot be a

subgraph of C4. Finally if f = 3, then S = PSL2(33). If S < G and G is not PGL2(33),

then |Out(S)|= 2 and G = Aut(S). It follows from the character degree table of G in

[Conway et al., 1984] that 3(q−1), 3(q+1) ∈ cd(G) . Hence 3 is adjacent to 2, r = 7

and t = 13 in ∆(G), a contradiction.

Theorem 3.10. Let G be a finite group such that S < G 6 Aut(S) where S is a nonabelian
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finite simple group. If ∆(G) is a subgraph of C4, then S ∼= PSL2(q) for some prime

power q = p f , such that q2− 1 is divisible by at most three distinct prime divisors.

Furthermore, the values of q and the almost simple groups G with socle PSL2(q) such

that ∆(G) is a subgraph of C4 are as follows:

i) q ∈ {22,23,32,34,5,52,7,72,17}, all groups G such that S < G 6 Aut(S).

ii) q = 24 and G = S.

iii) q = 2 f for a prime integer f ≥ 5 and such that 2 f − 1 = r is a prime and

2 f +1 = 3tβ for a prime t distinct from r, in this case G = S.

iv) q = 3 f for a prime integer f ≥ 3 and such that 3 f −1 = 2rα and 3 f +1 = 22tβ

where r 6= t are two primes, and G = S or G = PGL2(q).

v) q = p ≥ 11 and each of q+ 1, q− 1 is divisible by 2 and an odd prime, in

particular q is neither a Mersenne prime nor a Fermat prime, all G.

Proof. The proof follows directly from Lemmas 3.3, 3.6 and 3.9.

In the following, we claim that if G is a nonsolvable group whose ∆(G) = P3

or C4, then it has a solvable normal subgroup N such that G/N is one of the groups

listed in the previous theorem. We conclude then that no such G exists. This requires

the usage of Dickson’s classification of subgroups of PSL2(q) (Hauptstaz II.8.27 in

[Huppert, 1967]), the fact that the Schur multiplier for PSL2(q) has order 2 when q 6= 9

is odd and order 1 when q≥ 4 is even, and that SL2(q) is the Schur representation group

of PSL2(q) when q 6∈ {4, 9}.

Lemma 3.11. Let G be a nonsolvable group such that ∆(G) = P3 or C4. Then there

exist two normal subgroups N < M of G such that N is solvable, M/N is a nonabelian

simple group and G/N is one of the groups listed in Theorem 3.10.

Proof. Let N be maximal such that N is a normal solvable subgroup of G. Take M

to be a normal subgroup in G such that N < M and M/N is a chief factor of G. By

the maximality of N, M is nonsolvable and M/N is a nonabelian factor. Thus M/N is

a minimal normal subgroup of G/N. Hence M/N = S× S× ...× S for a nonabelian

simple group S (see Corollary 2.13). As mentioned previously |ρ(S)| ≥ 3. If M/N is not

simple, then M/N is isomorphic to the direct product of at least two copies of S. So by
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considering the product of the different characters of S divisible by the distinct primes

of ρ(S), we conclude that ∆(M/N) is a complete subgraph of ∆(G), a contradiction.

Thus M/N = S is simple. Let C/N =CG/N(M/N). Since M/N is simple, M∩C = N.

If N < C, then there exists a normal subgroup of G, say L, such that N < L ≤C and

L/N is a chief factor for G. By applying the previous argument of M/N to L/N, we can

similarly conclude that L/N is a nonabelian simple group.

We claim now that any vertex in ρ(M/N)∩ρ(L/N) is adjacent to all vertices of

ρ(M/N)∪ρ(L/N). Indeed, since L/N ≤CG/N(M/N), then every element in M/N ∩

L/N commutes with all elements of M/N, i.e., all elements in the intersection belongs to

Z(M/N). But Z(M/N) = 1G/N , being the center of a nonabelian simple group. Hence

L/N ∩M/N = 1G/N . Thus L/N.M/N = L/N×M/N is a normal subgroup of G/N

(note that M/N is normal in G/N by the definition of an almost simple group, and

L/N is normal in G/N being the centralizer of a normal subgroup). Let p ∈ ρ(L/N)∩

ρ(M/N), then there exist χ ∈ Irr(M/N) and ψ ∈ Irr(L/N) such that p | χ(1), ψ(1).

Let θ ∈ Irr(L/N) and ν ∈ Irr(M/N). Then χ(1)θ(1), ψ(1)ν(1) ∈ cd(M/N×L/N)

(see Example 2 of section 15 in [Alperin and Bell, 1991]). Hence, p is adjacent to t for

all t ∈ ρ(M/N) and p is adjacent to r for all r ∈ ρ(L/N). Therefore p is adjacent to q

for all q ∈ ρ(M/N)∪ρ(L/N).

Particularly, ρ(M/N)∩ρ(L/N) induces a complete subgraph of ∆(G). Therefore

|ρ(M/N)∩ρ(L/N)| ≤ 2 and so |ρ(M/N)∪ρ(L/N)| ≥ 4. By Theorem 3.10, we know

that both M/N and L/N are projective linear groups of order 2, hence 2 ∈ ρ(M/N)∩

ρ(L/N). It follows then that 2 has degree at least three in ∆(G) which implies a

contradiction.

By the last result (Lemma 3.11) and since our purpose is to prove that there does

not exist any nonsolvable group G whose ∆(G) is a P3 or a C4 , we may assume the

following hypothesis.

Hypothesis 3.12.

• G is a nonsolvable group whose ∆(G) is a P3 or a C4.

• N < M are two normal subgroups of G such that N is solvable, and M/N = S =

PSL2(q) where q is one of the values described in Theorem 3.10.

• G/N is an almost simple group with socle S, precisely, it is one of the groups
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described in Theorem 3.10.

If Hypothesis 3.12 is true, we discuss the existence of G in separate theorems

depending on the parity of p and whether |ρ(S)|= 3 or 4.

Theorem 3.13. There is no G that satisfies Hypothesis 3.12 if p is odd and |ρ(S)|= 4.

Proof. Let |ρ(S)|= 4 such that p is odd. Suppose that such G exists. It follows from

Lemma 3.9 that ρ(G) = ρ(S) = {2, p,r,s}, q− 1 = 2αra and q+ 1 = 2β sb for some

positive integers α, β , a and b. Indeed, q is one of the following:

i) q = p≥ 11.

ii) q = 25, with r = 3 and s = 13.

iii) q = 49, with r = 3 and s = 5.

iv) q = 81, with r = 5 and s = 41.

v) q = 3 f , such that f ≥ 3 is a prime.

Notice that none of the character degrees of G is divisible by three primes, and that

2 is adjacent to both r and s, hence no degree in ∆(G) is divisible by either rs or 2p. Let

θ ∈ Irr(N) and T = IM(θ). Since [χN ,θ ] = [(χM)N ,θ ] = [χM,θ M] for all χ ∈ Irr(G|θ),

then each irreducible constituent of χM belongs to Irr(M|θ). Thus |M : T |θ(1) | χ(1)

for all χ ∈ Irr(G|θ). This implies that |M : T | is divisible by at most two primes, and if

|π(|M : T |)|= 2 then any prime divisor of θ(1) ∈ π(M/T ).

We claim that T = M. Suppose that T < M. We consider the different possibilities

for the subgroup T/N of S = PSL2(q) described in Hauptstaz II.8.27 of [Huppert, 1967].

If T/N is abelian, then it is either an elementary abelian p-group or a cyclic group

of order z such that z | p f ±1
k

and k = (p f −1,2). This implies that |M : T | must be

divisible by three primes (as |T : N| is divisible by exactly one prime and |S|= |M/N|=

|T/N|.|M/N : T/N|= |T/N||M : T | has four prime divisors), a contradiction. So T/N

is nonabelian.

If T/N is a dihedral group of order 2z where z is as described above, then

p | |M : T |. Let C/N be the cyclic normal subgroup of index 2 in T/N. Since θ is

invariant in C, then by Corollary 11.22 in [Isaacs, 1976] θ extends to ϕ ∈ Irr(C). If ϕ

is T -invariant, then θ extends to T by Corollary 6.20 in [Isaacs, 1976] and since 2 is a

character degree in any dihedral group, then 2θ(1) ∈ cd(T |θ) by Gallagher’s Theorem.
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Otherwise, apply Clifford’s Theorem to any η ∈ Irr(T |ϕ), we get: ηC(1) = [ηC,ϕ].|T :

IT (ϕ)|.ϕ(1) such that 1 < |T : IT (ϕ)| divides 2. Hence ϕ(1) = [ηC,ϕ]2ϕ(1) with

[ηC,ϕ] | |T : C|. Thus [ηC,ϕ] = 1 or 2. If [ηC,ϕ] = 2, then 2, p | |T : C| | |M : T | | χ(1)

for all χ ∈ Irr(G|θ), i.e., 2 is adjacent to p in ∆(G), a contradiction. Therefore

ηC(1) = η(1) = 2ϕ(1) = 2θ(1) ∈ cd(T |θ). So in both cases we get, 2θ(1) ∈ cd(T |θ).

Applying again Clifford’s Theorem implies that |M : T |2θ(1) divides φ(1) ∈ Irr(M)

which divides a character degree in G as MEG. Thus 2 and p are adjacent in ∆(G), a

contradiction.

If T/N is a Frobenius group, then by the structure of T/N given in Hauptstaz

II.8.27 in [Huppert, 1967], we know that T/N is a direct product of a cyclic group

of order t and a Frobenius kernel F/N, where F/N is an elementary abelian p-group

and t | 2αra. Thus, p | |T : N| and s - |T : N|. As a consequence s must divide |M : T |.

Assume now that r - |T : N|, then r, s | |M : T |. But |M : T | | χ(1) for all χ(1)∈ cd(G|θ)

where θ ∈ Irr(N). This generates a character degree in G/N and consequently in G

which is divisible by both r and s, a contradiction. Hence p, r | |T : N| and 2, s | |M : T |.

If θ does not extend to F , then [F : IF(θ)]> 1, but it divides the p-group F/N, hence

p divides all character degrees in cd(G|θ). It follows from the last result, Clifford’s

Theorem and the fact that each irreducible constituent of χ ∈ Irr(G|θ) in T belongs

to Irr(T |θ), that each character degree in cd(T |θ) and cd(G|θ) is divisible by p. And

since the character degrees in cd(G|θ) are divisible by |M : T |, then cd(G) has a

degree divisible by 2 and p, a contradiction. Thus θ extends to F . If R/N is either a

Sylow r-subgroup or a Sylow 2-subgroup of T/N, then it is cyclic and extends to R by

Corollary 11.22 in [Isaacs, 1976]. Moreover it extends to T by Theorem 11.31 in [Isaacs,

1976]. Applying Gallagher’s Theorem and the fact that |T : F | ∈ cd(T/N) gives that

|T : F |θ(1)∈ cd(T |θ). Then by applying Clifford’s Theorem to any ψ ∈ Irr(M|υ .θ(1))

where υ(1) = |T : F |, we can conclude that ψ(1), which divides a character degree in

G, is divisible by |M : T ||T : F |θ(1). Hence r is adjacent to s in ∆(G), a contradiction.

If T/N ∼= A4 or S4. We have π(A4) = π(S4) = {2,3}, hence 3 ∈ {p,r,s} and

|M : T | is divisible by the other two primes. If θ extends to T , then it follows from

the character degrees of A4 and S4, Gallagher’s Theorem and Clifford’s Theorem, that

|M : T |2θ(1) or |M : T |3θ(1) divides a character degree in M and consequently in G.

I.e., there exists a character degree in G divisible by three distinct primes, a contradiction.
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Otherwise |T : IT (θ)|> 1, and since it divides |A4| or |S4|, then |T : IT (θ)| is divisible

by either 2 or 3. Hence, for any γ ∈ Irr(T |θ), we have γN(1) = [γN ,θ ]|T : IT |θ(1).

Again by Clifford’s Theorem we get: ϕT (1) = |M : T |[ϕT ,γ]γ(1) for some ϕ ∈ cd(M|γ),

which means that, ϕ(1) that divides a character degree in G, is divisible by 2 ( or 3) and

two other distinct primes, a contradiction.

If T/N ∼= A5, then π(A5) = {2,3,5}. So if p is neither 3 nor 5 , then p | |M : T |.

Whether θ extends to T or not, there exists some degree in cd(T |θ) divisible by 2 (see

character table of A5 in [Conway et al., 1984]). Hence there exists a character degree of

G divisible by both 2 and p, a contradiction. If p = 5, then q = 25 and |PSL2(25)| is

divisible by {2,3,5,13}, hence 13 | |M : T | and as above we obtain from [Conway et

al., 1984] a character in cd(T |θ) divisible by r = 3. This gives a character degree of

G divisible by both r and s = 13, a contradiction. Similarly, if p = 3, then q = 81 and

π(PSL2(81)) = {2,3,5,41}. Hence, 41 must divide |M : T | and we obtain a character

degree of G divisible by both r = 5 and s = 41, a contradiction.

Finally, assume that T/N ∼= PSL2(pm) or PGL2(pm). As the cases PGL2(3)∼= S4

and PSL2(5)∼= A5 have been already discussed, the remaining possibilities are q = 25

with T/N ∼= PGL2(5), q = 81 with pm = 9 and q = 49 with pm = 7. By a similar

discussion to the previous paragraph and by using the character tables found in [Conway

et al., 1984], we can obtain for each case a character degree of G divisible by two primes

which are not adjacent in ∆(G), a contradiction.

Therefore, T = M. If θ extends to M, then by Gallagher’s Theorem θ(1)(q−1),

θ(1)(q+1) and θ(1)q are all character degrees of M. So, if θ(1) 6= 1, then any prime

divisor of θ(1) is adjacent to all other primes in ρ(G), a contradiction. Hence, θ(1) = 1.

On the other hand, if θ does not extend to M, then we obtain the degrees θ(1)(q+1)

and θ(1)(q−1) in cd(M), as the representation group is SL2(q). Now, if t | θ(1), then

it is adjacent to the other two primes among {2,r,s}. And since p cannot be adjacent

to three distinct primes, then p - θ(1). Also as r and s are not adjacent, θ(1) is not

divisible by either r or s. Thus θ(1) is a power of 2. Notice that since q is odd, then

|M : N|= |PSL2(q)|= q.(q2−1)/2. Consider now a ∈ Irr(M|θ). As T = M, we can

write a(1) = e.θ(1) where e = [aN ,θ ] | |M : N|= q.(q2−1)/2. If e - q2−1, then e must

be a power of p. This implies that 2, p | a(1), a contradiction as the vertex 2 will be

adjacent to three distinct vertices in ∆(G). Hence e = a(1)/θ(1) divides q2−1 for all
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a ∈ Irr(M|θ). Since p - q2−1 or θ(1), we conclude that p does not divide any degree

in cd(M|θ).

As p ∈ ρ(G), there exists χ ∈ Irr(G) such that p | χ(1). Let µ ∈ Irr(M) be a

constituent of χM and θ ∈ Irr(N) be a constituent of µN . By the possibilities of G for

each q found in Theorem 3.10, we can see that |G : M| is a power of 2. For example, if

q = 3 f , then G/N is either S or PGL2(3 f ), i.e., |G : M|= 1 or 2 in this case. It follows

from Clifford’s Theorem and the fact that |G : M| is a power of 2, that p | µ(1). But as

mentioned before, the only possible case to have a degree in cd(M|θ) divisible by p,

is when θ is linear and extends to M. If follows then, that µ(1) = q. Hence, 2 and p

are the only possible prime divisors of χ(1). But since p is not adjacent to 2 in ∆(G),

then p is an isolated vertex, which implies a contradiction as ∆(G) is a connected graph.

Therefore, no such G exists.

Theorem 3.14. There is no G that satisfies Hypothesis 3.12 if p 6= 5 is odd and |ρ(S)|= 3.

Proof. By Theorem 3.10, we have q ∈ {7,9,17}. Let ρ(S) = {2, p,r} and s be a prime

such that ρ(G) = ρ(S)∪{s}. Since 2 is adjacent to r in ∆(M/N), and consequently

in ∆(G), then 2 and r have no common neighbors in ∆(G). Let χ ∈ Irr(G) such that

s | χ(1), and θ be an irreducible constituent of χN . Notice that, S is a nontrivial finite

group, thus |σ | ≤ |S| for all σ ∈ Aut(S) (Horosevskii Theorem). Hence, as s - |S|, for

all the possibilities of G/N mentioned in Theorem 3.10, s - |G : N|. It follows from

Corollary 11.29 in [Isaacs, 1976] that s | θ(1). Suppose that θ is M-invariant. If θ

extends to M or does not extends to M such that either q 6= 9, so that SL2(q) is the Schur

representation group of PSL2(q), or q = 9 and θ corresponds to the character of the

Schur multiplier of order 2, then θ(1)(q−1), θ(1)(q+1) ∈ cd(M). But 2 | (q−1) and

r divides one of q±1, hence s is adjacent to r and 2, a contradiction. If q = 9 and θ

corresponds to a character of the Schur multiplier of order 3 or 6, then by [Conway et

al., 1984], 6θ(1) ∈ cd(M). Again a contradiction, as 2, p and s are adjacent in ∆(G).

Therefore, θ is not invariant in M. Let T = IM(θ). If |M : T | is divisible by two primes

among {2, p,r}, then by Clifford’s Theorem, we obtain a character degree of G divisible

by |M : T |θ(1), i.e., it is divisible by s and the two divisors of |M : T |, a contradiction.

So |M : T | is a prime power. By the lists of maximal subgroups given in [Conway et al.,

1984], we have q = 7 and either |M : T |= 7 and T/N ∼= S4, or |M : T |= 8 and T/N is
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a Frobenius group of order 21. In the first case and as we discussed in Theorem 3.13,

there exists a character degree in cd(T |θ) which is divisible by either 2 or 3. This gives

a character degree of G divisible by 7, s and either 2 or 3, a contradiction. In the latter

case and as mentioned in Theorem 3.13, the Sylow subgroups of T/N are cyclic, thus

θ extends to T by Corollary 11.22 in [Isaacs, 1976]. Since 3 ∈ cd(T/N), we conclude

by Gallagher’s Theorem that 3θ(1) ∈ cd(T |θ), which gives a character degree in M

divisible by |M : T |3θ(1). Hence G has a character which is divisible by 2, 3 and s, a

contradiction. Thus no such G exists.

Theorem 3.15. There is no G that satisfies Hypothesis 3.12 if p = 2 and |ρ(S)|= 4.

Proof. We have q = 2 f , then by Theorem 3.10, either:

i) f is odd, such that 2 f −1 is a Mersenne prime and 2 f +1 = sαtβ for some distinct

primes s, t and positive integers α, β ; or;

ii) f = 4, such that q+1 = r = 17 and q−1 = s× t = 3×5 = 15.

As a consequence, s is adjacent to t in ∆(G). Let θ ∈ Irr(N). If θ is M-invariant,

then θ extends to M, as the Schur multiplier of PSL2(q) is trivial. It follows then

from Gallagher’s Theorem that θ(1)(q− 1), θ(1)(q+ 1) ∈ cd(G). Thus each prime

divisor of θ(1) is adjacent to all other primes in ρ(G), which leads to a contradiction.

Hence, θ(1) = 1. Let T = IM(θ) and suppose T < M. We claim that r and a power

of 2 divide |M : T | and a/θ(1) is a power of 2 for all a ∈ cd(T |θ). Moreover, either

2 | |M : T |, or there is a degree a ∈ cd(T |θ) which is divisible by 2. The claim will be

proved by showing that the other possibilities of the Dickson’s classification cannot

occur (see Hauptsatz II.8.27 in [Huppert, 1967]). If T/N is abelian, then it is either an

elementary abelian 2-subgroup, or a cyclic subgroup of order q−1 or q+1. In other

words, T/N is an abelian 2-group, a cyclic group of order r, or a cyclic group whose

order is the product of powers of the primes s and t. In the first case, since |ρ(s)|= 4

and π(T/N) = {2}, then |M : T | ,which divides all characters in cd(T |θ), is divisible

by the three primes in ρ(S) which are different from 2, a contradiction. If T/N is cyclic

of order r, then |M : T | is divisible by 2, s and t, a contradiction. Thus, if T/N is abelian,

then |M : T | is divisible by both 2 and r. Remark that q | |S| and 2 - |M : T |, so q | |M : T |.

Thus, neither s nor t divides |M : T | and |M : T |= qr. Since T/N is cyclic, it follows

from Corollary 11.22 in [Isaacs, 1976] that θ extends to T , hence cd(T |θ) = {θ}.
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Let T/N be nonabelian. Suppose first it is a dihedral group. Then p = 2 | |M : T |.

It follows from the order of the dihedral group in Hauptsatz II.8.27 of [Huppert, 1967] ,

that if r | |T : N|, then |T : N|= 2r and s, t will divide |M : T | in this case, a contradiction

as 2 also divides |M : T |. Hence r | |M : T |. It follows that neither s nor t divides |M : T |,

and since |T : N|2 = 2 (i.e. 2 is the largest 2-power that divides |T : N|), then |M : T |= qr
2 .

In this case all the Sylow subgroups of T/N are cyclic and thus θ extends to T by

Corollary 11.22 and Corollary 11.31 of [Isaacs, 1976]. Notice that cd(T/N) = {1,2},

and by Gallagher’s Theorem we conclude that cd(T |θ) = {θ(1),2θ(1)}.

If T/N is a Frobenius group with a Fitting subgroup F/N, then (q+1) | |M : T |,

and F/N is a 2-group (discussed previously). Thus q2− 1 | |M : F |. If θ extends to

T , then by Gallagher’s Theorem we have, |T : F |θ(1) ∈ cd(T |θ). It follows then by

Clifford’s Theorem that G has a character degree divisible by r, s and t, a contradiction.

Therefore, θ does not extend to T , particularly, θ does not extend to F . Hence, by

Clifford’s Theorem, 2 | a/θ(1) for all a ∈ cd(T |θ). Again by Clifford’s Theorem,

we know that there is a character degree in G divisible by a|M : T |. So, if q+ 1 is

the product of a power of s and a power of t, then s, t and 2 are adjacent in ∆(G), a

contradiction. Thus q+1 = r and r | |M : T |. If a or |M : T | is divisible by either s or t,

then there is a degree in cd(G) divisible by r, s and t, again a contradiction. Therefore,

|M : T | is a power of 2 times r and a/θ(1) is a power of 2 for each a ∈ cd(T |θ).

If T/N ∼= A4, and since 22 f − 1 ≡ 0 (mod 5), then f is even and so f = 4. It

follows that |M : T | is divisible by 2, 5 and 17, a contradiction.

If T/N ∼= A5, then similar to previous we have f = 4. In this case 2, 17 | |M : T |,

and it follows from [Conway et al., 1984] that either 3θ(1) or 6θ(1) belongs to cd(T |θ)

, which implies that G has a character degree divisible by 2, 3 and 17, a contradiction.

Finally, if M/T ∼= PGL2(4), again by Hauptsatz II.8.27 in [Huppert, 1967] we

can see that f = 4. Also we have 2, 7 | |M : T |, and by [Conway et al., 1984] we have

6θ(1) ∈ cd(T |θ). This implies that cd(G) has a character divisible by 2, 3 and 17, a

contradiction which proves our claim.

Now, if θ ∈ Irr(N), we know by Clifford’s Theorem that G has some character

degrees divisible by a|M : T | for all a ∈ cd(T |θ). By previous, we have a|M : T | is the

product of a power of 2 and r. Thus θ(1) which divides a|M : T | belongs to {2,r}. If θ

is G-invariant, then cd(G|θ)⊆ {2,r}. If not, then cd(G|θ) = cd(G). In both cases we
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get a contradiction, since neither 2 nor r is adjacent to either s or t in ∆(G).

To complete the discussion, we need to consider the last case where p = 2 and

|ρ(S)|= 3. The only possibilities here are q = 4 or q = 8. Notice that the case q = 5 is

included in the following theorem as PSL2(4) = PSL2(5).

Theorem 3.16. There is no G that satisfies Hypothesis 3.12 if p = 2 and |ρ(S)|= 3.

Proof. As noted before, S ∼= PSL2(4) or PSL2(8). In the first case, ρ(S) = {2,3,4}.

In the second one, ρ(S) = {2,3,7}. Let r be a prime such that ρ(G) = ρ(S)∪{r}.

Consider χ ∈ Irr(G) such that r | χ(1), then by Corollary 11.29 of [Isaacs, 1976] we

have r | θ(1). If θ extends to M, then by Gallagher’s Theorem r is adjacent to the other

three primes in ρ(S), a contradiction. If θ is M-invariant but does not extend to M,

then S ∼= PSL2(4). By [Conway et al., 1984] we have 6θ(1) ∈ cd(M), which gives a

character degree in G divisible by 2, 3 and r, a contradiction. Hence T = IM(θ)< M.

If |M : T | is divisible by two or more primes, then cd(G) contains a character divisible

by three primes, a contradiction. Therefore, |M : T | is a prime power. By the list of

maximal subgroups of PSL2(q) found in [Conway et al., 1984], we can conclude that

T/N is a Frobenius group with Frobenius kernel F/N. If q = 4, we have |M : T |= 5 and

|T : N|= 3×2, and when q = 8, |M : T |= 32 and |T : N|= 23×7 = 56. So if θ extends

to T , it follows from Gallagher’s Theorem that |T : F |θ(1) ∈ cd(T |θ). Otherwise, θ

does not extend to F particularly. Thus each character degree in cd(T |θ) is divisible by

all prime divisors of |F : N|. Therefore, if q = 4 then cd(T |θ) has a degree divisible by

2 or 3. This gives a character degree of G divisible by 2 (or 3), 5 and r, a contradiction.

Similarly, if q = 8, we obtain some degrees in cd(T |θ) divisible by 2 or 7, which yields

to a character degree of G divisible by 2 (or 7), 3 and r, a contradiction. Thus, no such

G exists.

Theorem 3.17. If G is a nonsolvable group, then ∆(G) is neither a P3 nor a C4.

Proof. Combine results of Theorems 3.13, 3.14, 3.15 and 3.16.

34



4. GRAPHS OF FINITE GROUPS WITH THREE
OR FOUR DEGREE-VERTICES

In this part, we discuss classifications of all graphs with three vertices that can

occur as Γ(G) for any finite group G. In addition, we classify all graphs with four

vertices that can occur as Γ(G) when G is nonsolvable.

Remark that if Γ(G) has at most two vertices, then G is solvable by Theorems

12.5 and 12.15 of [Isaacs, 1976]. Also, n(Γ(G)) = n(∆(G)) = n(B(G)) ≤ 3 for any

finite group G by Theorem 6.4 of [Lewis, 2008], and n(Γ(G))≤ 2 if G is solvable (see

Corollary 4.2 of [Lewis, 2008]). Thus graphs composed of four isolated vertices cannot

occur as Γ(G). Moreover, if Γ(G) is a complete graph, then G is solvable by Theorem

7.3 in [Lewis, 2008]. On the other hand, if G is nonsolvable and Γ(G) is disconnected,

then n(Γ(G)) ≤ 3 and either one connected component is an isolated vertex and the

other has diameter at most two if n(Γ(G)) = 2, or each component is an isolated vertex

if n(Γ(G)) = 3 (Theorem 7.1 in [Lewis, 2008]) . Observe that if Γ(G) has exactly

n≥ 1 vertices, then |cd(G)|= n+1, or equivalently, |cd(G/G′)|= n ( see Example 5

in Section 15 of [Alperin and Bell, 1991]).

We follow in this chapter lemmas and theorems of paper [LiGuo and GuoHua,

2015].

Figure 4.1: Γ(G) when G is nonsolvable and |cd(G)∗|= 3.

Figure 4.2: Γ(G) when G is solvable and |cd(G)∗|= 3.

Lemma 4.1. (Corollary B of [Malle and Moretó, 2005]) Let G be a nonsolvable group

whose Γ(G) has three vertices. Then either cd(G) = {1,9,10,16} or cd(G) = {1,q,q−

1,q+1} where q is a prime power strictly greater than 3.
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Theorem 4.2. If G is a finite group whose Γ(G) has three vertices, then Γ(G) is one of

the graphs found in Figures 4.1 or 4.2 depending on whether G is solvable or not.

Proof. If Γ(G) has three vertices with no edges, then n(Γ(G)) = 3, which implies by

Corollary 4.2 in [Lewis, 2008] that G is nonsolvable. By Lemma 4.1, we know that for

any nonsolvable group G with precisely three degree-vertices ( |cd(G)∗|= 3), cd(G)∗ is

either {9,10,16} or {q−1,q,q+1} for some prime power q> 3. Thus, an angle cannot

occur in Γ(G) if G is nonsolvable. As mentioned previously, if Γ(G) is a complete

graph, then G is solvable by Theorem 7.3 in [Lewis, 2008]. Based on these results, we

can see easily that graphs in Figures 4.1 and 4.2 represent all possibilities of Γ(G) when

it has exactly three vertices.

Examples 4.3.

i) The alternating group A5 is a nonsolvable group which is isomorphic to PSL2(4).

So cd(A5) = {1,3,4,5} and Γ(A5) is the first graph in Figure 4.1.

ii) The symmetric group S5 is a nonsolvable group which is isomorphic to PGL2(5).

Thus cd(S5) = {1,4,5,6} and Γ(S5) is the second graph in Figure 4.1. Remark

that, if q is an odd prime power, then cd(PGL2(q)) = {1,q−1,q,q+1}.

iii) The character degree set of the general linear group GL(2,3) is known as

{1,2,3,4}. Thus the first graph in Figure 4.2 represents Γ(GL(2,3)). Recall that

GL(2,3) is the set of all 2× 2 matrices of nonzero determinant defined over a

field of order three. This group is solvable. Actually, it is the smallest solvable

group whose derived length is 4.

iv) The product group S3×A4 is a solvable group, whose character degree set is

{1,2}×{1,3}= {1,2,3,6} (see Example 6.3). Hence the second graph in Figure

4.2 represents its common divisor degree graph.

v) The extra special 3-group P of order 27, is a 3-group whose center Z(P) is cyclic

of order 3 and whose quotient P/Z(P) is nontrivial elementary abelian 3-group.

This group has exactly 32 linear representations and 2 nonlinear irreducible

representations of order 3. Thus cd(P) = {1,3}. Notice that since P is a 3-group

then it is solvable. Consider now G = P×P×P. It is clear that G is solvable

and cd(G) = {1,3}× {1,3}× {1,3} = {1,3,32,33} (see Example 2 p.153 in
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[Alperin and Bell, 1991]). Thus, Γ(G) is the third graph in Figure 4.2.

The following three theorems will be useful in classifying common divisor degree

graphs Γ(G) for an almost simple group G.

Theorem 4.4. (Theorem A in [White, 2013]) Let S = PSL2(q) for a prime power q =

p f ≥ 4. Let G be an almost simple group with socle S. Set N = S〈δ 〉 if δ ∈G and N = S

otherwise. Let ε = (−1)(q−1)/2 and k = 2am = |G : N| where m is an odd integer. Then,

cd(G) = {1,q,(q+ ε)/2}∪{(q+1) j : j | k}∪{(q−1)2al : l | m}, (4.1)

with the following exceptions:

i) If p = 2, or p is odd with G 6≤ S〈φ〉, then (q+ ε)/2 6∈ cd(G).

ii) If p = 3, f is odd and G = S〈φ〉, then l 6= 1.

iii) If p = 3, f is odd and G = Aut(S), then j 6= 1.

iv) If p ∈ {2,3,5} , f is odd and G = S〈φ〉, then j 6= 1.

v) If p = 2 or 3, f ≡ 2 (mod 4) and G = S〈φ〉 or G = S〈δφ〉, then j 6= 2.

Remark that δ and φ are both automorphisms described in Note 3.5.

By applying the result of Theorem 4.4, we can obtain the following consequence:

Theorem 4.5. (Theorem 2.6 in paper [He and Zhu, 2012]) Assume the hypothesis of

Theorem 4.4 is true. Then:

i) If π(G/N)≥ 4, then |cd(G|S)| ≥ 6.

ii) If π(G/N) = 3, then |cd(G|S)| ≥ 6 unless p = 2, or p odd with G 6≤ S〈φ〉, in

which case |cd(G|S)|= 5.

iii) If π(G/N) = 2, then |cd(G|S)| ≥ 6 except possibly when k is prime.

iv) If π(G/N) = 1, then |cd(G|S)|= 3 except when q > 5 is odd, where |cd(G|S)|=

4.

Remark that the principal character of G, 1G, does not belong to Irr(G|S). Indeed,

if 1G ∈ Irr(G|S), then 1G ∈ Irr(G|θ) for some θ 6= 1S. Thus [1G,θ
G] = [1S,θ ] 6= 0 (see

Theorem 2.66). But since both 1S and θ are irreducible characters of S, we conclude
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by Proposition 2.46 that 1S = θ , a contradiction. Therefore, 1G /∈ Irr(G|S). So, if

|cd(G|S)| ≥ m, then |cd(G)| ≥ m+1.

Theorem 4.6. (Theorem 2.22 in [He and Zhu, 2012]) Let S be a nonabelian simple

group such that S≤ G≤ Aut(S). Then |cd(G|S)|> 5 except possibly when S is one of

the following:

i) S∼= PSL2(q), q≥ 4, where |cd(G|S)| ≥ 3.

ii) S∼= PSL3(4) and G/S is abelian, where |cd(G|S)| ≥ 5.

iii) S∼= 2B2(q2), q2 6= 2, where |cd(G|S)| ≥ 5.

Theorem 4.7. Let S be a nonabelian simple group such that S≤ G≤ Aut(S). Assume

that Γ(G) has four vertices, or equivalently |cd(G)|= 5. Then, S∼= PSL2(q) for a prime

power q = p f > 5. Furthermore, π(G/N)≤ 2 and we have the following:

• If π(G/N) = 1 and G = PSL2(q) for an odd q > 5, then

cd(G) = {1,q,(q+ ε)/2,q−1,q+1}. (4.2)

• If π(G/N) = 2,

i) k = 2, p = 2 and G < S〈φ〉. In this case,

cd(G) = {1,q,2(q−1),q+1,2(q+1)}. (4.3)

ii) k = 2, p = 2, f = 2 and G = S〈φ〉. In this case,

cd(G) = {1,q,2(q−1),q+1,2(q+1)}. (4.4)

iii) k = 2, p = 3, f = 2 and G = S〈φ〉. In this case,

cd(G) = {1,q,(q+1)/2,2(q−1),q+1}. (4.5)

iv) k = 2, p = 3, G 6≤ S〈φ〉 and f ≡ 0 (mod 4) or G 6= S〈δφ〉. In this case,

cd(G) = {1,q,2(q−1),q+1,2(q+1)}. (4.6)
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v) k = 2, p > 3 and G 6≤ S〈φ〉. In this case,

cd(G) = {1,q,2(q−1),q+1,2(q+1)}. (4.7)

vi) k is an odd prime, p = 2, f = k and G = S〈φ〉. In this case,

cd(G) = {1,q,q−1,k(q−1),k(q+1)}. (4.8)

vii) k is an odd prime, p = 3, f = k and G = S〈φ〉. In this case,

cd(G) = {1,q,(q+ ε)/2,k(q−1),k(q+1)}. (4.9)

viii) k is an odd prime, p = 3, f = k and G = Aut(S). In this case,

cd(G) = {1,q,q−1,k(q−1),k(q+1)}. (4.10)

Proof. Since |cd(G)∗|= 4, we can conclude by Theorem 4.6 that S∼= PSL2(q) where

q ≥ 4 and |cd(G|S)| ≥ 3. By applying Theorem 4.5, we deduce that Γ(G) can have

exactly four vertices if either π(G/N) = 2 with k prime, or π(G/N) = 1 with q > 5 is

odd. Finally, we check on a case-by-case basis via Theorem 4.4 to obtain the above

results.

Figure 4.3: Γ(G) when G is nonsolvable and |cd(G)∗|= 4.

Figure 4.4: Unknown graph.
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Corollary 4.8. Let G be an almost simple group with a nonabelian socle S. Assume that

|cd(G)∗|= 4. Then Γ(G) is precisely one of the graphs listed in Figure 4.3.

Proof. By checking the arithmetic properties of elements of cd(G)∗ when q is even or

odd, we can see that in each case of Theorem 4.7, Γ(G) is exactly one of the graphs

found in Figure 4.3.

Examples 4.9.

i) Let S = PSL2(9) and G = S. By case one of Theorem 4.7, we have cd(G) =

{1,5,8,9,10}. Thus Γ(G) is the first graph in Figure 4.3.

ii) Let S = PSL2(33) and G = S〈φ〉. Since δ 6∈ G, we have k = |G : N| = |〈φ〉| =

f = 3, which implies by case two vii) in Theorem 4.7 that cd(G) = {1,13,27,3×

26,3×28}. Thus Γ(G) is the second graph in Figure 4.3.

iii) Let S = PSL2(33) and G = Aut(S). Since δ ∈G, then N = S〈δ 〉= PGL2(33) and

k = |G : N|= |Aut(S) : PGL2(33)|= f = 3. Thus cd(G) = {1,26,27,3×26,3×

28} by case two viii) in Theorem 4.7 and so Γ(G) is the third graph in Figure 4.3.

iv) Let S = PSL2(52) and G = Aut(S). As δ ∈ G, we have N = PGL2(25) and

k = |G : N| = |〈φ〉| = f = 3. Thus cd(G) = {1,25,26,2× 24,2× 26} by case

two v) in Theorem 4.7 and Γ(G) is the fourth graph in Figure 4.3.

Thus for every graph Ω in Figure 4.3, there exists a nonsolvable group G whose

Γ(G) = Ω.

Table 4.1: Character degrees of almost simple groups with no prime dividing three
character degrees (ε = (−1)(q−1)/2).

Group G cd(G)
PSL2(q),q > 5 odd {1,q−1,q,q+1,(q+ ε)/2}
PSL2(q),q≥ 4 even {1,q−1,q,q+1}

PGL2(q),q odd {1,q−1,q,q+1}
PSL2(32)oZ2 ∼= PGL2(9) {1,8,9,10}

PSL2(32)oZ2 ∼= M10 {1,9,10,16}
PSL2(32)oZ2 ∼= S6 {1,5,9,10,16}

PSL2(3 f )oZ f , f > 3 prime {1,3 f ,(3 f −1) f ,(3 f +1) f ,(3 f −1)/2}
PSL2(22)oZ2 ∼= S5 {1,4,5,6}

PSL2(2 f )oZ f , f > 2 prime {1,2 f −1,2 f ,(2 f −1) f ,(2 f +1) f}
PSL2(2 f )oZr, r odd prime, r | f , r < f {1,2 f −1,2 f ,2 f +1,(2 f −1)r,(2 f +1)r}
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Theorem 4.10. Let G be a nonsolvable group such that Γ(G) has four vertices. Then

Γ(G) is one of the graphs shown in Figure 4.3 or 4.4.

Proof. Since G is nonsolvable, n(Γ(G)) ≤ 3 (see Theorem 6.4 in [Lewis, 2008]). If

n(Γ(G)) = 3, then by Theorem 7.1 of [Lewis, 2008] we know that each connected

component is an isolated vertex, but this contradicts the structure of Γ(G) which has

four vertices. Thus n(Γ(G)) ≤ 2. Assume next that n(Γ(G)) = 2. By Theorem 7.1

in [Lewis, 2008], we can see that one connected component is an isolated vertex and

the other has diameter at most 2. Therefore, Γ(G) is either the first or the last graph

in Figure 4.3. Suppose now that Γ(G) is connected or equivalently n(Γ(G)) = 1. We

discuss the rest of the proof according to whether Γ(G) contains a triangle or not.

Assume first that Γ(G) has no triangles. By Theorem 4 of [Lewis and White,

2011] we can deduce that no prime in ρ(G) divides three distinct character degrees of G.

This implies by Section 5 of [Lewis and White, 2011] that there exists LEG such that

G/L is almost simple and no prime in ρ(G) divides three degrees in cd(G/L)⊆ cd(G).

Let K/L ≤ G/L ≤ Aut(K/L) for some nonabelian simple group K/L. By Theorem 1

of [Lewis and White, 2011], we can see that K/L∼= PSL2(q) for a prime power q≥ 4.

Furthermore, G/L is one of the following:

i) S = PSL2(q),

ii) PGL2(q) where q odd,

iii) PSL2(3 f )oZ f for some prime f 6= 3,

iv) PSL2(2 f )oZ f for a prime f ,

v) PSL2(2 f )oZr for an odd prime r < f such that r | f , r - 2 f −1 and r - 2 f +1.

If q≥ 7 is odd, we conclude via Theorem 5.10 of [Lewis and White, 2011] that

L = Z(G) and cd(G) = cd(G/L). Now by checking character degrees of the possible

groups G/L shown in Table 4.1, we can see that all graphs Γ(G)=Γ(G/L) that have four

vertices are disconnected (see the first, sixth, seventh, ninth and tenth rows of Table 4.1).

So this case is not possible. If q= 2 f ≥ 4 and K <G, we can obtain via Theorem 5.12 of

[Lewis and White, 2011] that L = Z(G) and cd(G) = cd(G/L). Similarly by checking

Table 4.1, we can observe that all Γ(G) = Γ(G/L) with four vertices are disconnected.

Thus, this case in not possible too. If q = 2 f ≥ 4 and K = G, we can conclude by

Theorem 5.15 of [Lewis and White, 2011] that cd(G) = {1,q−1,q,q+1,a}, where
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f ≥ 2 and a > q+1. Indeed, a has common prime divisors with at least two numbers

among {q−1,q,q+1}. Now as {q−1,q,q+1} is a pairwise relatively prime set when

q is even, we deduce that Γ(G) is either the first graph in Figure 4.3 or the graph shown

in Figure 4.4, according to whether a has common divisors with two or three integers

among {q−1,q,q+1}.

Finally, assume that Γ(G) contains at least one triangle. Since Γ(G) is connected

but not complete (see Theorem 7.3 of [Lewis, 2008]), it has at least one triangle and

|cd(G)∗|= 4, we conclude that Γ(G) is either the second or the third graph in Figure

4.3.
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5. GROUPS WHOSE PRIME GRAPHS HAVE NO
TRIANGLES

We discuss in this chapter, finite groups whose prime graphs have no triangles.

We start by claiming that prime graphs of such groups have at most five vertices. Then

we obtain a classification of finite graphs with five vertices and no triangles that can

occur as the prime graph of a finite group G. Finally, we claim that the prime graph of

any finite group cannot be a cycle or a tree with at least five vertices. We remark that

a finite group G is said to be almost simple with socle S, if there exists a nonabelian

simple group S, such that S E G≤ Aut(S).

For ε = ±, the convention PSLε
n(q) means PSLn(q) if ε = + and PSUn(q) if

ε =−.

We follow in this chapter lemmas and theorems of paper [Tong-Viet, 2013].

Theorem 5.1. Let G be a finite group such that ∆(G) has no triangles, then |ρ(G)| ≤ 5.

Theorem 5.2. Let G be a finite group such that |ρ(G)|= 5 and ∆(G) has no triangles,

then one of the following holds:

i) If ∆(G) is disconnected, then G ∼= PSL2(2 f )×A, where A is an abelian group,

|π(2 f ±1)|= 2 and ∆(G) is the second graph in Figure 5.1;

ii) If ∆(G) is connected, then G = H ×K such that H ∼= A5 or PSL2(8), K is a

solvable group whose prime graph has exactly two vertices and two connected

components, and ρ(H)∩ρ(K) = φ . Furthermore ∆(G) is the first graph in Figure

5.1.

Theorem 5.3. If G is a finite group where ∆(G) is a cycle or a tree, then |ρ(G)| ≤ 4.

Figure 5.1: Prime graphs of finite groups having five vertices and no triangles.
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In the following we present a series of lemmas and results that will be needed in

the proofs of our main theorems.

Lemma 5.4. Let G be solvable such that ∆(G) has no triangles, then |ρ(G)| ≤ 4.

Proof. If |ρ(G)| ≤ 3, we are done. Suppose G is solvable, ∆(G) has no triangles and at

least four vertices. We claim that ∆(G) is a square (C4). If ∆(G) is disconnected then

by Corollary 4.2 of [Lewis, 2008] we know that ∆(G) has two connected components

which are complete graphs. Since Km contains a triangle for all m≥ 3, we deduce that

each connected component can have at most two vertices. On the other hand, Pálfy

proved that if G is a solvable group whose ∆(G) has two connected components C1

and C2 such that |C1|= n and |C2|= m with n≤ m, then m≥ 2n−1 (see Theorem 3 in

[Pálfy, 2001]). This implies that there does not exist any disconnected prime graph such

that each connected component has two vertices. Therefore ∆(G) must be connected. If

∆(G) has a vertex of degree at least 3, then Pálfy’s condition implies that there must

be an edge between at least two of its neighbors, a contradiction as ∆(G) contains a

triangle in this case. Hence, any vertex in ∆(G) has at most degree 2, which means that

∆(G) is either a path or a cycle. Again, Pálfy’s condition excludes paths with five or

more vertices and cycles with six or more vertices. Remark that, the prime graph of

a solvable group cannot be a P3 by Theorem 4.5 in [Lewis, 2008]. Finally, by using

Lewis’s result which says that there does not exist any finite solvable group G whose

∆(G) is a C5 (see [Lewis, 2004]), we conclude that ∆(G) is a square. Thus if G is

solvable and its prime graph has no triangles, then |ρ(G)| ≤ 4.

Theorem 5.5. (Zsigmondy’s Theorem [Zsigmondy, 1892]) Let a, n≥ 2 be integers. Then

there exists a prime l such that l | an−1 and l - am−1 for all 1≤ m < n unless either

n = 6 and a = 2, or n = 2 and a = 2r−1 is a Mersenne prime , for some prime integer

r.

We call such a prime the primitive prime divisor, and for any integers a, n≥ 2

the smallest prime divisor of an−1 ; if exists; is denoted by ln(a).

Lemma 5.6. Let f = nb ≥ 6 be an integer such that n ≥ 3 is a prime and b ≥ 2 is an
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integer. Then (22 f −1)/(22b−1) is not a prime power.

Proof. Assume on the contrary that (22 f −1)/(22b−1)= rm for a prime r and a positive

integer m. If f = 6, then b = 2 and n = 3. Thus (22×6− 1)/(22×2− 1) = 3.7.13 is

not a prime power. Hence we may assume that f > 6, which implies that 2 f > f > 6.

It follows then from Zsigmondy’s theorem that both l f (2) and l2 f (2) exist, they are

distinct, and do not divide 22b−1 ( f > 2b, n ≥ 3). Therefore l f (2) and L2 f (2) must

divide rm, i.e. l2 f (2) = l f (2) = r, a contradiction.

Lemma 5.7. (Theorem 11.7 of [Isaacs, 1976]) Let G be a finite group and N EG.

Assume that θ ∈ Irr(N) is G-invariant and the Schur multiplier of G/N is trivial. Then

θ extends to G.

The next lemma is a consequence of Guralnick’s classification of subgroups with

prime power indices in abelian simple groups [Guralnick, 1983].

Lemma 5.8. Let H be a proper subgroup of a nonabelian simple group G. If |G : H|= ra

for some prime r and a positive integer a, then H is either nonsolvable or a nonabelian

Hall subgroup of G.

Proof. Guralnick’s classification of prime power index subgroups of finite simple

nonabelian groups implies that one of the following holds:

i) (G,H) = (An,An−1) where n = ra;

ii) G∼= PSLn(q), H is the stabilizer of a line or a hyperplane, and

ra = (qn−1)/(q−1) (5.1)

for a prime n.

iii) (G,H,ra) = (PSL2(11),A5,11) or (PSL4(2),24 : A5,33);

iv) (G,H,ra) = (M23,M22,23) or (M11,M10,11).

Suppose the first case holds, then G∼= An, H ∼= An−1 and ra = n. If n = 5, then

(|A4|, |A5 : A4|) = (24,5) = 1, i.e., H ∼= A4 is a nonabelian Hall subgroup of G ∼= A5.

So we may assume that n≥ 7. Hence H ∼= An−1 is nonsolvable as n−1≥ 6.
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Suppose next that case ii) occurs. If n = 2, then G∼= PSL2(q) with q≥ 4 and H

is a nonabelian group such that |H|= q(q−1)/(2,q−1) and ra = q+1. We claim that

q(q−1) and q+1 are relatively prime, which implies that H is a Hall subgroup of G.

If q is even, we know from number theory that {q,q−1,q+1} is a pairwise relatively

prime set, hence (|H|= q(q−1), |G : H|= q+1)= 1. Otherwise, q is odd, which means

that q+1 = ra is even, but r is a prime, thus r = 2. Since q≥ 4, it follows that a≥ 3,

which implies that (q−1)/2 = 2a−1−1 is odd. Hence, |H|= q(q+1)/2 is odd and it is

relatively prime with q+1 = 2a. I.e., H is a Hall subgroup. If n = 3, then G∼= PSL3(q),

H is the stabilizer of a line or a hyperplane and |G : H|= (q3−1)/(q−1) = ra. If q = 2,

then G∼= PSL3(2) and H ∼= S4 such that |G : H|= ra = 7, thus H is a nonabelian Hall

subgroup of G. Similarly for the case q = 3 where G∼= PSL3(3) and H ∼= 32 : 2S4 with

|G : H|= 13. Assume now that q≥ 4. In this case, it is well-known that H possesses a

section isomorphic to the nonabelian simple group PSL2(q), thus H is not solvable.

Finally suppose that G ∼= PSLn(q) such that n ≥ 5 and H is the stabilizer of a

line or a hyperplane. In this case, it is well-known that H possesses a section which is

isomorphic to PSLn−1(q), which is nonsolvable as n−1≥ 4. Hence, H is nonsolvable.

For the last two cases, we remark that none of A5, M22, M10 and 24 : A5 is solvable.

Thus, H is nonsolvable in these cases.

Notice that, if G is an almost simple group such that SEG ≤ Aut(S), then any

Sylow p-subgroup of G is not normal. Indeed, if there exists a normal Sylow p-

subgroup, say P, we can see that S∩PES as it is normal in G. Thus, either S∩P = 1 or

S∩P = S (S is simple). The latter case cannot occur since if S < P, then S is a nontrivial

p-group, hence Z(S) 6= 1, a contradiction as S is simple. So, P∩S = 1, which implies

that P centralizes S, a contradiction as CG(S) is trivial by the definition of an almost

simple group. Therefore, for every p ∈ π(G), G has no nontrivial normal abelian Sylow

p-subgroup, which implies by Ito-Michler’s Theorem that ρ(G) = π(G).

In the following two lemmas, we classify the almost simple groups G such that

S ≤ G ≤ Aut(S) and ∆(G) has no triangles. We start by considering the nonabelian

simple groups, then we take a general almost simple group G with socle S. It should

be mentioned that proofs of these lemmas are based on the following classifications of

prime graphs of simple groups due to D. White:

• Degree graphs of simple groups of exceptional Lie type [White, 2004].
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• Degree graphs of simple linear and unitary groups [White, 2006].

• Degree graphs of simple orthogonal and symplectic groups [White, 2008].

Table 5.1: Simple groups with |π(S)|= 3 (See [Huppert and Lempken, 2000]).

G |G|
A5 ∼= PSL2(4)∼= PSL2(5) 22.3.5
A6 ∼= PSL2(9)∼= SP4(2)′ 23.32.5

PSP4(3)∼= PSU4(2) 26.34.5
PSL2(7)∼= PSL3(2) 23.3.7
PSL2(8)∼= 2G2(3)′ 23.32.7
PSU3(3)∼= G2(2)′ 25.33.7

PSL3(3) 24.33.13
PSL2(17) 24.32.17

Lemma 5.9. If S is a nonabelian simple group such that ∆(S) has no triangles, then

either:

• S∼= PSL2(2 f ) such that |π(2 f ±1)| ≤ 2 and so |π(S)| ≤ 5; or;

• S∼= PSL2(q) such that q = p f is an odd prime power and |π(q±1)| ≤ 2 and so

|π(S)| ≤ 4.

Proof. As S is a nonabelian simple group, we have ρ(S) = π(S). And since any group

with at most two prime divisors is solvable (Burnside’s Theorem), we can assume that

|π(S)| ≥ 3. Suppose first that S∼=PSL2(q), where q≥ 4 is a prime power. As mentioned

previously PSL2(4)∼= PSL2(5), so we may assume that q > 5 when q is odd. Remark

that |S| = q(q− 1)(q+ 1)/(2,q− 1). Since ∆(S) has no triangles, we conclude that

|π(a)| ≤ 2 for all a ∈ cd(S). If q > 5 is odd, then q2−1 can have at most two odd prime

divisors distinct from p, thus |π(PSL2(q))| ≤ 4. If q is even, then |π(q±1)| ≤ 2, which

implies that |π(S)| ≤ 5. Suppose now that S � PSL2(q). It follows from Corollary

1.2 in [White, 2008] that ∆(G) is connected and either ∆(S) is complete or one of the

following cases holds:

i) S ∈ {M11,M23,J1,A8};

ii) S∼= 2B2(q2), with q2 = 22m+1 and m≥ 1;

iii) S∼= PSLε
3(q), where q > 2 is a prime power and ε =±.

If ∆(S) is complete and since |π(S)| ≥ 3, then it has a triangle. So we may assume

that ∆(S) is not complete. The character tables of groups in case i) are found in [Conway
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et al., 1984] and show that the prime graph contains a triangle in each case, which implies

a contradiction. Suppose case ii) occurs, then S∼= 2B2(q2) with q2 = 22m+1 and m≥ 1.

It follows from Theorem 3.3 in [White, 2004] that π(S) = {2}∪π(q2−1)∪π(q4 +1)

where the subgraph of ∆(S) on π(S)\{2} is complete. In this case |π(S)| ≥ 4 and so

|π(S)\{2}| ≥ 3. Therefore, ∆(S) has a triangle since π(S)\{2} is a complete graph

with at least three vertices. Thus this case cannot occur too. Finally, suppose that

S∼= PSLε
3(q) where q = p f > 2 and ε =±. If q = 4, then it follows from the character

tables of PSLε
3(4) in [Conway et al., 1984] that ∆(PSLε

3(4)) has at least a triangle, which

is not possible. So q 6= 4. By Theorems 3.2 and 3.4 of [White, 2006], we can see that

π(S) = {p}∪π(q2− 1)∪π(q2 + εq+ 1) and the subgraph of ∆(S) on π(S) \ {p} is

complete. Hence, if |π(S)| ≥ 4 and since π(S)\{p} is a complete subgraph with at least

three vertices, ∆(S) possesses a triangle, a contradiction. Thus |π(S)|= 3. It follows

then from Table 5.1 that q = 3. By the character tables of PSL3(3) and PSU3(3) given

in [Conway et al., 1984], we can see that in each case ∆(S) is a triangle, a contradiction.

Hence, all other cases different from PSL2(q) cannot occur.

Lemma 5.10. Let G be an almost simple finite group such that S≤G≤ Aut(S), where S

is a nonabelian simple group. Assume that ∆(G) has no triangles. Then S∼= PSL2(q)

where q = p f ≥ 4 is a prime power, π(S) = π(G) and |π(G)| ≤ 5. Furthermore, if

|π(G)|= 5, then G = S∼= PSL2(2 f ) with f ≥ 6 and |π(2 f ±1)|= 2.

Proof. As SEG and ∆(G) has no triangles, then ∆(S) is a subgraph of ∆(G) with

no triangles too. Thus every degree of S and G has at most two prime divisors. By

Lemma 5.9, we obtain that S ∼= PSL2(q) for a prime power q = p f ≥ 4 such that

|π(q±1)| ≤ 2, and we may assume that q 6= 5. We claim that π(G) = π(S). Suppose

on the contrary that π(G) 6= π(S) and let r ∈ π(G)\π(S). It follows that r ∈ π(|G : S|).

If q is even, then PGL2(q) = PSL2(q) and |G : G∩PGL2(q)|= |G : S|. If q is odd, then

|G∩PGL2(q) : S|= 1 or 2 according to whether the diagonal automorphism belongs

to G or not (see Note 3.5). If it belongs to G, then G∩PGL2(q) = PGL2(q), which

implies that |PGL2(q) : S|= (q−1,2) = 2. Since 2 ∈ π(S), we conclude in this case

that if r ∈ π(|G : S|), then r ∈ π(|G : PGL2(q)|) = π(|G : G∩PGL2(q)|). Otherwise,

G∩PGL2(q) = S, which implies that |G : S| = |G : G∩PGL2(q)|. In all cases we

deduce that r | m := |G : G∩PGL2(q)|. But m | |Aut(S) : S| = |Out(S)| = (q−1,2) f .
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Therefore r must divide f . Remark that {2,3}⊆ π(S) = ρ(S) for all prime power q, and

as r /∈ π(S), we deduce that f ≥ 5. Hence q > 9. If follows from Lemma 4.5 in [Lewis

and White, 2011] that m(q± 1) ∈ cd(G). If either |π(q+ 1)| = 2 or |π(q− 1)| = 2,

then m(q+1) or m(q−1) is divisible by three primes, which gives a triangle in ∆(S), a

contradiction. Thus each of q±1 is a prime power. But this can occur if and only if q is

even. Precisely, q must be 4 or 8, a contradiction since q > 9. Therefore, π(G) = π(S).

Now by applying previous lemma we obtain that |π(G)| = |π(S)| ≤ 4 for an odd q

and |π(G)| = |π(S)| ≤ 5 for an even q. Thus, |π(G)| = |π(S)| ≤ 5 for all q. Finally,

assume that |π(S)| = |π(G)| = 5. By the above argument, we must have q even and

|π(q±1)| = 2. So f ≥ 6, because if f = 5 then 25−1 = 31 is divisible by only one

prime which is not the case. We claim now that G = S. Suppose that S < G. Then

there exists some prime r such that r | |G : S|. By Lemma 4.5 of [Lewis and White,

2011] we know that both |G : S|(q± 1) are degrees in cd(G). If r - (q2− 1), then

|G : S|(q− 1) is divisible by three distinct primes, a contradiction. Thus r | (q2− 1).

As (q−1,q+1) = 1, we conclude that r ∈ π(q−α) where α = 1 or −1. And since

r /∈ π(q+α), we deduce that |G : S|(q+α) is divisible by three distinct primes, again

a contradiction. Thus G = S as required.

We consider now G to be a nonsolvable or a general group. And we discuss

several auxiliary lemmas that will be needed in the proof of our main results. Some of

these lemmas are special cases of the main theorems. Recall that the solvable radical of

G is the largest solvable normal subgroup in G.

Lemma 5.11. Let N be the solvable radical of a finite nonsolvable group G whose ∆(G)

has no triangles. Then there exists MEG such that M/N ∼= PSL2(q) where q≥ 4 is a

prime power, G/N is an almost simple group with socle M/N and ρ(M) = ρ(G).

Proof. Let N be the solvable radical of G and take M to be a normal subgroup such

that M/N is a chief factor of G. By applying the same discussion in Lemma 3.11, we

can conclude that M/N is a nonabelian simple group. Let C/N =CG/N(M/N). Then

CEG as C/N EG/N (being the centralizer of a normal subgroup). Also M∩C = N

as M/N is a nonabelian simple group. Assume that N 6=C. Then C is nonsolvable and

we can find a normal subgroup L such that N ≤ L≤C and L/N is a nonabelian chief
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factor of G. By a similar argument to that found in Lemma 3.11, we can deduce that

L/N is a nonabelian simple group and every vertex in π(L/N)∩π(M/N) is adjacent

to all vertices in π(L/N)∪π(M/N). Thus the subgraph of ∆(G) induced by π(L/N)∩

π(M/N) is complete and so |π(L/N)∩π(M/N)| ≤ 2. By Lemma 5.10 we know that

L/N ∼= PSL2(q′) and M/N ∼= PSL2(q) for some prime powers q and q′. In particular

2, 3 ∈ π(L/N)∩π(M/N), thus ρ(L/N)∩ρ(M/N) = {2,3}. As |π(M/N)| ≥ 3, M/N

has a divisor r > 3. This implies that 2, 3 and r form a triangle in ∆(G), a contradiction.

Therefore C = N. Thus G/N is an almost simple group with socle M/N ∼= PSL2(q)

where q ≥ 4 is a prime power. We claim next that ρ(M) = ρ(G). As mentioned

previously, since M EG, ρ(M) ⊆ ρ(G). Let r ∈ ρ(G), then there exists χ ∈ Irr(G)

such that r | χ(1). Consider θ ∈ Irr(N) such that [θ ,χN ] 6= 0. By Clifford’s Theorem

we know that r divides either θ(1) or χ(1)/θ(1). Suppose first that r | χ(1)/θ(1), then

r ∈ π(|G : N|) as χ(1)/θ(1) divides |G : N| (see Corollary 11.29 of [Isaacs, 1976]). If

r | θ(1), then r ∈ ρ(N). Therefore, r ∈ π(G/N)∪ρ(N). But since π(G/N) = π(M/N),

we conclude that r ∈ π(M/N)∪ ρ(N) (see Lemma 5.10). Notice that π(M/N) =

ρ(M/N) ⊆ ρ(M) and ρ(N) ⊆ ρ(M) as N EM. Thus, r ∈ ρ(M) and we obtain the

second inclusion. Hence, ρ(M) = ρ(G) as required.

The next result is frequently used. The proof of this lemma is based on Guralnick’s

classification of subgroups of prime power index in nonabelian simple groups (see

Lemma 5.8), and the following result which is due to Higgs: If N is a normal subgroup

in a finite group G and θ ∈ Irr(N) is G-invariant such that χ(1)/θ(1) is a power of a

fixed prime p for all χ ∈ Irr(G|θ), then G/N is solvable (see Theorem 2.3 of [Moretó,

2006]).

Lemma 5.12. Let G be a finite group and N EG such that G/N ∼= S where S is a

nonabelian simple group. Let θ ∈ Irr(N). Then either there exists χ ∈ Irr(G|θ) such

that χ(1)/θ(1) is divisible by two distinct primes in π(G/N) or θ extends to G and

G/N ∼= A5 or PSL2(8).

Proof. Let θ ∈ Irr(N). It follows from Corollary 11.29 of [Isaacs, 1976], that χ(1)/θ(1)

divides |G : N| for all χ ∈ Irr(G|θ). Thus if χ(1)/θ(1) is divisible by two distinct

primes, then these primes belong to π(G/N) = π(|G : N|). So we can assume that
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χ(1)/θ(1) is not divisible by two distinct primes in π(G/N), or equivalently χ(1)/θ(1)

is a prime power for all χ ∈ Irr(G|θ). Then, we claim that θ extends to G with

G/N ∼= A5 or PSL2(8).

First, we claim that θ is G-invariant. Let I = IG(θ) and suppose on the contrary

that I < G. Since NEG, then I/N is a proper subgroup of G/N. By Clifford’s Theorem

we can write: θ I = ∑
m
i=1 eiφi where φi ∈ Irr(I|θ) and m≥ 1. Again, Clifford’s Theorem

and Theorem 6.11 of [Isaacs, 1976] imply that for every i, we have φ G
i ∈ Irr(G|φ) and

φ G
i (1) = |G : I|eiθ(1) ∈ cd(G). Hence, |G : I|ei is a prime power for all 1≤ i≤ m. In

particular, we have |G : I|= ra for a prime r and a positive integer a. By Lemma 5.8, we

know that I/N is either nonsolvable or a nonabelian Hall subgroup of G/N. Suppose

the latter case holds. If for every i, ei = 1, we conclude by Clifford’s Theorem that

(φi)N ∈ Irr(N). Then by Gallagher’s Theorem we have φiβ ∈ Irr(I) for all β ∈ Irr(I/N).

But we supposed ei = 1 for all i, thus φiβ must be φi for all 1≤ i≤ m, which implies

that β (1) = 1 for all β ∈ Irr(I/N). Hence I/N is abelian, a contradiction. Therefore,

there exists 1 ≤ j ≤ m such that e j > 1. As e j | |I : N| and (|I : N|, |G : I|) = (|I :

N|, |G/N : I/N|) = 1, we conclude that (e j,r) = 1. So φ G
j (1)/θ(1) = rae j is divisible

by at least two prime divisors, a contradiction. Suppose now the first case holds, i.e.,

I/N is nonsolvable. It follows from Theorem 2.3 of [Moretó, 2006] that there exists

some 1≤ k ≤m such that φk(1)/θ(1) is not a power of r. This implies that φk(1)/θ(1)

has another prime divisor s distinct from r. So |π(φ G
k (1)/θ(1))| ≥ 2, a contradiction.

Therefore θ is G-invariant.

Assume now that θ does not extend to G. In the sense of Chapter 11 in [Isaacs,

1976], we have (G,N,θ) is a character triple isomorphic to the triple (L,A,λ ) where

L is perfect, A≤ Z(L), L/A∼= G/N and λ ∈ Irr(A) is nontrivial. Since λ is not trivial,

then ker(θ) 6= G, which implies that o(λ ) = |G : ker(λ )| is divisible by a prime p. By

applying Lemma 2.1 of [Moretó, 2006] to the perfect group L and to the L-invariant

linear character λ , we obtain that o(λ ) | χ(1) for all χ ∈ Irr(L|λ ). Thus p | χ(1) for

all χ ∈ Irr(L|λ ), which implies that χ(1) = χ(1)/λ (1) is a nontrivial p-power for

all χ ∈ Irr(L|λ ). Hence L/A ∼= G/N is solvable by Theorem 2.3 in [Moretó, 2006].

But this implies a contradiction as G/N is a nonabelian simple group. Therefore θ is

extendible to θ0 ∈ Irr(G). It follows then by Gallagher’s Theorem that θ0ψ ∈ Irr(G|θ)

for all ψ ∈ Irr(G/N) . Hence, θ0(1)ψ(1)/θ(1) = ψ(1) is a prime power for all
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ψ ∈ Irr(G/N). Finally, by applying Corollary of [Manz et al., 1988] to the nonsolvable

group G/N we obtain that G/N ∼= B×S, where B is abelian and S ∈ {A5,PL2(8)}. But

since G/N is a simple group, we conclude that G/N ∼= PSL2(8) or A5.

Lemma 5.13. Let G be a finite group and N EG such that G/N ∼= PSL2(2 f ), |ρ(G)|=

|π(G/N)|= 5 and ∆(G) has at most two connected components. Then ∆(G) contains a

triangle.

Proof. We proceed by contradiction. Suppose that ∆(G) has at most two connected

components with no triangles. Since |π(G/N)| = 5 and ∆(G/N) must have no tri-

angles too, we conclude by Lemma 5.10 that |π(2 f ± 1)| = 2 and f ≥ 6. Recall

that cd(PSL2(2 f ))∗ = {2 f − 1,2 f ,2 f + 1} is a pairwise relatively prime set. Hence

{2}, π(2 f −1) and π(2 f +1) are the three connected components of ∆(G/N).

We split now our discussion according to whether ∆(G) is connected or not.

If ∆(G) is connected. Then the vertex 2 is adjacent to a vertex r, where r ∈

π(2 f − 1) or r ∈ π(2 f + 1), and r is odd as both 2 f ± 1 are so. Hence G has an

irreducible character χ such that π(χ(1)) = {2,r}. Let θ ∈ Irr(N) be an irreducible

constituent of χN . If θ is the principal character of N, then [χN ,1N ] 6= 0, which implies

by Corollary 6.7 of [Isaacs, 1976] that N ⊆ kerχ . So χ corresponds to an irreducible

character of G/N, a contradiction as 2 is an isolated vertex in ∆(G/N). Thus θ is a

nontrivial character.

Suppose that θ is G-invariant. By a result of Steinberg we know that the Schur

multiplier of PSL2(q) is isomorphic to Z/(q− 1,2)Z for all prime powers q except

4 and 9. Since f ≥ 6, we conclude that the Schur multiplier of G/N ∼= PSL2(2 f ) is

trivial. Thus θ extends to θ0 ∈ Irr(G) by Lemma 5.7. It follows then from Gallagher’s

Theorem that Irr(G|θ) = {θ0λ |λ ∈ Irr(G/N)}. In particular, as χ ∈ Irr(G|θ) we have

χ = θ0µ where µ ∈ Irr(G/N). Since µ ∈ Irr(G/N), then µ(1)∈ {1,2 f −1,2 f ,2 f +1}.

Assume first that µ(1) = 1 or 2 f , then r | θ0(1) as π(χ(1)) = π(θ(1))∪π(µ(1)) =

π(θ0(1))∪π(µ(1)). Thus r ∈ π(2 f +1) or π(2 f −1). If r ∈ π(2 f +1), then by taking

η ∈ Irr(G/N) with η(1) = 2 f − 1, we obtain a character of G, θ0(1)η(1), which

is divisible by r and the two divisors of 2 f − 1, a contradiction. Similarly we can

argue the case r ∈ π(2 f − 1) and obtain a contradiction. Therefore µ(1) ∈ {2 f ± 1}.

Since each of 2 f ±1 is divisible by two odd primes and µ(1) | χ(1), we conclude that
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χ(1) is divisible by two odd primes, which is impossible as π(χ(1)) = {2,r}. So we

conclude that θ is not invariant under G and N ≤ I = IG(θ) < G. Let K ≤ G such

that I/N ≤ K/N and K/N is a maximal subgroup of G/N ∼= PSL2(2 f ) with f ≥ 6.

By writing θ I = ∑
m
i=1 eiφ(1) where φ ∈ Irr(I|θ) and ei ≥ 1 for all 1 ≤ i ≤ m, we

can conclude through Theorem 6.11 of [Isaacs, 1976], Definition 2.41 and Clifford’s

Theorem that φ G
i (1) = |G : I|eiθ(1) ∈ cd(G). Now, since χ ∈ Irr(G|θ), we have

χ = φ G
j where 1≤ j≤m. Thus, χ(1) = |G : I|e jθ(1) = 2crd for some positive integers

c and d. Notice that, the index of the maximal subgroup of G/N, |G/N : K/N|= |G : K|,

divides |G : I|. Hence π(G/K)⊆ {2,r}, which means that |G : K| can be divisible by at

most one odd prime. The list of maximal subgroups of PSL2(2 f ) with 2 f ≥ 8 is given

in Theorem 2.4 of [Lewis et al., 2017] and shows that K/N is one of the following:

i) C f
2 oC2 f−1: The stabilizer of a point of the projective line, where |C f

2 oC2 f−1|=

2 f (2 f −1),

ii) D2(2 f−1), where |D2(2 f−1)|= 2(2 f −1),

iii) D2(2 f+1), where |D2(2 f+1)|= 2(2 f +1),

iv) PGL2(q0), where 2 f = (q0)
n, n is prime, q0 = 2a with a > 1 and |PGL2(q0)|=

(2a−1)2a(2a +1).

Hence, the index of K/N, |G : K|, is one of the following:

2 f−1(2 f +1), 2 f−1(2 f −1), 2 f +1,
2 f (22 f −1)
2a(22a−1)

, (5.2)

where 2 f = (q0)
n, n is prime and q0 = 2a with a > 1. Since both 2 f ±1 have exactly

two odd prime divisors, f ≥ 6 and |G : K| is divisible by at most one odd prime, we can

conclude that |G : K| = 2 f (22 f−1)
2a(22a−1) . As π(|G : K|) = {2,r} and (22 f − 1)/(22a− 1) >

1 is odd, we deduce that 22 f−1
22a−1 = rk, for some integer k ≥ 1. If f

a = n = 2, then

(22 f −1)/(22a−1) = 2 f +1 = rk, a contradiction as |π(2 f +1)|= 2. Hence n≥ 3 is a

prime. Again, we obtain a contradiction as 22 f−1
22a−1 cannot be a prime power by Lemma

5.6. Thus this case cannot happen.

Suppose now that ∆(G) is disconnected, then n(∆(G)) = 2 (by hypothesis). By

Theorem 6.4 (3) of [Lewis, 2008], we know that the smaller connected component of

∆(G) has exactly one vertex. Since ρ(G) = π(G/N), we conclude from the structure

of ∆(G/N) that this vertex must be 2. Thus π(2 f + 1) and π(2 f − 1) lie in the same

53



connected component. Hence, there exists χ ∈ Irr(G) such that π(χ(1)) = {u,v},

where u | (2 f − 1) and v | (2 f + 1). As |π(2 f ± 1)| = 2 and (2 f − 1,2 f + 1) = 1, we

have π(2 f − 1) = {u,r} and π(2 f + 1) = {v,s}, where {u,r}∩{v,s} = /0. It follows

then that r, s - χ(1). So either 2 f −1 or 2 f +1 does not divide χ(1). Let θ ∈ Irr(N)

be a constituent of χN . If θ is trivial, then χ(1) ∈ cd(G/N), which cannot happen

as π(χ) = {u,v}. So θ is not the principal character of N. Suppose first that θ is

not invariant under G and let I = IG(θ). Then I/N < G/N ∼= PSL2(2 f ), and thus

|G : I| is divisible by the index of a maximal subgroup of G/N (see case n(∆(G)) = 1).

Furthermore, we conclude that this index is odd as |G : I| | χ(1) by Clifford’s Theorem.

The possible list of indicies that a maximal subgroup of G/N can have are listed above

and show that the only odd index is 2 f +1. Hence 2 f +1 | |G : I| | χ(1), a contradiction

as χ(1) is divisible by three distinct primes. Therefore, θ is G-invariant. Since the

Schur multiplier of G/N ∼= PSL2(2 f ) is trivial where f ≥ 6, we conclude from Lemma

5.7 that θ is extendible to θ0 ∈ Irr(G). It follows then from Gallagher’s Theorem that

Irr(G|θ) = {θ0ψ : ψ ∈ Irr(G/N)}. Since χ ∈ Irr(G|θ), we have χ = θ0µ , where

µ ∈ Irr(G/N). Thus µ(1) ∈ {1,2 f ,2 f ±1} and µ(1) divides χ(1). As χ(1) is odd and

neither 2 f +1 nor 2 f −1 divides χ(1), we conclude that µ(1) = 1. Hence, χ(1) = θ0(1).

It follows again from Gallagher’s Theorem, that χ(1)(2 f −1) ∈ cd(G), a contradiction

as this degree is divisible by the three primes u, v and r. Therefore, ∆(G) contains

always a triangle.

Lemma 5.14. Let N be a solvable normal subgroup of G. Assume that G/N is a

nonabelian simple group and ∆(G) has no triangles. Let τ = ρ(G)\π(G/N). Then the

following hold:

i) τ ⊆ ρ(N), there is no edges between the primes of τ and |τ| ≤ 2.

ii) If τ 6= /0, then for each r ∈ τ and θ ∈ Irr(N) such that r | θ(1), θ extends to G

and G/N ∼= A5 or PSL2(8).

Proof. As ∆(G) has no triangles, we have |π(ψ(1))| ≤ 2 for all ψ ∈ Irr(G). If τ is

empty, then i) holds trivially. So assume that τ 6= /0. Let r ∈ τ . Then there exists

χ ∈ Irr(G) such that r | χ(1) and r - |G : N|. Let θ ∈ Irr(N) be a constituent of

χN . It follows from Corollary 11.29 in [Isaacs, 1976] that χ(1)/θ(1) divides |G : N|.

Since r - |G : N|, we conclude that (r,χ(1)/θ(1)) = 1, thus r | θ(1), which implies that
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r ∈ ρ(N). Notice that r is an arbitrary element of τ , hence τ ⊆ ρ(N). We claim next that

there is no edges between primes in τ . If |τ| ≤ 1, the result is clear. Suppose now that

there exist two distinct primes in τ , say r and s, such that r, s | χ(1). Since |π(χ(1))| ≤ 2,

we have π(χ(1)) = {r,s}. As r, s /∈ π(G/N), we can see that (r, |G : N|) = (s, |G :

N|) = 1. Therefore (χ(1), |G : N|) = 1, so r, s > 2 as 2 | |G : N|. By Corollary 11.29

in [Isaacs, 1976], we have χN ∈ Irr(N). It follows then by Gallagher’s Theorem

that χ(1)λ (1) ∈ cd(G) for each λ ∈ Irr(G/N). So by taking any ν ∈ Irr(G/N) with

2 | ν(1), we can see that χ(1)ν(1) is divisible by r, s and 2, a contradiction as ∆(G)

contains no triangles. Hence there is no edges joining the primes of τ . As τ ∈ ρ(N),

where N is solvable and there is no edges among the vertices of τ , we deduce via Pálfy’s

condition that |τ| ≤ 2, which completes the proof of part i).

For part ii), let r ∈ τ and θ ∈ Irr(N) where r | θ(1). By Lemma 5.12 , we

have either χ(1)/θ(1) is divisible by two distinct prime divisors of |G : N| where

χ ∈ Irr(G|θ), or θ extends to G and G/N ∼= A5 or PSL2(8). If the first case holds, then

since r - |G : N|, we obtain by Clifford’s Theorem that χ(1) is divisible by r. Thus

χ(1) is divisible by three distinct primes (r and the two prime divisors of χ(1)/θ(1)), a

contradiction. Therefore, this case cannot occur and the second case must hold, which

completes the proof of the lemma.

Proof of Lemma 5.1. Let G be a group whose prime graph has no triangles. If G is

solvable, then |ρ(G)| ≤ 4 by Lemma 5.4. Thus we may assume that G is nonsolvable.

Let N be the solvable radical of G. It follows from Lemma 5.11 that there exists MEG

such that G/N is an almost simple group with socle M/N ∼= PSL2(q) for a prime power

q ≥ 4, and |ρ(G)| = |ρ(M)|. As M EG, ∆(M) ⊆ ∆(G). Thus ∆(M) must contain no

triangles too. By Lemma 5.9, we can see that |π(M/N)| ≤ 5. Let τ ∈ ρ(M)\π(M/N).

It follows from Lemma 5.14 i) that |τ| ≤ 2 and if τ 6= /0, then G/N ∼= A5 or PSL2(8).

Suppose first that τ = /0. Then ρ(G) = ρ(M) = ρ(M/N) ≤ 5 as required. Assume

next that τ 6= /0, then G/N is either A5 with cd(A5) = {1,3,4,5} or PSL2(8) with

cd(PSL2(8)) = {1,7,8,9}. In both cases, |π(G/N)| = 3. Thus, |ρ(G)| = |ρ(M)| =

|τ|+ |π(G/N)| ≤ 2+3 = 5, which completes the proof of the theorem.

Proof of Lemma 5.2. Let G be a finite group with minimal order such that ∆(G) has
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five vertices with no triangles and G does not satisfy the results described in Theorem

5.2. By Lemma 5.4, if G is solvable, then |ρ(G)| ≤ 4. Thus G is a nonsolvable group.

Furthermore, if n(∆(G)) = 3, we conclude by Theorem 6.4 (2) of [Lewis, 2008] that

part i) holds. Thus we may assume that n(∆(G))≤ 2. Let N be the solvable radical of

G. By Lemma 5.11, we know that there exists a normal subgroup N CMEG such that

G/N is an almost simple group with socle M/N ∼= PSL2(q) for a prime power q≥ 4,

and ρ(G) = ρ(M). As MEG and ρ(G) = ρ(M), we conclude that ∆(M)⊆ ∆(G) with

the same set of vertices. Notice that as N is the solvable radical of G , then M is not

solvable and N is also the solvable radical of M.

Step 1. M = G.

Suppose on the contrary that M < G. As ∆(M) has five vertices with no triangles,

we conclude by the minimality of |G| that ∆(M) is either the second graph in Figure

5.1 and M ∼= PSL2(2 f )×A where A is abelian and |π(2 f ±1)|= 2, or ∆(M) is the first

graph in Figure 5.1 and M ∼= H×K where H and K satisfy conditions of part ii) in

Theorem 5.2.

Assume the first case holds. As A is an abelian normal subgroup of M and

M/A∼= PSL2(2 f ) is a nonabelian simple group containing N/A strictly, we conclude

that N = A. So M/N ∼= PSL2(2 f ) and |ρ(M)| = |π(M/N)| = 5, which implies that

|π(G/N)|= 5 as |π(M/N)| ≤ |π(G/N)| ≤ |ρ(G)|= |ρ(M)|= 5. It follows then from

Lemma 5.10 that G/N = M/N. Thus G = M, a contradiction as M is a proper subgroup

of G.

Assume the latter case holds. Since ∆(M) ⊆ ∆(G) and they have the same set

of vertices, we conclude that ∆(G) is obtained from ∆(M) by adding some edges. By

the structure of ∆(M) given in Figure 5.1, we can realize that adding any edge to the

graph ∆(M) will release a triangle. But ∆(G) has no triangles. Thus ∆(G) = ∆(M).

Notice that K is a sovable normal subgroup of G, hence K ≤ N CM. As M/K ∼= H

is a nonabelian simple group containing N/K strictly, we deduce that N = K and so

M/N ∼= H, where H ∼= A5 or PSL2(8). We claim now that each vertex in ρ(H) has

degree 2 in ∆(M). Suppose that there exists a vertex r ∈ ρ(H) which is adjacent to

three other vertices in ∆(M). As ρ(M) = ρ(H)∪ρ(K) and |ρ(K)| = 2, there exists

s 6= r ∈ ρ(H) such that r.s | χ(1) for some χ ∈ Irr(M). Let θ ∈ Irr(H) be a constituent
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of χN . By applying Clifford’s Theorem, we can write χ(1) = e.t.θ(1) for some positive

integers e and t which divide |M : H| by Corollary 11.29 in [Isaacs, 1976]. Thus r.s

cannot divide e.t as r, s | H and (|M : H|= |K|, |H|) = 1. This implies that r.s, which

divides χ(1), must divide θ(1). Hence r is adjacent to s in ∆(H), a contradiction as

∆(H) is the graph formed of three isolated vertices. Therefore, each prime in ρ(H) is of

degree 2, which implies by the structure of ∆(M) that each prime in ρ(K) has degree 3

in ∆(M) = ∆(G). Hence there is no edges among primes in ρ(H). As G/N is an almost

simple group with socle M/N ∼= H and |G/N : M/N| 6= 1, it follows from [Conway

et al., 1984] that G/N ∼= A5 · 2 or PSL2(8) · 3. Both cases lead to a contradiction, as

the character tables of G/N are given in [Conway et al., 1984] and show that G/N

possesses in each case a character degree divisible by two distinct primes in ρ(H),

which is impossible as showed above. Thus, this case cannot occur.

Therefore, M = G as required.

Step 2. Let τ = ρ(G)\π(G/N). Then G/N ∼=A5 or PSL2(8), |τ|= 2 and |π(G/N)|= 3.

Furthermore, if r ∈ τ and θ ∈ Irr(N) such that r | θ(1), then θ extends to G.

From step 1, we know that G/N = M/N ∼= PSL2(q) for a prime power q ≥ 4.

Suppose that τ = /0, then ρ(G) = π(G/N), so |π(G/N)|= |ρ(G)|= 5. It follows from

Lemma 5.10 that G/N ∼= PSL2(2 f ) with f ≥ 6 and |π(2 f ± 1)| = 2. Since ∆(G) has

at most two connected components, Lemma 5.13 implies that ∆(G) has a triangle, a

contradiction. Thus τ 6= /0. This implies by Lemma 5.14 ii) that G/N ∼= A5 or PSL2(8).

Therefore, |π(G/N)|= 3. Since |ρ(G)|= |τ|+ |π(G/N)|= 5, we deduce that |τ|= 2.

The remaining statement follows directly from Lemma 5.14 ii) as τ 6= /0.

Let π(G/N) = {p1, p2, p3} and τ = {r1,r2}. Then r1 6= r2, pi 6= p j for all

1≤ i 6= j ≤ 3 and {r1,r2}∩{p1, p2, p3}= /0.

Step 3. For each 1 ≤ j ≤ 3, p j is of degree 2 and each of {r1,r2} is of degree 3

in ∆(G). Hence, there is no edges among the primes {p1, p2, p3} in ∆(G).

It follows from Lemma 5.14 i) that /0 6= τ ⊆ ρ(N). So for each i ∈ {1,2}, there

exists θi ∈ Irr(N) such that ri | θi(1). We know by Step 2. that each θi extends to G,

hence as π(G/N) = {p1, p2, p3}, we can conclude by Gallagher’s Theorem that each
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ri is adjacent to all vertices p j. Thus ri is of degree 3 in the graph ∆(G). Finally, if

there is any edge between the primes {p1, p2, p3}, then ∆(G) has a triangle, which is

not possible.

Step 4. If H is the last term of the derived series of G, then H ∼= A5 or PSL2(8)

and G∼= H×N.

Since G is nonsolvable and H is the last term of its derived series, we conclude

that H is perfect, i.e, H ′ = H. Let U = H ∩N, then U EG (being the intersection of

two normal subgroups). Notice that, as N is solvable and H is not, then H 6≤ N, which

implies that HN 6= N. Now, since 1 6= HN/N EG/N and G/N is a nonabelian simple

group, we conclude that G = HN. Thus G/N = HN/N ∼= H/(H ∩N) = H/U (Second

Isomorphism Theorem) and so H/U ∼= A5 or PSL2(8) by Step 2. It remains to show

that U is trivial. Remark that ∆(H)⊆ ∆(G) and as there is no edges among the primes

{p1, p2, p3} in ∆(G) (Step 3), then there is no edges among the vertices {p1, p2, p3} in

∆(H). Suppose on the contrary that U is nontrivial. Since U is solvable then U ′ <U ,

which implies that |U/U ′|> 1. But |U/U ′| represents the number of linear characters

of U , see Example 5 in Section 15 of [Alperin and Bell, 1991]. Hence there exists a

nontrivial character λ ∈ Irr(U) such that λ (1) = 1. By Lemma 5.12 we can see that λ

extends to H as H/U is a nonabelian simple group and there is no edges among primes

in π(|H : U |). Thus H has a nontrivial linear character, which is not possible as H ′ = H

and so |H/H ′|= 1. Therefore U is trivial and the proof is completed.

We have proved that G=H×N, where H ∼= A5 or PSL2(8), ρ(G) = ρ(H)∪ρ(N)

and ρ(H) = π(G/N) = {p1, p2, p3}. If ρ(H)∩ ρ(N) 6= /0, then ρ(N) = {r1,r2}∪ L

where L⊆ {p1, p2, p3}. Suppose without loss of generality that p1 ∈ ρ(N). As ∆(N)

has at most two connected components, r1 is not adjacent to r2 and there is no edges

among {p1, p2, p3}, we conclude that p1 must be adjacent to exactly one of {r1,r2}.

Again, without loss of generality assume that p1 is adjacent to r1. Then there exists

µ ∈ Irr(N) such that p1r1 | µ(1). Consider now ν ∈ Irr(H) such that p2 | ν(1). This

gives a character degree of G, µ × ν(1), which is divisible by both p1 and p2, a

contradiction. Hence ρ(H)∩ρ(N) = /0. As there is no edges among vertices in τ , we

conclude via Lemma 5.14 i), that ∆(N) has two connected components. By Taking

K = N, we can see that G = H×K satisfies part ii) of Theorem 5.2 which contradicts
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our assumption. Therefore, G must satisfy one of the conclusions of Theorem 5.2 and

the proof is completed.

Proof of Lemma 5.3. If there exists a group G whose ∆(G) is a cycle or a tree with n

vertices such that n≥ 5, then ∆(G) has no triangles. This implies by Theorem 5.1 that

n≤ 5. Thus n = 5. It follows from Theorem 5.2 that ∆(G) is one of the graphs in Figure

5.1, a contradiction as these graphs are neither cycles nor trees. Therefore, any finite

group G whose ∆(G) is either a cycle or a path has at most four vertices in its prime

graph.
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6. GROUPS WHOSE BIPARTITE DIVISOR GRAPHS
ARE PATHS

In this chapter, we study finite groups whose bipartite divisor graphs are paths. In

particular, we claim that any finite group G whose B(G) = Pn for some positive integer

n is solvable. Furthermore, n ≤ 6 and dl(G) ≤ 5. Moreover, we discuss some group

theoretical properties of such groups.

We follow in this chapter lemmas, propositions and theorems of paper [Hafezieh,

2017].

Theorem 6.1. Let G be a finite group. Then diam(B(G))≤ 7 and this bound is sharp.

Proof. By Corollary 4.2, Theorem 6.5 and Theorem 7.2 of [Lewis, 2008], we can see

that diam(∆(G)) and diam(Γ(G)) are less or equal than 3. Also from Lemma 2.65 we

can deduce that either:

i) diam(B(G)) = 2.max{diam(∆(G),diam(Γ(G))} ≤ 2×3 = 6; or;

ii) diam(B(G)) = 2diam(∆(G))+1 = 2diam(Γ(G))+1≤ (2×3)+1 = 7.

So in all cases we have diam(B(G))≤ 7.

Consider now Lewis’s example [Lewis, 2001b] of a group of order 245.(215−

1).15 whose character degree set is:

cd(G) = {1,3,5,3×5,7×31×151,27×7×31×151,212×31×151,

212× 3× 31× 151,212× 7× 31× 151,213× 7× 31× 151,215× 3× 31× 151}; and

prime degree set is:

ρ(G) = {2,3,5,7,31,151}. (6.1)

By a simple construction of B(G), we can see that a shortest path between

5 ∈ cd(G)∗ and 7 ∈ ρ(G) is the following path:

5−5−3×5−3−212×3×31×151−2−212×7×31×151−7 (6.2)

Hence, dB(G)(7,5)= 7. Therefore, 7 is the best possible upper bound for diam(B(G))

and the bound is sharp.
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Proposition 6.2. If G is a finite group whose B(G) is a path of length n. Then:

• n≤ 6,

• G is solvable,

• dl(G)≤ 5.

Furthermore, if B(G)∼= P5, then h(G)≤ 3. And if B(G)∼= P6, then h(G)≤ 4.

Proof. By the definition of B(G) and since B(G), ∆(G) and Γ(G) have the same number

of connected components (Lemma 2.65), we can conclude that ∆(G) and Γ(G) are

paths as B(G) is so. Also, we can deduce from Corollary 4.2 and Theorem 6.5 of

[Lewis, 2008] that ∆(G) is a path of length m where m≤ 3. Furthermore, by Theorem

4.5 of [Lewis, 2008] and Theorem 3.17, we can see that if G is solvable or not, ∆(G)

cannot be a P3. Thus m ≤ 2. In other words, ∆(G) is an isolated vertex, a path of

length one or a path of length two. On the other hand, we know from Lemma 2.65 part

iv), that |diam(∆(G))− diam(Γ(G))| ≤ 1. Hence diam(Γ(G)) ≤ 3 , |ρ(G)| ≤ 3 and

|cd(G)∗| ≤ 4. Therefore n≤ 6.

We claim that G is solvable. If |cd(G)| ≤ 3, then by Theorems 12.5 and 12.15 in

[Isaacs, 1976] we can see that G is solvable. So we may assume that |cd(G)∗|> 2 and

thus n > 3. As 3 < n≤ 6, we conclude that 3≤ |cd(G)∗| ≤ 4. Hence G is solvable by

Theorem 4.2, Theorem 4.10 and the fact that Γ(G) is a path. Since |cd(G)| ≤ 5, we have

dl(G)≤ 5 by [Lewis, 2001a]. Assume next that either B(G)∼= P5 or B(G)∼= P6. In the

first case, we have |cd(G)|= 4, in the second, |cd(G)|= 5 (remark that if B(G)∼= P6,

then the case where |ρ(G)|= 4 and |cd(G)∗|= 3 cannot happen as there is no solvable

group G such that ∆(G) is a P3). Thus in both cases |cd(G)| ≥ 4. It follows then from

Theorem 1.2 in [Riedl, 2003] that h(G)≤ |cd(G)|−1. In particular, h(G)≤ 3 if B(G)

is isomorphic to P5 and h(G)≤ 4 if B(G) is isomorphic to P6.

Example 6.3. Let G = S3×A4.

Since each irreducible character degree divides the order of the group and the

order of any finite group is equal to the the sum of the square of its irreducible character

degrees (see Theorem 2.48), we can conclude that cd(S3), cd(A4) ⊆ {1,2,3}. Let

P ∈ Syl3(S3), then |P|= 3 and |G : P|= 2. Thus P is an abelian normal subgroup of

G. It follows then by Ito-Michler’s Theorem that 3 6∈ ρ(S3). Thus 3 6∈ cd(S3) and so

cd(S3) = {1,2}. If Q ∈ Syl2(A4), then it is not hard to see that Q is the Klein group of
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A4, {1,(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)} , which is the unique subgroup of

A4 of order 4. Similar to previous, we have 2 6∈ ρ(A4) and cd(A4) = {1,3}. Recall that

both S3 and A4 are solvable groups as their respective subnormal series: {1}EA3 ES3

and {1}E {1,(1 2)(3 4)}EQEA4 have abelian factors. Hence G = S3×A4 is

solvable. Finally, by using Example 2 of section 15 in [Alperin and Bell, 1991], we can

deduce that cd(G) = {1,2}×{1,3}= {1,2,3,6}. Therefore, ρ(G) = {2,3} and B(G)

is the graph in Figure 6.1.

3

2

3

6

2

Figure 6.1: B(S3×A4).

This gives an example of a finite group G whose B(G)∼= P4.

Theorem 6.4. Let G be a finite group such that B(G) = Pn for some positive integer n.

Then one of the following cases holds:

i) There exists a normal abelian subgroup of G, say N, such that cd(G) = {1, |G :

N|} and G/N is abelian. In addition n is either 1 or 2 in this case.

ii) There exist two normal subgroups of G, N and K, and a prime number p such

that:

• G/N is abelian.

• π(G/K)⊆ ρ(G).

• Either p divides every element in cd(N)∗ and thus N has a normal p-

complement by Corollary 12.2 of [Isaacs, 1976], or cd(N) = {1, l, ,k, h
m};

where n ∈ {4,5,6} in this case.

iii) cd(G) = {1, pα ,qβ , pαqβ}, where p and q are two distinct primes and n = 4 in

this case.

iv) There exists a prime number s such that G has a normal s-complement H, where

H is either abelian and n ∈ {1,2}, or nonabelian and one of the following cases

occurs:
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• cd(G) = {1,h,hl}, where h and l are two positive integers, and n = 3 in

this case.

• n = 4, G/H is abelian, and as is explained in [Lewis, 2001c] either H is

a group of type one and cd(H) = |H : F(H)|∪ cd(F(H)), or H is a group

of type four with cd(H) = {1, |F2(H) : F(H)|, |H : F2(H)|}. Furthermore,

|G : F(G)| ∈ cd(G) and cd(F(G)) = {1,hs′} where h 6= |G : F(G)| ∈ cd(G).

• n = 3, G/H is abelian, |G : F(G)| ∈ cd(G), F(G) = P×A, where P is

a p-subgroup, A ≤ Z(G), cd(G) = cd(G/A), and cd(P) = {1,ms′} where

m ∈ cd(G) such that m 6= |G : F(G)|.

Proof. Since B(G) is a Pn, then by Proposition 6.2, G is solvable and n≤ 6.

Suppose first that n ≥ 4. This implies that |cd(G)∗| ≥ 2. We claim that G has

a normal subgroup K > 1 such that G/K is nonabelian. We discuss this according

to whether G′ is a minimal normal subgroup of G or not. If not, and since G is

solvable, then it has a minimal normal subgroup K such that G′ � K, which means

that G/K is nonabelian. Assume now that G′ is a minimal normal subgroup of G.

Since not all the nonlinear irreducible character degrees of G are equal, we conclude

by Lemma 12.3 of [Isaacs, 1976] that G′ is not unique. So G has a nontrivial minimal

normal subgroup H 6= G′, thus G′ � H, i.e., G/H is nonabelian. Let K be maximal

with respect to the property that G/K is nonabelian. We claim that (G/K)′ is the

unique minimal normal subgroup of G/K. If 1 6= H/K CG/K, then K < H and by the

maximality of K, we deduce that G/H is abelian. But G/H ∼= (G/K)/(H/K), thus

(G/K)′ ≤H/K, which implies that (G/K)′ is a minimal normal group. The uniqueness

is direct by taking another minimal normal subgroup of G/K, say H/K, and deducing

that (G/K)′ ≤ (H/K), then by the minimality of H/K we obtain the equality.

Since (G/K)′ is the unique minimal normal subgroup of G/K, it follows that G/K

satisfies the hypothesis of Lemma 12.3 in [Isaacs, 1976]. Consequently, all degrees in

cd(G/K)∗ are equal to f and we have the following cases:

Case 1. B(G)∼= P6.

Since ∆(G) cannot be a P3 (Theorem 4.5 of [Lewis, 2008]), then ∆(G) is a P2,

and we have B(G) : m− p−h−q− l− r− k where p, q and r are three distinct primes

and cd(G)∗ = {m,h, l,k}. If G/K is an s-group for some prime s, then by symmetry we
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can assume that s = p and f = m. Let χ ∈ Irr(G) such that χ(1) = k. Since p - χ(1), it

follows from Corollary 11.29 in [Isaacs, 1976] that χK ∈ Irr(K), then by Gallagher’s

Theorem we conclude that χ(1) f = km ∈ cd(G). Thus p is adjacent to r in ∆(G), a

contradiction. It follows from Lemma 12.3 in [Isaacs, 1976] that G/K is a Frobenius

group whose Frobenius complement is abelian of order f , and whose Frobenius kernel

N/K = (G/K)′ is elementary abelian s-group for some prime s. So G/N is abelian, and

we deduce by the structure of B(G) and Ito’s Theorem (Theorem 6.15 of [Isaacs, 1976])

that N is nonabelian.

Suppose first that f =m. Let χ(1), ψ(1)∈ cd(G) such that χ(1)= k and ψ(1)= l.

By Corollary 11.29 of [Isaacs, 1976] we can conclude that χN(1), ψN(1) ∈ cd(N), i.e.,

l, k ∈ cd(N). If s /∈ ρ(G), then (χ(1), |G : K|) = 1. It follows then by Corollary

11.29 in [Isaacs, 1976] and Gallagher’s Theorem, that km ∈ cd(G), which contradicts

the structure of B(G). Therefore, s ∈ ρ(G). Let θ ∈ cd(N)∗ such that s - θ(1). By

Theorem 12.4 of [Isaacs, 1976], we can deduce that |G : N|θ(1) ∈ cd(G), so q | θ(1),

|G : N|θ(1) = h and s = r. Thus θ(1) = h
m . Notice that if η ∈ cd(N) such that s - η(1),

then by Theorem 12.4 in [Isaacs, 1976] we have |G : N|η(1)∈ cd(G), hence |G : N|η(1)

is either m or h. This implies that θ is unique with respect to the property that s - θ(1).

Let γ ∈ cd(N)∗ such that γ(1) 6= θ(1). Let µ be an irreducible constituent of γG. By

the uniqueness of θ , we have s | γ(1) and since s - |G : N|, it follows from Clifford’s

Theorem that s | µ(1) and µ(1) is either l or k. Thus (µ(1), |G : N|) = 1, which implies

that µN ∈ Irr(N) and γ(1) = µ(1). Therefore, according to whether s divides all the

nonlinear irreducible characters of N or not, N has one of the following properties:

i) If yes, then N has a normal s-complement by Corollary 12.2 in [Isaacs, 1976].

ii) If not, then cd(N) = {1,k, l, h
m}.

In a similar way the case f = k can be discussed. Suppose now that f = h. Let

θ ∈ Irr(N) such that θ(1) 6= 1. If |G : N|θ(1)∈ cd(G), then by the structure of B(G) we

conclude that |G : N|θ(1) = h = |G : N|, which implies that θ(1) = 1, a contradiction.

So |G : N|θ(1) /∈ cd(G). By Theorem 12.4 in [Isaacs, 1976], we deduce that s | θ(1).

I.e., π(G/K) ⊆ ρ(G). Similarly we can discuss the case f = l. Hence for all the

different possibilities of f , we obtain part ii).

Case 2. B(G)∼= P5.

Assume that B(G) : p−m− q− l− r− h, where p, q and r are distinct primes
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and cd(G)∗ = {m, l,h}. Similar to the previous case, as mh /∈ cd(G), then G/K is a

Frobenius group whose Frobenius complement is abelian of order f and Frobenius

kernel, N/K = (G/k)′, is elementary abelian s-group for some prime s. Thus G/N is

abelian.

Suppose first that f = h. Since mh /∈ cd(G), it follows that s ∈ ρ(G) (see the

previous case). If there exists θ ∈ Irr(N) such that s does not divide θ(1), then by

Theorem 12.4 of [Isaacs, 1976] we have |G : N|θ(1) ∈ cd(G), which implies that

q | θ(1) and s = p. Let ψ ∈ Irr(N) be a nonlinear character such that ψ(1) 6= θ(1).

Then, s | ψ(1). Let χ ∈ Irr(G) such that [ψG,χ] 6= 0. By Clifford’s Theorem we

have: χN(1) = [ψG,χ]|G : IG(ψ)|ψ(1). Since s | ψ(1), then s | χ(1) = χN(1). By

the structure of B(G), we can see that χ(1) = m. As (χ(1), |G : N|) = 1, we know

by Corollary 11.29 in [Isaacs, 1976] that χN ∈ Irr(N), thus χ(1) = ψ(1) = m. This

implies that q divides every nonlinear character degree in cd(N). It follows that N has a

normal q-complement (see Theorem 12.2 in [Isaacs, 1976]). Therefore case ii) occurs.

Suppose now that f = m. Similar to previous, as hm /∈ cd(G), we have s ∈ ρ(G),

precisely it must be r. Let θ be a nonlinear irreducible character of N. Since |G :

N|θ(1) /∈ cd(G), Theorem 12.4 in [Isaacs, 1976] implies that s divides θ(1). Thus N

has a normal s-complement by Corollary 12.2 in [Isaacs, 1976], so case ii) occurs.

For the last case, f = l, let θ be a nonlinear irreducible character of N. Since

|G : N|θ(1) /∈ cd(G), we conclude by Theorem 12.4 in [Isaacs, 1976] that s | θ(1). This

implies that N has a normal s-complement. Thus case ii) occurs.

Case 3. B(G)∼= P4

Suppose first that B(G) : p−m−q−h− r where cd(G)∗ = {m,h} and p, q and

r are three distinct primes. As q divides every character in cd(G)∗, then G has a normal

q-complement (Corollary 12.2 in [Isaacs, 1976]). Hence, G = HQ = HoQ, where H is

a normal q-complement and Q is a Sylow q-subgroup of G. Notice that cd(G) contains

no powers of q, and if Q∼= G/H is nonabelian then Q has a power of q character degree,

which is impossible as cd(Q) = cd(G/H) ⊆ cd(G). Thus Q is abelian. On the other

hand, H is not abelian, because if so then by Corollary 6.15 in [Isaacs, 1976], we obtain

that each character degree in G is a power of q, which is not the case. Since q - |H| and

each character degree of H divides |H| and a character in cd(G), it follows from the

structure of B(G) that cd(H) = {1,a = pα ,b = rβ}, for some positive integers α and
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β . We claim now that H is not nilpotent. Indeed, if it is nilpotent, then it is the direct

product of its normal Sylow subgroups, which implies that ab ∈ cd(H), a contradiction.

Thus h(H)> 1. Since h(H)≤ dl(H)≤ cd(H)≤ 3 (see Taketa inequality in [Garrison,

1973] and Theorem 1.27), we conclude that 2≤ h(H)≤ 3. It follows from Theorem 3.5

in [Noritzsch, 1995], that dl(H) = 3. Also by applying Lemma 3.1 in [Isaacs, 1976] to

H, we have either h(H) = 2, |H : F(H)|= a and cd(F(H)) = {1,b}, or h(H) = 3 and

cd(H) = {1, |F2(H) : F(H)|, |H,F2(H)|}. As ∆(H) is the graph composed of the two

isolated vertices p and r, we can see that H is either a group of type one or four in the

classification of solvable groups whose prime graphs have two connected components

which is found in [Lewis, 2001c]. Finally, by applying Lemma 5.1 in [Noritzsch, 1995]

we deduce that m = |G : F(G)| and cd(F(G)) = {1,hq′}. Thus case iv) occurs, with

s = q.

Assume now that B(G) : m−q− l− p−h, where p and q are two distinct primes

and cd(G)∗ = {m, l,h}. Suppose that G/K is a Frobenius group whose Frobenius

complement is abelian of order f and Frobenius kernel, N/K = (G/K)′, is elementary

abelian s-group for some prime s. Remark that G/N is abelian in this case. Let m = qα

and h= pβ for some positive integers α and β . If f =m and s /∈ ρ(G), then by Corollary

11.29 of [Isaacs, 1976] and Gallagher’s Theorem we conclude that pαqβ ∈ cd(G), i.e.,

cd(G) = {1, pα ,qβ , pαqβ}, so case iii) occurs. If f = m and s ∈ ρ(G), then since

( f ,s) = 1, s = p. Let θ ∈ Irr(N) be a nonlinear character. If s - θ(1), it follows from

Theorem 12.4 in [Isaacs, 1976] that |G : N|θ(1)∈ cd(G). Thus mθ(1) = l. As (s, f ) = 1

and p | l, then p= s | θ(1), a contradiction. Therefore, s divides each nonlinear character

in cd(N), which implies that N has a normal s-complement. So case ii) holds. The case

f = h can be done similarly. Consider now the case where f = l. As ( f ,s) = 1, then

s /∈ ρ(G). Let ψ ∈ Irr(N) such that ψ(1) 6= 1. If |G : N|θ(1) ∈ cd(G), then it must

be l, which is impossible. Thus |G : N|θ(1) /∈ cd(G). Theorem 12.4 in [Isaacs, 1976],

implies that s divides ψ(1) which divides a character degree of G and so s ∈ ρ(G), a

contradiction. Hence, f 6= l. Finally, assume that G/K is an s-group for some prime

s. By symmetry we can suppose that s = p and f = pα = h. Let χ ∈ Irr(G) such that

χ(1) = m. By Corollary 11.29 in [Isaacs, 1976] and Gallagher’s Theorem, we have

mh ∈ cd(G)∗. Thus l = pαqβ = mh, cd(G) = {1, pα ,qβ , pαqβ} and case iii) holds.

We consider now the cases where B(G) = Pn with n≤ 3:
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Case 4. B(G)∼= P3

Assume B(G) : p−m−q−h, where p and q are two distinct primes and cd(G)∗=

{m,h}. As q divides every character in cd(G)∗, we conclude that G = HQ = HoQ,

where H is a normal q-complement and Q is a q-subgroup of G (see Corollary 12.2 in

[Isaacs, 1976]). If h | m, then cd(G) = {l,h,hl} for some positive integer l. Thus part

one of case iv) holds. Otherwise, we have cd(H) = {1, pα} for some positive integer α

(similar to Case 3). We claim that Q is abelian. If not, then Q∼= G/H has a power of

q character degree. But since cd(Q)⊆ cd(G), we conclude that cd(Q) = cd(G/H) =

{1,h}. Let θ ∈ Irr(H) such that θ(1) = pα . Remark that θ(1) and o(θ) = |H : kerθ |

divide |H|, thus θ(1)o(θ) | |H|. Since (|H|, |G : H|) = 1, we conclude by Corollary 6.28

in [Isaacs, 1976] that θ extends to ν ∈ Irr(IG(θ)). It follows then from Theorem 6.11

in [Isaacs, 1976], that νG(1) = |G : IG(θ)|ν(1) ∈ cd(G). Thus νG(1) = m. It should

be remarked that, since p | |H|, then p - |G : H|, in particular, p - |G : IG(θ)|. Hence

|G : IG(θ)| = mq. Also note that if IG(θ)/H is abelian, then by Proposition 2.70 we

have h≤ |G/H : IG(θ)/H|= |G : IG(θ)|= mq, a contradiction as h -m. So IG(θ)/H is

nonabelian, i.e., there exists ψ ∈ Irr(IG(θ)/H) such that ψ(1)> 1. It follows then by

Gallagher’s Theorem that ψν ∈ Irr(IG(θ)), which implies by Theorem 6.11 in [Isaacs,

1976] that (ψν)G ∈ Irr(G). Hence m < ψ(1)ν(1)|G : IG(θ)| ∈ cd(G), a contradiction.

Therefore Q is abelian. Now as h - m and π(h) ⊂ π(m), Lemma 5.2 of [Noritzsch,

1995] implies that |G : F(G)| = h, F(G) = P×A, where A ≤ Z(G), P is a p-group,

cd(G) = cd(G/A) and cd(P) = {1,mq′}. Thus case iv) holds with s = q.

Case 5. B(G)∼= P2

Suppose first that cd(G) = {1,m} where m is not a prime power. Then m = pαqβ

where p and q are distinct primes and α, β ⊆ N∗. It follows from Theorem 12.5 in

[Isaacs, 1976], that G has a normal abelian subgroup N such that |G : N|= m. Notice

that if G/N is not abelian, then cd(G/N) = cd(G), which is not possible as N > 1.

Thus G/N is abelian and case i) occurs.

Suppose now that cd(G) = {1,m,h}. Then both m and h are powers of a prime

integer s, which implies that G has a normal s-complement H. If H is nonabelian,

then it has a nonlinear character degree which divides a character in cd(G), but since

ρ(G) = {s} we obtain a contradiction. Thus H is abelian and case iv) holds.

Case 6. B(G)∼= P1
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In this case we have cd(G) = {1, pα} for a prime p and a positive integer α .

It follows then by Theorem 12.5 of [Isaacs, 1976] that either G ∼= P×A, where A is

abelian and P is a p-group, so case iv) holds, or G has a normal abelian subgroup of

index pα and case i) occurs.
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7. NONSOLVABLE GROUPS WHOSE BIPARTITE
DIVISOR GRAPHS ARE UNION OF PATHS

In this chapter, we consider G to be a finite nonsolvable group such that each

connected component of B(G) is a path. By Theorem 6.4 (1) of [Lewis, 2008], we

know that n(∆(G)) ≤ 3. Thus, n(B(G)) ≤ 3 by Lemma 2.65. We start by discussing

the nonabelian simple groups, then we consider a general nonsolvable group.

We follow in this chapter lemmas and theorems of paper [Hafezieh, 2017].

Lemma 7.1. Let S be a nonabelian simple group. Then B(S) is a disconnected graph

whose all connected components are paths if and only if S is isomorphic to one of the

following:

i) PSL2(2n) where n is a positive integer and |π(2n±1)| ≤ 2;

ii) PSL2(pn) where p is an odd prime, n is a positive integer and |π(pn±1)| ≤ 2.

Proof. As mentioned before, we know that n(B(S)) = n(∆(S)) = n(Γ(S)). If the con-

nected components of B(S) are paths, then by Lemma 2.65 ii) we can see that the

connected components of ∆(S) are paths too. Thus ∆(S) has no triangles. It follows

then by Lemma 5.9 that one of the following cases occurs:

i) S∼= PSL2(2n) where n is a positive integer and |π(2n±1)| ≤ 2, and so |π(S)| ≤ 5;

ii) S∼= PSL2(pn) where p is an odd prime, n is a positive integer and |π(pn±1)| ≤ 2,

and so |π(S)| ≤ 4;

which completes the proof of the first implication. Suppose now that S is the group

described in i). Since cd(PSL2(2n)) = {1,2n,2n− 1,2n + 1} is a pairwise relatively

prime set, we conclude that B(S) has the following three connected components:

i) The path of length one: 2−2n,

ii) The path linking 2n +1 with its prime divisors, which is of length one if |π(2n +

1)|= 1 and of length two if |π(2n +1)|= 2,

iii) The path linking 2n−1 with its prime divisors, which is of length one if |π(2n−

1)|= 1 and of length two if |π(2n−1)|= 2.

Thus, all the connected components are paths in this case. Suppose next that

S ∼= PSL2(pn) for an odd prime p. As cd(PSL2(pn)) = {1, pn, pn− 1, pn + 1, pn+ε

2 }
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where ε = (−1)
pn−1

2 , (pn, pn−1) = (pn, pn+1) = 1 and 2 ∈ π(pn±1), we deduce that

B(S) has the following two connected components:

i) The path of length one: p− pn,

ii) The path linking pn +1, pn−1 and pn+ε

2 with their prime divisors.

Hence each component is a path and the proof is completed.

Lemma 7.2. If G is a finite group whose B(G) is a union of paths and |ρ(G)|= 5, then

G∼= PSL2(2n)×A where A is an abelian subgroup and |π(2n±1)|= 2.

Proof. Since all connected components of B(G) are paths and so are those of ∆(G)

(Lemma 2.65 ii)), we conclude that ∆(G) has no triangles. We claim that B(G) is

disconnected. If n(B(G)) = 1, then B(G) is a path. It follows then from Proposition

6.2 that G is solvable and the length of B(G) is less or equal than 6, which means that

|ρ(B(G))| ≤ 4, a contradiction as |ρ(B(G))|= 5. Hence B(G) is disconnected and so

is ∆(G) by Lemma 2.65 iii). By Theorem 5.2 i), we can see that G ∼= PSL2(2n)×A,

where A is an abelian group and |π(2n±1)|= 2.

As described in Lemma 7.1, the connected components of B(G) are precisely the

following:

2−2n, s− (2n−1)− t and f − (2n +1)−g, (7.1)

where π(2n−1) = {s, t} and π(2n +1) = { f ,g}.

Theorem 7.3. Let G be a finite nonsolvable group whose solvable radical is N. If B(G)

is a union of paths, then n(B(G))> 1 and G has a normal subgroup M such that G/N

is an almost simple group with socle M/N. Furthermore, ρ(G) = ρ(M) and one of the

following holds:

i) If B(G) has two connected components , then either:

• |cd(G)|= 5 or,

• |cd(G)| = 4, G/N ∈ {M10, PGL2(q) : q > 3 odd} and either cd(G) =

{1,q−1,q,q+1} or cd(G) = cd(M10) = {1,9,10,16}.

In addition, if C1 and C2 are the connected components of B(G), then C1 ∼= P1

and C2 ∼= Pn, where either n = |ρ(G)| or n = |ρ(G)|+1.
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ii) If B(G) has three connected components, then G∼= PSL2(2n)×A, where n≥ 2

and A is an abelian group.

Proof. As B(G) is a union of paths, then so is ∆(G). Precisely, If n(B(G)) = i, then

n(∆(G)) = i for every i ∈ {1,2,3}. Since G is nonsolvable, it follows from Proposition

6.2 that B(G) is not a path. Thus, B(G) and ∆(G) are the union of either two or

three paths, which implies that ∆(G) is triangle-free. It follows then by Theorem

5.1 that |ρ(G)| ≤ 5. By applying Lemma 5.11, we can see that G has a normal

subgroup M such that ρ(G) = ρ(M) and G/N is an almost simple group with socle

M/N. Recall that any group whose order is divisible by less than three primes is solvable

(Burnside’s Theorem), hence 3≤ |ρ(M/N)| ≤ |ρ(G)|. Therefore, 3≤ |ρ(G)| ≤ 5. By

Lemma 7.2, if |ρ(G)| = 5, then G ∼= PSL2(2n)×A, where A is an abelian group and

|π(2n±1)|= 2. Thus B(G) has three connected components (see Proof of Lemma 7.2).

On the other hand, as G is nonsolvable, we conclude by Theorem 6.4 in [Lewis, 2008]

that n(B(G)) = 3 if and only if G∼= PSL2(2n)×A where A is abelian and n≥ 2. Thus if

either |ρ(G)|= 5 or n(B(G)) = 3, case ii) occurs. So we may assume that n(B(G)) = 2

and |ρ(G)| ≤ 4. Since G is nonsolvable and n(B(G)) = n(Γ(G)) = 2, we can see by

Theorem 7.1 (3) in [Lewis, 2008] that one of the connected components of Γ(G) is an

isolated vertex and the other has diameter at most 2. Precisely, if the other component

has diameter one (resp. two), then |cd(G)∗|= 3 (resp. 4). Therefore, |cd(G)| ∈ {4,5}.

Suppose next that |cd(G)| = 4. If |cd(G/N)| ≤ 3, then by Corollary 12.6 and

Theorem 12.15 of [Isaacs, 1976] we can deduce that G/N is solvable. Thus, M/N is

solvable, a contradiction as by definition M/N is a nonabelian simple subgroup of G/N.

Hence |cd(G/N)| ≥ 4 and since cd(G/N) ⊆ cd(G), we conclude that |cd(G/N)| =

|cd(G)| = 4. By applying Theorem 1 in [Malle and Moretó, 2005] to the almost

simple group G/N, we obtain that G/N ∈ {M10, PGL2(q), PSL2(2n) : q > 3 is odd

and n ∈ N∗}. But since n(B(PSL2(2n))) = 3 and n(B(G)) = 2 we deduce that G/N ∈

{M10, PGL2(q)}. Now, Corollary B of [Malle and Moretó, 2005] implies that either

cd(G) = {1, q−1, q, q+1} for q > 3 odd or cd(G) = {1,9,10,16}.

Assume the first case holds, then cd(G) = {1,q−1,q,q+1} for an odd integer

q > 3. As B(G) is a union of at most two paths and 2 ∈ π(q±1), we can deduce that

|π(q±1)| ≤ 2. Thus 2≤ |π(q2−1)| ≤ 3. If exactly one of q±1 is a power of 2, then
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|π(q2−1)|= 2. Otherwise |π(q±1)|= 2, thus |π(q2−1)|= 3 (remark that the case

where both of q±1 are powers of 2 fails trivially as q > 3). It follows then by Lemma

3.7 that q verifies one of the following:

i) q ∈ {34,52,72},

ii) q = 3s, where s is an odd prime,

iii) q = p≥ 11 is a prime.

On the other hand, since 2 ∈ π(q± 1), we conclude that the isolated vertex in

Γ(G) is q. So if q = p f for a positive integer f , then p−q is a path of length one in

B(G), call this component C1. Consider now the other component of B(G), say C2. If

|ρ(G)|= 3 , then one of q±1 is a power of 2 and the other is divisible by {2,r} where r

is an odd prime. Thus C2 is a path of length 3 in this case. If |ρ(G)|= 4, and since B(G)

is a union of paths, we conclude that π(q+1) = {2,m} and π(q−1) = {2,k} for some

distinct odd primes m and k. Hence C2 is a path of length 4. Notice that {2, p} ⊆ ρ(G),

thus |ρ(G)|> 1. Besides, the case where ρ(G) = {2, p} cannot happen as in this case

both of q±1 are powers of 2 which is impossible as q > 3.

If cd(G) = {1,9,10,16}, then B(G) has the following connected components:

C1 : 3−9 and C2 : 5−10−2−16 (7.2)

Therefore, if |cd(G)|= 4, then C1 ∼= P1 and C2 ∼= P|ρ(G)|.

Suppose now |cd(G)|= 5. Since n(B(G)) = 2 and |cd(G)∗|= 4, we can conclude

the following:

• If |ρ(G)| = 3, then the isolated vertex in Γ(G) can be divisible by at most one

prime, since otherwise we obtain an isolated vertex in B(G) which contradicts its

structure. Thus the isolated vertex in Γ(G) generates a path of length one in B(G),

call it C1. It follows then that the other component must be an alternating path

between the other three character degrees in cd(G)∗ and the other two primes in

ρ(G). Hence C2 ∼= P4.

• If |ρ(G)| = 4. Then similar to previous, B(G) has two components C1 ∼= P1

generated by the isolated vertex in Γ(G) and C2 which is a path of length 5

alternates between the remaining character degrees and vertices in B(G).

Remark that, since Γ(G) has an isolated vertex (see Theorem 7.1 (3) in [Lewis,
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2008]), n(B(G)) = 2 and B(G) is a union of paths, we can see that if |cd(G)|= 5, then

|ρ(G)|> 2, C1 ∼= P1 and C2 ∼= P|ρ(G)|+1, which completes the proof.

Example 7.4. If G = PSL2(25), then cd(G) = {1,25− 1,25,25 + 1,(25 + 1)/2} =

{1,13,24,25,26}. By a simple construction we can see that B(G) is the graph in Figure

7.1.

5

3

2

13

25

24

26

13

Figure 7.1: B(PSL2(25)).

Hence, the components of B(G) are a path of length one: 5−25, and a path of

length five: 13−13−26−2−24−3.
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8. GROUPS WHOSE BIPARTITE DIVISOR GRAPHS
ARE CYCLES

We consider in this chapter finite groups G whose B(G) are cycles. We start by

claiming that if B(G) is a cycle, then G is solvable and the length of B(G) is either four

or six. Moreover, we discuss some group theoretical properties of G when B(G) is a C4.

We follow in this chapter lemmas and theorems of paper [Hafezieh, 2017].

Lemma 8.1. If G is a finite group whose B(G)∼=Cn for a positive integer n≥ 6, then

both ∆(G) and Γ(G) are cycles.

Proof. Let G be a finite group such that B(G) ∼= Cn for a positive integer n ≥ 6 and

consider Φ to be either ∆(G) or Γ(G). By definition, we know that Φ is a cycle

if and only if it is connected and degΦ(α) = 2 for every α ∈ V (Φ). Now, Since

n(B(G)) = n(∆(G)) = n(Γ(G)) (Lemma 2.65 iii)) and B(G) is connected, we conclude

that Φ is connected. As B(G) is a cycle with bipartition parts ρ(G) and cd(G)∗, we can

see that vertices of B(G) alternate in ρ(G) and cd(G)∗, and since degB(G)(α) = 2 for

every α ∈V (B(G)), we conclude that n must be even. Indeed, if n = 2k, then |ρ(G)|=

|cd(G)∗| = k and each α ∈ X ∈ {ρ(G),cd(G)∗} is adjacent to exactly two vertices

in Y = V (B(G)) \X . To illustrate more, consider p ∈ ρ(G). Since degB(G)(p) = 2,

then there exist x 6= y ∈ cd(G)∗ such that p | x, y. Notice that |π(x)| = degB(G)(x) =

degB(G)(y) = |π(y)| = 2 and since n ≥ 6, there exist r 6= s ∈ ρ(G) such that r | x and

s | y. Hence p is adjacent to exactly r and s in ∆(G). Therefore deg∆(G)(p) = 2 for

every p ∈ ρ(G). By a similar discussion we can deduce that degΓ(G)(x) = 2 for every

x ∈ cd(G)∗, which completes the proof.

Theorem 8.2. If G is a finite group whose B(G)∼=Cn for a positive integer n, then either

n = 4 or n = 6.

Proof. Notice that a cycle must contain at least three vertices, thus n≥ 3. As mentioned

in the previous proof, since B(G) is a cycle of length n, then n is even. Furthermore, by

Theorem 3 in [Iranmanesh and Praeger, 2010] we know that both of ∆(G) and Γ(G) are

acyclic (have no cycles) if and only if B(G)∼=C4. In this case, both ∆(G) and Γ(G) are
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paths of length one. On the other hand, if n≥ 6, we can deduce by Lemma 8.1 that ∆(G)

and Γ(G) are cycles. Therefore, ∆(G) is a cycle if n≥ 6 and it is a path of length one if

n = 4. It follows then by Theorem 5.3 that |ρ(G)| ≤ 4. And since |ρ(G)|= |cd(G)∗|

(see Proof of Lemma 8.1), we conclude that B(G) is isomorphic to C4, C6 or C8. We

claim now that B(G) cannot be a C8. If B(G) ∼= C8, then both ∆(G) and Γ(G) are

cycles of length 4. Suppose first that G is solvable. By the main theorem of [Lewis

and Meng, 2012], we have G = H×K where ρ(H) = {p,q}, ρ(K) = {r,s} and both

∆(H) and ∆(K) are disconnected. In other words, each of ∆(H) and ∆(K) is composed

of two isolated vertices. This implies that there exist l, k ∈ cd(K)∗ and m, n ∈ cd(H)∗

such that l = rα , k = sβ , m = pa and n = qb, for some positive integers α, β , a and

b. As G is a direct product of H and K, we have cd(G) = cd(H)× cd(K). Thus

{1, m, n, l, k, ml, mk, nl, nk} ⊆ cd(G), which contradicts the structure of B(G)∼=C8

as degB(G)(p), degB(G)(q), degB(G)(r) and degB(G)(s) are greater or equal than 3. So,

B(G) cannot be a C8 if G is solvable. Suppose next that G is nonsolvable. By Theorem

3.17 we know that a square cannot be the prime vertex graph of a nonsolvable group.

Thus, if G is nonsolvable, then G 6∼=C8, which completes the proof.

Corollary 8.3. Let G be a finite group whose B(G) is a cycle. Then G is solvable and

dl(G)≤ |cd(G)| ≤ 4.

Proof. By Theorem 8.2, we know that n = 4 or n = 6. This implies that, Γ(G) is

either P1 or C3. Thus Γ(G) is a complete graph. It follows then from Theorem 7.3

in [Lewis, 2008] that G is solvable. Now, as |cd(G)| = 3 if n = 4 and |cd(G)| = 4 if

n = 6, we have |cd(G)| ≤ 4. Since G is solvable, we conclude by [Garrison, 1973] that

dl(G)≤ |cd(G)| ≤ 4 (Taketa inequality).

Example 8.4. It was proved in Section 6 of [Wolf et al., 2005] that for every non-

Mersenne prime p which is congruent to 1 (mod 3), we can find an odd prime q such

that q | p+1. Furthermore, there exists a solvable group G associated with (p,q) of

order 3p7q where cd(G) = {1,3q, p2q,3p3}. This gives an example of a solvable group

G whose B(G)∼=C6 (see Figure 8.1).

Example 8.5. By using GAP (a system for computational discrete algebra), we can see
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p

3

q

3p3

p2q

3q

Figure 8.1: B(G) where G is the group associated with (p,q) described in Example 8.4.

that there are exactly two nonabelian groups among the 66 solvable groups of order

588. They have {1,6,12} as their character degree sets. Thus, these groups provide an

example of a finite solvable group whose bipartite divisor graph is a C4.

Example 8.6. Let P ∈ Sylp(G) where G is nonabelian, |P| = p2, p ≥ 7, p 6= 11 and

|G : P|= 12. Since p 6= 11 and the number of Sylow p-subgroups in G, np(G), divides

|G : P|= 12 and is congruent to 1 (mod p), we conclude that np(G) = 1. Thus PCG.

On the other hand, since |P| = p2, we deduce that P is abelian. It follows then by

Theorem 6.15 in [Isaacs, 1976] that every degree in cd(G) divides |G : P|. Thus m | 12

for every m ∈ cd(G).

If B(G) is a cycle, then degB(G)(α) = 2 for every α ∈V (B). So no prime powers

can occur in B(G). Hence, the only possible degrees in cd(G)∗ are 6 and 12 where both

must occur as B(G) is a cycle.

Therefore, B(G) is a cycle if and only if cd(G) = {1,6,12}.

Remark 8.7. Let G be a finite group whose B(G)∼=C4 and ρ(G) = {p,q}. We claim that

ρ(G) 6= π(G). Suppose on the contrary that π(G) = ρ(G) = {p,q} and let |G|= pαqβ

for some positive integers α and β . Since p | m for every m ∈ cd(G)∗, we conclude by

Corollary 12.2 in [Isaacs, 1976] that G has a normal p-complement Q. As π(G) =

{p,q} and by the definition of a p-complement being a subgroup whose order is a

power of q and index is a power of p, we deduce that Q is the normal Sylow q-subgroup

of G. Similarly, since q divides every degree in cd(G)∗, we can see that G has a normal

q-complement P which is the normal Sylow p-subgroup of G. Thus G is nilpotent as

all its Sylow subgroups are normal. Hence, G = P×Q. Notice that G is solvable by

Corollary 8.3 and since every degree in cd(G)∗ is divisible by p and q, we conclude

by Ito-Michler’s Theorem that neither P nor Q is abelian. Thus {1, pa} ⊂ cd(P) and
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{1,qb} ⊂ cd(Q) for some positive integers a ≤ α and b ≤ β . This implies that G

has prime power character degrees (pα , qβ ) which is impossible as B(G) is a cycle.

Therefore if B(G)∼=C4, then ρ(G)⊂ π(G).

However, if B(G)∼=C6, then ρ(G) can be equal to π(G). For example, consider

the group G associated with (p,q) where p, q and G are as described in Example 8.4 ,

then |G|= 3p7q and ρ(G) = {3, p,q}. Thus π(G) = ρ(G) in this case.

Lemma 8.8. Suppose G = NoH, where N is an abelian normal subgroup of G. Then

cd(G) = {β (1)|G : IG(λ )| : λ ∈ Irr(N), β ∈ Irr(IG(λ )/N)}.

Proof. Let ψ ∈ Irr(G) and λ be an irreducible constituent of ψN . By Clifford’s The-

orem we can write: ψN = eψ ∑
t
i=1 λi, where t = |G : IG(λ )| and eψ 6= 0. By Frobe-

nius Reciprocity, we know that eψ = [ψN ,λ ] = [ψ,λ G]. If λ0 ∈ Irr(IG(λ )) such that

(λ0)N = λ , we conclude by Gallagher’s Theorem that the characters β jλ0 ∈ Irr(IG(λ ))

for every β j ∈ Irr(IG(λ )/N). Furthermore, they are all of the irreducible constituents

of λ IG(λ ) and we have: λ IG(λ ) = β j(1)∑ j(λ0β j). Thus (λ IG(λ ))G = β j(1)∑ j(λ0β j)
G.

As ψ is an irreducible constituent of λ G, we deduce that ψ = (λ0β j0)
G for some β j0 ∈

Irr(IG(λ )/N). By the definition of induced characters we have ψ(1) = (λ0β j0)
G(1) =

λ0(1)β j0(1)|G : IG(λ )|= λ (1)β j0(1)|G : IG(λ )|= β j0(1)|G : IG(λ )|. Remark that since

N is abelian, λ (1) = 1.

The following theorem shows that if G is a finite group whose B(G)∼=C4, then

it has an abelian normal Hall subgroup N, whose irreducible character degree set is

sufficient to specify the character degrees of G.

Theorem 8.9. Let G be a finite group whose B(G) is a C4. Then, there exists an abelian

normal Hall subgroup N of G such that cd(G) = {|G : IG(λ )| : λ ∈ Irr(N)}.

Proof. Let G be a finite group of order pa1
1 pa2

2 ...pal
l . Suppose without loss of generality

that p1 = p, p2 = q and B(G) : p−m−q−n− p. Since (m, pi) = (n, pi) = 1 for every

pi ∈ π(G)\{p,q}, we conclude by Ito-Michler’s Theorem that the Sylow pi-subgroup of

G is normal abelian for every 3≤ i≤ l. Let N = P3P4...Pl where Pi ∈ Sylpi(G) for every

3≤ i≤ l. As B(G)∼=C4, we deduce by Remark 8.7 that G is not a {p,q}-group. Thus N

is a nontrivial abelian normal Hall subgroup of G. Consider now G/N which is a {p,q}-
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group. As ρ(G/N)⊆ π(G/N) = {p,q}, we conclude that either ρ(G/N) is a singleton

or ρ(G/N) = π(G/N). In both cases the bipartite divisor graph of G/N is not a square

(C4). Recall that cd(G/N)∗⊆ cd(G)∗ and since degB(G)(α) = 2 for every α ∈V (B(G)),

we deduce that cd(G/N) has no prime power degrees. Thus for each nonlinear character

χ ∈ Irr(G/N), we have χ(1) = paqb, for some positive integers a and b. Hence each

character degree in cd(G/N) is divisible by p and q. As a consequence, G/N has a

normal abelian p-complement Q which is the normal Sylow q-subgroup of G and a

normal abelian q-complement P which is the normal Sylow p-subgroup (see Remark

8.7). This implies that G/N = P×Q, which is impossible as in this case G/N has prime

power character degrees (see Remark 8.7). Thus the set cd(G/N) must be trivial, in

other words G/N must be abelian. Furthermore, as G = NH, N EG and H ∩N = 1

where H ∼= G/N, we conclude that G = NoH (Theorem 2.21). It follows then from

Lemma 8.8 that cd(G) = {β (1)|G : IG(λ )| : λ ∈ Irr(N), β ∈ Irr(IG(λ )/N)}. But since

G/N is abelian, IG(λ )/N is abelian. Thus cd(G) = {|G : IG(λ )| : λ ∈ Irr(N)}.

Example 8.10. Let G = S3×N, where N ∼= Z5. It is clear that cd(G) = cd(S3) = {1,2}

(see Example 2 p.153 in [Alperin and Bell, 1991]). Thus B(G) is a path of length one

(B(G) : 2−2), which is not a cycle. Furthermore, as G is the direct product of S3 and

N, we can see that N is an abelian normal Hall subgroup of G. Consider now x where

N =< x > and let ε be a primitive 5th root of unity. We know that Irr(N) has exactly

five linear characters {λ1, ...,λ5}, where λi(xa) = εa(i−1) for every i ∈ {1, ...,5} and for

every a ∈ {0, ...,4} (see Example 1 p.153 in [Alperin and Bell, 1991]). Since each λi

is linear, we have: IG(λi) = {g ∈ G : λ
g
i = λi}= {g ∈ G : λi(g−1xg) = λi(x)}= {g ∈

G : 1 = 1}= G. Therefore, |G : IG(λi)|= 1 for every i ∈ {1, ...,5}, which implies that

{1}= {|G : IG(λi)| : 1≤ i≤ 5} 6= cd(G) = {1,2}.
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