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ABSTRACT

ORBITS OF TENSORS OVER FINITE FIELDS

NOUR ALNAJJARINE

Mathematics Ph.D DISSERTATION, July 2022

Dissertation Supervisor: Prof. Dr. Michel Lavrauw

Keywords: Tensors, Ranks, Segre Variety, Veronese Surface, Linear Systems of
Conics

This thesis forms part of a project aiming to classify subspaces of PG(5, q) under
the action of the subgroup K < PGL(6, q) stabilising the Veronese surface V(Fq),
where Fq is the finite field of order q. Firstly, we determine the K-orbits of solids
of PG(5, q) in the case where q is even. We compute as well two useful combinato-
rial invariants of each type of solids, namely their point-orbit and hyperplane-orbit
distributions. Additionally, we calculate the stabiliser of each orbit representative,
and thereby obtain the size of each orbit. The classification of solids in PG(5, q)
corresponds to the classification of pencils of conics in PG(2, q), q even. The latter
classification was incompletely obtained by Campbell in 1927. Our results complete
Campbell’s work and correct two of his claims. Moreover, we give a partial classifi-
cation of planes in PG(5, q), q even. Specifically, we determine theK-orbits of planes
intersecting the Veronese surface in at least one point. Our proof is geometric based
on studying the different types of points that are incident with a plane π⊂PG(5, q).
In some cases, point orbit-distributions are not sufficient to characterise each or-
bit, and we tend to determine stronger geometric-combinatorial invariants such as

iv



line-orbit distributions and inflexion points. Finally, we introduce the GAP pack-
age, T233, which uses some functionality from the FinInG package to determine
G-orbits and ranks of points in PG(F2

q⊗F3
q⊗F3

q)∼= PG(17, q), where G is the group
stabilising the Segre variety S1,2,2(Fq). Note that, the algorithms defined in T233
and the combinatorial tools introduced earlier can be generalised to higher-ordered
tensor product spaces, and thus one may extend these implementation tools and
classifications to higher-ordered tensor product spaces.
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ÖZET

TENSÖRLERİN SONLU CİSİMLER ÜZERİNDEKİ YÖRÜNGELERİ

NOUR ALNAJJARINE

MATEMATİK DOKTORA TEZİ, Temmuz 2022

Tez Danışmanı: Prof. Dr. Michel Lavrauw

Anahtar Kelimeler: Tensörler, Sıralamalar, Segre Variety, Veronese Yüzeyini,
Lineer Konik Sistemler

Bu tez, Veronese yüzeyini V(Fq) dengeleyen K < PGL(6, q) alt grubunun etkisi
altında PG(5, q) alt uzaylarını sınıflandırmayı amaçlayan bir projenin parçasıdır,
burda Fq, q dereceli sonlu cisimdir. İlk olarak, q çift iken PG(5, q) solidlerinin K-
yörüngenin belirliyoruz. Her solid tipi için nokta yörünge ve hiper düzlem yörünge
dağımları olmak üzere iki kullanışlı kombinatoryal değişmezi de hesaplıyoruz. Ek
olarak her yörünge temsilcisinin dengeleyicisini hesaplıyoruz ve böylece her yörün-
genin boyutunu elde ediyoruz PG(5, q) üzerinde solidlerin sınıflandırılması, q çift
iken PG(2, q) üzerinde konik kalemlerin sınıflandırılmasını karşılık gelir. İkinci
sınıflandırma bilinmektedir, fakat litaratürde hiç bir kanıtın kaydedilmediği, genel-
likle Campbell’in yalnızca tamamlanmamış bir sınıflandırma içeren 1927 tarihli bir
makalesine işaret edilmektedir. Yaklaşımımız, Campbell’in düzeltip tamamladığımız
çalışmasından farklı ve bağımsızdır. Ayrıca, q çift iken, PG(5, q)’de düzlemlerin kısmı
bir sınıflandırmasını veriyoruz. Özellikle, Veronese yüzeyini en az bir noktada kesen
düzlemlerin K-orbitlerini belirliyoruz. Kanıtımız geometrik olarak bir π ⊂ PG(5, q)
düzlemi ile ilişkili olan farklı nokta tiplerini incelemeye dayanmaktadır. Bazı durm-
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larda, nokta dağılımları her bir yörüngeyi karakterize etmek için yeterli değildir. Ve
çizgi yörünge dağılımları ve bükülme noktaları gibi daha güçlü geometrik kombinato-
ryal değişmezleri belirleme eğilimindeyiz. Son olarak, PG(F2

q⊗F3
q⊗F3

q)∼= PG(17, q)
içindeki G-yörüngelerini ve nokta sınıflarını belirlemek için FinInG paketinden bazı
işlevleri kullanan T233 paketini tanıtıyoruz, buradaG Segre çeşidi S1,2,2(Fq) ‘yü den-
geleyen gruptur. T233 ’te tanımlanan algoritmaların ve daha önce tanıtılan kom-
binatoryal araçların daha yüksek sıralı tensör çarpım uzaylarına genelleştirilebile-
ceğini ve bu uygulama araçlarının ve sınıflandırmaların daha yüksek sıralı alanlara
genelleştirilmesi olasılığını önerdiğini unutmayın.

vii



ACKNOWLEDGEMENTS

I would like to express my profound gratitude to my advisor Prof. Dr. Michel
Lavrauw for imparting his knowledge and experience in this study. His door was
always open whenever I had a question about my research or writing. I will be always
indebted to him for his valuable advices and for introducing me to this fascinating
area of Mathematics and creating my interest in Finite Geometry.

I would also like to thank Asst. Prof. Dr. Tomasz Popiel for his collaboration and
detailed writing which helped me learning a lot about stabiliser computations. I
also wish to thank my thesis progress committee members, Asst. Prof. Dr. John
Sheekey and Assoc. Prof. Dr. Turgay Bayraktar, for their guidance and advices.

A very special thanks goes to my family especially my parents, Fidaa Wehbeh and
Houssam Alnajjarine, whose love and guidance are with me in whatever I pursue.

Lastly, many thanks to my husband, Mohamed Shehata, for his love, assistance and
encouragement.

viii



To my dear family

ix



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1. Projective spaces over finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. Group theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1. Group actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2. Direct and semidirect products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3. Group-theoretic notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3. Collineations, polarities and perspectivities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4. Algebraic sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1. Conics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2. Cubic curves and surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3. Segre variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.4. Veronese variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.4.1. Properties of V(Fq) in PG(5, q) . . . . . . . . . . . . . . . . . . . . . . . 19
2.5. Quadratic and cubic equations over Fq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.0.1. Quadratic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.0.2. Cubic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6. Tensor products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

x



2.6.1. Ranks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.2. Contraction spaces and rank distributions . . . . . . . . . . . . . . . . . . . . . 24
2.6.3. Natural actions on V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.4. Tensors in F2

q⊗F3
q⊗F3

q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.5. Representations of tensors in F2

q⊗F3
q⊗F3

q . . . . . . . . . . . . . . . . . . . . . 26
2.7. Subspaces of PG(5, q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7.1. The group action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.2. Points, lines and hyperplanes of PG(5, q) . . . . . . . . . . . . . . . . . . . . . . 28

2.8. Linear systems of conics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.9. Dual subspaces of PG(5, q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.10. Solids of PG(5, q), q odd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3. Solids in PG(5, q), q even . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1. Solids not contained in any hyperplane of type H3 . . . . . . . . . . . . . . . . . . . . 39

3.1.1. Solids contained in a hyperplane of type H1 . . . . . . . . . . . . . . . . . . . 40
3.1.2. Solids not contained in a hyperplane of type H1 . . . . . . . . . . . . . . . 43

3.2. Solids contained in at least one and at most q hyperplanes of type H3 45
3.2.1. Solids contained in a hyperplane of type H1 . . . . . . . . . . . . . . . . . . . 45
3.2.2. Solids contained in a hyperplane of type H2r and no hyper-

plane of type H1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2.1. (k1,k2) = (2,2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2.2. (k1,k2) = (1,0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2.3. (k1,k2) = (1,2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.2.4. (k1,k2) = (2,0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.2.5. (k1,k2) = (0,0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.3. Solids contained in no hyperplanes of type H1 or H2r . . . . . . . . . 55
3.3. Solids contained in q+ 1 hyperplanes of type H3 . . . . . . . . . . . . . . . . . . . . . . 57
3.4. Solids in PG(5,2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5. Comparison with Campbell’s partial classification. . . . . . . . . . . . . . . . . . . . . 61

4. Planes intersecting the Veronese surface non-trivially in PG(5, q), q
even . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1. Planes containing at least three rank-1 points . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2. Planes containing two rank-1 points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3. Planes containing one rank-1 point and spanned by points of rank at

most 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.1. (a) l2 = l3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.2. (b) q1 = l2∩ l3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3. (c) q1 ∈ l2 \ l3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.4. (d) q1 6∈ l2∪ l3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xi



4.3.4.1. (d-i) π∩N 6= ∅ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.4.2. (d-ii) π∩N = ∅ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4. Planes containing one rank-1 point and not spanned by points of rank
at most 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5. Planes in PG(5,2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.6. Comparison with the q odd case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5. Tensor ranks in F2
q⊗F3

q⊗F3
q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1. T233 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1. OrbitOfTensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.2. Representative for o17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.3. Representatives for o10 and o15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3. Computations and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

BIBLIOGRAPHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xii



LIST OF TABLES

Table 2.1. The K-orbits of lines in PG(5, q), q odd. . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 2.2. The K-orbits of lines in PG(5, q), q even. . . . . . . . . . . . . . . . . . . . . . . . 30
Table 2.3. The K-orbits of solids in PG(5, q), q odd, and their represen-

tatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 2.4. Rank distributions and hyperplane-orbit distributions of the

K-orbits of solids in PG(5, q), q odd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 3.1. The K-orbits of solids in PG(5, q) and pencils of conics in

PG(2, q), q even. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 3.2. Invariants of K-orbits of solids in PG(5, q), q even. . . . . . . . . . . . . . 38
Table 3.3. Data for Lemma 3.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 3.4. Correspondence between K-orbits of solids in PG(5, q) and

Campbell’s “classes” and “sets of classes” of pencils of conics in
PG(2, q), q even. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Table 4.1. The K-orbits of planes in PG(5, q) meeting V(Fq) in at least
one point and their point-orbit distributions, where q 6= 2 and c is:
(∗) not admissible if q = 22m+1, (∗∗) not admissible if q = 22m and
(∗∗∗) admissible if q > 4. The point-orbit distribution in Σ14 is given
with respect to q = 22m and q = 22m+1 respectively. . . . . . . . . . . . . . . . . . . 90

Table A.1. Projective description and properties of the G-orbits of tensors
in V (Lavrauw & Sheekey, 2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xiii



LIST OF FIGURES

Figure 3.1. The discussion structure of Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 3.2. Pencils of conics generated by a double line L1 and a pair of

real lines L2∪L3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 3.3. The possible configurations of the lines L1, . . . ,L4; q 6= 2. . . . . . . 43
Figure 3.4. Pencils of conics associated with Ω5, Ω6 and Ω7. . . . . . . . . . . . . . . . 46
Figure 3.5. The possible configurations of pencils of conics generated by

a nonsingular conic C and a pair of real lines L1∪L2, where (k1,k2)
denote the number of points in Li∩C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3.6. The 15 pencils of conics in PG(2, q), q 6= 2 even, up to projec-
tive equivalence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 4.1. The discussion structure of Chapter 4. . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 4.2. Configurations associated with cases (i) and (ii), respectively. 68
Figure 4.3. The configurations defined by cases (a), (b), (c) and (d) in

Section 4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 4.4. The configuration defined in case (c-iii), Section 4.3.3. . . . . . . . . 75
Figure 4.5. The configuration defining Σ11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xiv



1 INTRODUCTION

Tensors are fundamental in mathematics and physics with numerous applications
in complexity theory (Landsberg, 2011), representation theory (Kloda & Bader,
2009), signal processing (De Lathauwer & De Moor, 1998) and numerical linear
algebra (De Lathauwer, De Moor & Vandewalle, 2000). For instance, the problem
of determining the complexity of matrix multiplication can be rephrased as the
problem of determining the minimum number of arithmetic operations needed to
multiply two square matrices. This problem is equivalent to determining the rank
of a particular tensor (the matrix multiplication operator), and it has been only
solved for 2×2-matrices (Strassen, 1969; Winograd, 1971).

Many applications of tensors are concerned with the following types of questions.
Let V = Fm1⊗ ...⊗Fmt be a tensor product space defined over a field F and A ∈ V .

1.1 Decomposition: Can we write A as the sum of k fundamental tensors (ten-
sors of the form: v1⊗ ...⊗vt); k ∈ N\{0}?

1.2 Uniqueness: If such a writing exists, is it unique?

1.3 Algorithms: Do we have algorithms to determine the rank of A and to
decompose A as the sum of fundamental tensors?

1.4 Classification: Can we classify tensors in V under the action of some natu-
ral groups such as the group stabilising fundamental tensors or its subgroup
defined by GL(Fm1)× ...×GL(Fmt)?

In most tensor decomposition problems the first issue to resolve is to determine the
rank of the tensor, which is not always an easy task (Håstad, 1990). In general, most
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of the known results on tensors are considered over the complex field or algebraically
closed fields (Kloda & Bader, 2009; Landsberg, 2011). However, we are interested
in tensors over finite fields, and we focus particularly on the algorithmic and the
classification types of questions.

The group H = GL(Fm1)× ...×GL(Fmt) acts on the set of fundamental tensors in
V via (v1⊗·· ·⊗vm)(g1,...,gm) = vg1

1 ⊗ . . .vgm
m , and on all V by linearity. If some of the

mi’s are equal, then we can extend H by a subgroup of the symmetric group Symm

to obtain the group G defined as the setwise stabiliser of fundamental tensors in V .
One may seek then to classify the G-orbits of tensors in V . This is an elementary
problem when t= 2 and becomes more difficult, depending on the field and the mi’s,
when t ≥ 3. For instance, Lavrauw and Sheekey classified in (Lavrauw & Sheekey,
2015) G-orbits of tensors in V = F2⊗F3⊗F3. Precisely, they proved the existence
of 15, 17, or 18 such G-orbits depending on the field being algebraically closed, the
real space, or a finite field respectively.

Indeed, one may also look at the G-orbits of subspaces of a given tensor product
space. For instance, Lavrauw and Sheekey classified the 2-dimensional subspaces of
F3⊗F3 under the action of GL(3, q)2 oSym2 by suitably contracting tensors in V =
F2⊗F3⊗F3 (Lavrauw & Sheekey, 2015, pp. 136–137). Basically, this classification
was done as a part of studying the different types of tensors in V (Lavrauw &
Sheekey, 2015).

Similar questions arise when considering the space W = SnFm of symmetric tensors
in V = Fm⊗ ...⊗Fm and the action of G= GL(V ) on W defined by (v⊗·· ·⊗v)g =
vg⊗·· ·⊗ vg and expanding linearly. In this case, fundamental tensors in W corre-
spond to points of the Veronese surface in PG(W ), and one may use this connection
to extract information from tensors in W . We draw a particular attention to the
case where n = 2 and m = 3. Under this setting, rank-1 tensors in W correspond
to points of the Veronese surface V(F) ⊂ PG(5,F), and G induces a subgroup of
PGL(6, q), K ∼= PGL(3,F), leaving V(F) invariant. Moreover, subspaces of PG(5,F)
correspond to linear systems of conics in PG(2,F). In particular, lines, planes and
solids in PG(5,F) correspond to 3-, 2- and 1-dimensional linear systems, respec-
tively, namely: webs, nets and pencils of conics. Therefore, classifying K-orbits of
subspaces in PG(5,F) correspond to classifying linear systems of conics in PG(2,F)
up to projective equivalence.

This problem is completely determined over R and C by Jordan and Wall who
classified pencils and nets of conics respectively over these fields ((Jordan, 1906),
(Jordan, 1907) , (Wall, 1977)). More precisely, pencils of conics correspond to solids
of PG(5,F), which correspond in turn to lines of PG(5,F) through a particular

2



polarity α of PG(5,F) defined over non-characteristic 2 fields. Similarly, one can
obtain the classification of planes of PG(5,F) from that of nets of conics in PG(2,F).
In general, K-orbits of points, which correspond to K-orbits of hyperplanes through
α, are easily obtained yielding to the complete classification of subspaces of PG(5,F);
F ∈ {R,C}.

As mentioned earlier, we are interested in working over finite fields. Let F = Fq
for some prime power q. In this case, the subgroup K ∼= PGL(3, q) is the setwise
stabiliser of V(Fq), unless q = 2. If q = 2, then PGL(3,2) is strictly contained in the
setwise stabiliser of V(F2)∼= Sym7. For q odd, points, lines, solids and hyperplanes
are completely classified in PG(5, q). Indeed, K-orbits of lines and solids can be
deduced from the classification of pencil of conics in (Dickson, 1908). Moreover,
planes in PG(5, q), q odd, are partially classified by Lavrauw et al. in (Lavrauw,
Popiel & Sheekey, 2020,2). For q even, K-orbits of points and hyperplanes are
easily determined, and K-orbits of lines are given in (Lavrauw & Popiel, 2020).
In principle, K-orbits of solids can be deduced from the classification of pencils of
conics over finite fields of even characteristic, which is recorded in (Hirschfeld, 1998,
Theorem 7.31). However, to the best of our knowledge, there is no proof in the
literature for the latter classification, which is attributed to Campbell (Campbell,
1927), who provided only an incomplete classification.

In this thesis, we classify and characterise solids in PG(5, q), q even, and thus we
obtain an independent proof of the classification of pencils of conics over character-
istic two fields. Our proof, which shows the existence of 15 K-orbits of solids, relies
on studying some combinatorial invariants such as point-orbit and hyperplane-orbit
distributions, which measure the number of different types of points and hyperplanes
in PG(5, q) incident with a solid S ⊆ PG(5, q). Note that hyperplane-orbit distribu-
tions can be interpreted in the setting of pencils of conics as counting the number
of double lines, pairs of real lines, pairs of conjugate imaginary lines, and nonsingu-
lar conics contained in each type of pencil. Our work is structured as follows. We
start by considering for an arbitrary solid S ⊆PG(5, q) the possible hyperplane-orbit
distributions. Then, we discuss if solids having the same hyperplane-orbit distribu-
tion split under the action of K ∼= PGL(3, q) or not. Sometimes, the distribution
of points and hyperplanes are not sufficient to distinguish between orbits. In such
cases, we tend to study some further combinatorial invariants such as line-orbit dis-
tributions. Additionally, we calculate the stabiliser inK of each orbit representative,
and thereby determine the size of each orbit. Finally, we compare our classification
with Campbell’s work (Campbell, 1927). We note that our arguments intentionally
exploit the connection between solids in PG(5, q) and pencils of conics in PG(2, q).
By this we mean that we generally aim to use each point of view to its advan-
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tage. For instance, there seems to be no obvious way to calculate the point-orbit
distribution of a solid by working directly with the associated pencil of conics. On
the other hand, stabilisers are sometimes significantly easier to compute by working
with pencils of conics, since we can appeal to well-known transitivity properties of
the natural action of PGL(3, q) on PG(2, q).

This is only one part of our aim. We also classify planes in PG(5, q), q even, which
intersect the Veronese surface in at least one point. In particular, we prove that
we have exactly 15 such orbits defined under the action of the group K stabilising
V(Fq). We change our perspective when classifying planes to study the possible
point-orbit distributions instead of hyperplane-orbit distributions. Namely, the four-
tuple [r1, r2n, r2s, r3], where ri is the number of rank-i points in a plane π ⊆ PG(5, q)
for i ∈ {1,3}, r2n is the number of rank-2 points in π meeting the nucleus plane and
r2s is the number of the remaining rank-2 points in π. Note that, unlike fields of odd
characteristic, planes with at least one rank-1 point over characteristic-2 fields do
not correspond to rank-1 nets of conics, namely nets with at least one double line.
In general, determining the point orbit-distributions is not sufficient to distinguish
between the 15 orbits. For this reason, we use stronger geometric-combinatorial
tools such as line-orbit distributions and inflexion points to completely characterise
each orbit. We believe that these combinatorial tools can be generalised to higher-
ordered tensor product spaces, and thus one may look at the classification problem
in the generalised sense.

Finally, we introduce the GAP-package, T233, which uses some functionality from
the FinInG package to determine orbits and ranks of points in PG(F2

q⊗F3
q⊗F3

q)∼=
PG(17, q). Our algorithms are based on the classification of tensors in V = F2

q⊗F3
q⊗

F3
q under the action of the subgroup of GL(V ) stabilising the set of fundamental

tensors in V (Lavrauw & Sheekey, 2015). We illustrate the importance of T233
by Example 5.1 which shows how hard it would be to compute ranks of tensors in
PG(17, q) without this package.

1.1 Thesis Organization

In Chapter 2, we collect some definitions and theory needed in our main results.
We start with an overview of projective spaces over finite fields and some basic
definitions in group theory. We recall as well some algebraic sets that are strongly
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related to our work. We discuss then solutions of quadratic and cubic equations over
finite fields. Later, we give a detailed review about tensors, their representations
and properties over finite fields. Lastly, we introduce the problem of classifying
subspaces of PG(5, q) under the action of the group stabilising the Veronese surface
and we explain its connection with linear systems of conics.

In Chapter 3, we present our results from (Alnajjarine, Lavrauw & Popiel, 2022)
published in the journal of Finite Fields and Their Applications. In particular, we
classify orbits of solids of PG(5, q), q even, under the action of the subgroup K of
PGL(6, q) stabilising the Veronese surface. We also determine two useful combina-
torial invariants of each type of solid, namely their point-orbit and hyperplane-orbit
distributions. Additionally, we calculate the stabiliser in PGL(3, q) of each (type of)
solid S, and thereby determine the size of each orbit. Finally, we compare our work
with Campbell’s partial classification of pencils of conics.

In Chapter 4, we present our results from (Alnajjarine & Lavrauw, 2022). Par-
ticularly, we determine the K-orbits of planes having at least one rank-1 point in
PG(5, q), q even. Specifically, unless q = 2, we prove the existence of 15 such orbits.
In general, we distinguish between orbits using point-orbit distributions, line-orbit
distributions and inflexion points. Our discussion is structured as follows. We start
by considering planes intersecting the Veronese surface V(Fq) in at least three points.
We then classify planes meeting V(Fq) in exactly two points. Finally, we deal with
planes having a unique intersection with V(Fq).

In Chapter 5, we introduce the GAP-package T233 which is concerned with finding
orbits and ranks of points in PG(17, q). We start by explaining the implementation
of our main and auxiliary codes. We then find representatives of the orbits o10,
o15 and o17. At the end, we give an example showing the importance of T233
while computing ranks of tensors over finite fields with large orders. For a detailed
description of the codes in T233 and for more examples, we refer to the webpage
(Alnajjarine & Lavrauw, 2020) and to our paper (Alnajjarine & Lavrauw, 2020)
published in the proceedings of MACIS 2019, Lecture Notes in Computer Science.
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2 PRELIMINARIES

In this chapter, we collect some preliminary definitions, notations and results that
we use throughout the study.

2.1 Projective spaces over finite fields

Throughout the thesis, let Fq denotes a finite field of order q where q = ph for some
prime p and positive integer h.

Definition 2.1. Let U be an (n+1)-dimensional vector space defined over Fq. The
n-dimensional Desarguesian projective space, PG(U) or PG(n,q), is the quotient
space of U \ {0} by the equivalence relation ∼ defined by: x ∼ y ⇐⇒ y = λx, for
some λ ∈ Fq \{0}.

The m-subspaces of PG(n,q) are the (m+1)-dimensional subspaces of U . In partic-
ular, points, lines, planes, solids and hyperplanes of PG(n,q) are the 1-dimensional,
2-dimensional, 3-dimensional, 4-dimensional and n-dimensional subspaces of U re-
spectively. The homogeneous coordinates of a point P in PG(n,q) are usually de-
noted by (x0 : ... : xn) = λ(x0, ...,xn), however, for simplicity, we will use the notation
(x0, ...,xn).

Alternatively, we may define a Desarguesian projective space PG(n,q) by starting
with an affine space AG(n,q), which is simply Fnq with its lattice of subspaces and
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their translates, and add a hyperplane at infinity defined by parallel classes. More
specifically, the m-dimensional subspaces of the hyperplane at infinity are the par-
allel classes of the (m+ 1)-dimensional subspaces of AG(n,q). Conversely, given a
projective space PG(n,q), we can obtain an affine space by deleting a hyperplane
with its subspaces.

Sometimes we refer to PG(U) as the projective geometry associated with U . Let
U1,U2 be two vector subspaces of U . The dimension of 〈PG(U1),PG(U2)〉 is given
by
(2.1)
dim(〈PG(U1),PG(U2)〉) = dim(PG(U1)) +dim(PG(U2))−dim(PG(U1∩U2)),

which follows from the Grassmann dimension formula for vector spaces. Note that
PG(U1 +U2) = 〈PG(U1),PG(U2)〉 and PG(U1∩U2) = PG(U1)∩PG(U2).

The following two theorems are direct applications of (2.1) and its generalisation to
a finite set of subspaces.

Theorem 2.1. Two distinct hyperplanes of PG(n,q) intersect in a subspace of di-
mension n−2.

Theorem 2.2. A k-dimensional subspace of PG(n,q) is the intersection of n− k
hyperplanes of PG(n,q).

In particular, planes and solids of PG(5, q) are the intersection of three and two
hyperplanes respectively. Recall that a hyperplane H in PG(n,q) is defined by a
linear form, f = a0X0 +a1X1 + ...+anXn ∈ Fq[X0, ...,Xn], where

(2.2) H = Z(f) := {(x0, ...,xn) ∈ PG(n,q) : f(x0, ...,xn) = 0}

and [a0, ...,an] are the dual coordinates of H.

The next proposition is a collection of some known combinatorial properties of sub-
spaces of PG(n,q).

Proposition 2.1. • The number of points of PG(n,q) is

qn+1−1
q−1 = qn+ qn−1 + ...+ q+ 1.

• The number of m-dimensional subspaces of PG(n,q) is
(
n+ 1
m+ 1

)
q

= (qn+1−1)(qn+1− q)...(qn+1− qm)
(qm+1−1)(qm+1− q)...(qm+1− qm) = (qn+1−1)(qn−1)...(qn−m+1−1)

(qm+1−1)(qm−1)...(q−1) .
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• The number of k-dimensional subspaces through a given m-dimensional sub-
space of PG(n,q); k ≥m, is

(
n−m
k−m

)
q

= (qn−m−1)(qn−m−1−1)...(qn−k+1−1)
(qk−m−1)(qk−m−1−1)...(q−1) .

Example 2.1. The projective plane PG(2, q) has q2 + q+ 1 points. The number of
lines in PG(2, q) is also q2 + q+ 1, which can be deduced from Proposition 2.1 or
by applying the principle of duality. Each two lines intersect in a unique point and
each line has q+ 1 points. Dualizing the last statement, gives the following further
properties: each 2 points lie on a unique line and each point lies on q+ 1 lines of
PG(2, q).

We end this section by recalling some special components of PG(n,q). A frame of
PG(n,q) is an ordered tuple of n+ 2 points, having no n+ 1 points contained in
a hyperplane. A well-known example of a frame is the standard frame defined by
the canonical basis {e0, ...en} of Fn+1

q as (P0,P1, ...,Pn+1) where Pi = 〈ei〉; 0≤ i≤ n,
and Pn+1 = 〈e0 + ...+ en〉. A flag Γ of a projective space is a chain of subspaces of
distinct dimensions

(2.3) PG(U0)⊂ PG(U1)...⊂ PG(Ur),

whose length is the number of nontrivial subspaces in (2.3), i.e, subspaces different
from PG(n,q) and the empty space. Lastly, we define an antiflag in PG(2, q) as a
non-incident point-line pair.

2.2 Group theory

In this section, we recall some known group-theoretic notations and theorems that
we use frequently in our results.

2.2.1 Group actions
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Definition 2.2. The action of a group G on a non-empty set X is defined by the
map: G×X →X, (g,x) 7→ xg satisfying:

(i) x1 = x, for all x ∈X.

(ii) (xg1)g2 = xg1g2, for all x ∈X and g1,g2 ∈G.

For the group-action (G,X), the stabiliser of x ∈X is the subgroup of G defined as

Gx = {g ∈G : xg = x}.

The orbit of x is the subset of X defined as

xG = {xg : g ∈G}.

For x 6= y ∈X, we have either xG = yG or xG∩yG = ∅. Moreover, the set {xG}x∈X
forms a partition of X.

Theorem 2.3. (The Orbit-Stabiliser Theorem)
Consider the group action (G,X). There exists a 1-to-1 correspondence between xG

and cosets of Gx in G. Furthermore, if G is finite, then |xG|= [G :Gx].

A group-action is transitive if for all x 6= y ∈X, there exists g ∈G such that xg = y.
In particular, if such a “g” is unique for all pairs (x,y)∈X2, then the action is called
regular or sharply transitive.

2.2.2 Direct and semidirect products

Definition 2.3. Let (G,◦) and (H,?) be two groups.

(i) The direct product of G and H, G×H, is the group defined by (g1,h1) ∗
(g2,h2) = (g1 ◦ g2,h1 ? h2). The direct product of m-copies of G is denoted
by Gm.

(ii) Let φ be a group homomorphism from G to the group of automorphisms of H,
Aut(H), defined by gφ= φg. The semidirect product of G by H, GoH or Goφ

H, is the group (G×H,∗) defined by (g1,h1)∗(g2,h2) = (g1◦g2,(h1(g2φ))?h2).

Theorem 2.4. (Recognition Theorem for Direct Products)
Let H and K be two subgroups of a group G, such that:

(i) H,K EG,
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(ii) H ∩K = {1}, and,

(iii) G=HK = {hk : h ∈H,k ∈K}.

Then, G=H×K.

Theorem 2.5. (Recognition Theorem for Semidirect Products)
Let H and K be two subgroups of a group G, such that:

(i) H EG,

(ii) H ∩K = {1}, and,

(iii) G=HK.

Then, G = HoK with respect to the homomorphism φ from K to Aut(H) defined
by φk(h) = k−1hk.

Definition 2.4. The wreath product of a finite group G by the symmetric group
Symm, G o Symm, is the semidirect product Gm o Symm defined by the action:
(g1, ..,gm)σ = (gσ(1), ...,gσ(m)).

2.2.3 Group-theoretic notations

Throughout the thesis, Ck denotes the cyclic group of order k, Dk denotes the
dihedral group of order k, Symk denotes the symmetric group on k letters, GL(n,q)
denotes the general linear group of order n over Fq, Eq denotes an elementary
abelian group of order q, and E1+2

q denotes a group with centre Z ∼= Eq such that
E1+2
q /Z ∼= E2

q (e.g. the group of upper-unitriangular 3×3 matrices over Fq).

2.3 Collineations, polarities and perspectivities

A collineation (or isomorphism) between two Fq-projective spaces PG(U) and
PG(W ) having the same dimension n ≥ 3 is a bijection from the set of subspaces
of PG(U) to the set of subspaces of PG(W ) that is incidence-preserving and type-
preserving, where the type of a projective subspace is its (projective) dimension, and
two projective subspaces are incident if and only if one contains the other. The set
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of collineations from PG(U) to itself forms a group with the composition operation,
denoted by Aut(PG(U)). The dual space of PG(U) is the projective geometry of
the dual vector space of U denoted by PG(U∨). The m-dimensional subspaces of
PG(U∨) are the (n−m)-dimensional subspaces of PG(U). The standard duality of
PG(U) is the collineation from the set of subspaces of PG(U) to the set of subspaces
of PG(U∨), defined by mapping a point with homogeneous coordinates (a0, ...,an)
to the hyperplane with dual coordinates [a0, ...,an] and expanding linearly.

Definition 2.5. A correlation γ is a collineation of the form: γ = δ ◦ τ , where δ is
the standard duality of PG(W ) and τ is a collineation from PG(U) to PG(W ). If
W = U∨, then γ is a correlation of PG(U). A polarity of PG(U) is a correlation of
PG(U) of order 2.

A semilinear map between two (n+1)-dimensional Fq-vector spaces is a map φ sat-
isfying: (i) φ(u+w) = φ(u) + φ(w) and (ii) φ(λu) = λσφ(u), where σ ∈ Aut(Fq),
λ ∈ Fq and u,w ∈ Fn+1

q . The set of nonsingular semilinear transformations of Fn+1
q

is the group GL(n+ 1, q)oAut(Fq), denoted by ΓL(n+ 1, q). It is well known, that
every φ ∈ ΓL(n+ 1, q) induces a collineation φ of PG(n,q) which acts on the pro-
jective geometry of a subspace U of Fn+1

q by: PG(U)φ = PG(Uφ). Particularly, for
φ = (A,σ) and u ∈ Fn+1

q , we have 〈u〉φ = 〈w〉, where wT = AuσT . The group of
collineations induced by ΓL(n+ 1, q) is denoted by PΓL(n+ 1, q). A collineation in
PΓL(n+ 1, q) induced from a nonsingular linear transformation of Fn+1

q is a projec-
tivity of PG(n,q). The set of all projectivities of PG(n,q) forms a group denoted by
PGL(n+ 1, q).

Theorem 2.6. (Fundamental Theorem of Projective Geometry)
Every collineation of PG(n,q), n ≥ 3, is a collineation induced from ΓL(n+ 1, q),
i.e, Aut(PG(n,q))∼= PΓL(n+ 1, q).

Theorem 2.7. The projectivity group PGL(n+ 1, q) acts sharply transitive on
frames of PG(n,q).

A collineation φ of PG(n,q), n≥ 3, is axial if there exists a hyperplane in PG(n,q)
fixed by φ pointwise, and it is central if there exists a point of PG(n,q) where φ
fixes (setwise) any hyperplane through it. Every axial collineation is central and
vice versa. Moreover, the set of collineations having an axis H and a centre P forms
a group of perspectivities denoted by Pers(P,H). A perspectivity φ is an elation if
P ∈H, otherwise it is a homology. The set of elations (resp. homologies) of centre
P and axis H, E(P,H), form a group called the elation (resp. homology) group.

Theorem 2.8. The set of all perspectivities of PG(n,q) generates the projectivity
group PGL(n+ 1, q).
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We end this section by recalling that a Desarguesian projective plane is a translation
plane which has a line L such that for every P ∈ L and every line L′ 6= L passing
through P , the elation group with centre P and axis L acts transitively on points of
L′ \{P}. For more details about projective spaces, collineations, projectivity groups
and their properties we refer to (Lavrauw, 2019) and (Coxeter, 2003).

2.4 Algebraic sets

A form of degree n+ 1 over Fq is a homogeneous polynomial whose nonzero terms
are all of degree n+1. An algebraic set in PG(n,q) is the zero set of a finite collection
of forms A⊆ Fq[X0, ...,Xn] defined by

Z(A) = {P ∈ PG(n,q) : f(P ) = 0; f ∈ A},

where the finiteness ofA is guaranteed by the Hilbert basis Theorem. A hypersurface
in PG(n,q) is an algebraic set defined by a single form in Fq[X0, ...,Xn]. For instance,
every hyperplane is a hypersurface defined by a linear form.

Lemma 2.1. Points of a subspace of PG(n,q) define an algebraic set.

Proof. This follows from Theorem 2.2 and the property: Z(f1, ..,fr) = Z(f1)∩ ...∩
Z(fr), fj ∈ Fq[X0, ...,Xn].

An algebraic set X in PG(n,q) is reducible if it can be written as X =X1∪X2, where
X1,X2 ⊂ X are algebraic sets in PG(n,q). Otherwise, X is called irreducible. The
algebraic set X in PG(n,q) is absolutely irreducible if it is irreducible in PG(Fn+1

q ),
where Fq denotes a finite extension of Fq. The dimension of an algebraic set X is
the maximal length d of chains of distinct nonempty irreducible subvarieties of X .
The tangent of a point P in X =Z(f), f ∈ Fq[X0, ...,Xn], is the hyperplane defined
by

TP (X ) :
n∑
i=0

∂f

∂Xi
(P )Xi = 0.

This notion can be expended to a point P ∈ X = Z(f1, ...,fr), fj ∈ Fq[X0, ...,Xn],
by defining the tangent as

TP (X ) =
n⋂
j=1

TP (Z(fj)).
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The point P ∈ X is singular if dim(TP (X ))> dim(X ). If X has no singular points,
then X is called nonsingular.

2.4.1 Conics

A conic in PG(2, q) is an algebraic set defined by C = Z(f), where

(2.4) f =
∑

06i6j62
aijXiXj

and aij ∈ Fq, for 06 i6 j 6 2. Tangent, secant and external lines to C are lines of
PG(2, q) meeting C in one, two and zero points respectively. If q is odd, then every
point of PG(2, q) lies on exactly two tangents, q−1

2 secant and q−1
2 external lines to

C. If q is even, then every point of PG(2, q) lies on a unique tangent, q2 secant and q
2

external lines to C. Furthermore, tangents to C in PG(2, q), q even, are concurrent
meeting at the nucleus point (Hirschfeld, 1998, Chapter 7).

Up to projective equivalence, there are 4 types of conics in PG(2, q):

(i) a unique nonsingular conic, and

(ii) three classes of singular conics, namely:

(ii-a) double lines,

(ii-b) pairs of real lines, and

(ii-c) pairs of (conjugate) imaginary lines, i.e, lines defined in PG(2, q2).

The following criterion determines when a conic is nonsingular.

Lemma 2.2. (Hirschfeld, 1998, Theorem 7.16)
A conic C in PG(2, q), q even, is absolutely irreducible (or, equivalently, nonsingular)
if and only if a00a2

12 +a11a2
02 +a22a2

01 +a01a02a12 6= 0.

The group of the conic: Consider the Veronese map defined by

ν1,1 : PG(1, q)→ PG(2, q)

(x0,x1) 7→ (x2
0,x0x1,x

2
1),
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Then, the image of the projective line under ν1,1 is the conic C defined by

(2.5) Y0Y2−Y 2
1 = 0.

The subgroup G(C) of PGL(3, q) stabilising C is equivalent to PGL(2, q) through the
bijection Φ defined by:

Φ :
a b

c d

 7→

a2 ab b2

2ac ad+ bc 2bd
c2 cd d2

 .

Therefore, G(C) acts on C as PGL(2, q) acts on PG(1, q), i.e, 3-transitively. This
group is known as the group of the conic which acts transitively on secant, tangent
and external lines to C. The proof of these properties can be found in (Hirschfeld,
1998, Chapter 7).

2.4.2 Cubic curves and surfaces

Cubic curves and surfaces are algebraic sets in PG(2, q) and PG(3, q) defined by
C = Z(f) and S = Z(g) respectively, where

(2.6) f =
∑

06i6j6k62
aijkXiXjXk and g =

∑
06i6j6k63

aijkXiXjXk.

Cubic curves over finite fields have many familiar properties with the classical theory
over R and C. In particular, when q ≡ 1 (mod 3) their properties are more a like
the complex case, while their properties are more similar to the real case when
q ≡ −1 (mod 3). However, when q ≡ 0 (mod 3), no suitable classical model is
available. In general, many properties of cubic curves over finite fields are known.
Particularly, we refer the reader to (Hirschfeld, 1998, Chapter 11) for a complete
review of these properties and the classifications of singular and nonsingular cubic
curves.

Notation 2.1. Let C be a cubic curve defined by Z(f), where f is as in (2.6).
Then, C can be represented by C(A,a012) where

(2.7) A=


a000 a011 a022

a100 a111 a122

a200 a211 a222

 .
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Equivalently, C can be defined as the set of points P (x0,x1,x2) of PG(2, q) satisfying

(2.8) (x0 x1 x2)A (x2
0 x2

1 x2
2)T +a012 (x0 x1 x2) (x1x2 x0x2 x0x1)T = 0.

Definition 2.1. Let C(A,a012) be a cubic curve defined over a finite field of char-
acteristic 2. The set of tangent lines to C(A,a012), known as the cubic envelope of
C(A,a012), is the dual cubic curve defined by

C(Φ(A),a2
012)T ,

where

(2.9) Φ(A) = Adj(A)T +a012


0 a022 a011

a122 0 a100

a211 a200 0


and Adj(A)T is the transpose of the adjoint matrix of A.

Definition 2.2. An inflexion point of a cubic curve C(A,a012) over a finite field of
characteristic 2 is a point of the curve whose tangent meets the curve algebraically
in a triple intersection.

Lemma 2.1. (Glynn, 1998, Theorem 3.5 )
Let C(A,a012) be a cubic curve defined over a finite field of characteristic 2 such
that a012 6= 0. Then, points of inflexion of C(A,a012) are the nonsingular points of
C(A,a012) which lie on the cubic curve C(Φ2(A),a4

012). The curve C(Φ2(A),a4
012) is

also known as the Hessian of C(A,a012).

Remark 2.1. In other words, C(Φ2(A),a4
012) is the set of tangent points of the set

of tangent lines to the cubic curve C(A,a012).

Remark 2.2. For none characteristic two fields, points of inflexion are defined as
points of the intersection of the cubic with the classical Hessian (the determinant of
the 3×3 matrix of second derivatives), which is zero over characteristic two fields.

Cubic surfaces over finite fields are also well-studied objects. For instance, it is
known that a nonsingular cubic surface over Fq has q2 +nq+1 points where 2≤ n≤ 7
and n 6= 6 (Manin, 1986). In 1915, Dickson showed that a nonsingular cubic surface
over F2 can have i lines where i ∈ I; I = {0,1,2,3,5,9,15} (Dickson, 1915). He
classified as well all projectively inequivalent nonsingular cubic surfaces over F2

(Dickson, 1915). Segre considered counting the number of lines in a nonsingular
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cubic surface S over Fq, when q is odd. In particular, he showed that S can have
j lines where j ∈ I ∪{7,27} (Segre, 1942). Recently, cubic surfaces with 27 lines
were classified over small finite fields and interesting computational and geometric
algorithms were introduced. For more information, we refer the reader to (Betten
& Karaoglu, 2019).

2.4.3 Segre variety

The Segre variety, Sn1,..,nt(Fq), is an algebraic set in PG(
t∏
i=1

(ni+ 1) − 1, q) defined

as the image of the Segre embedding, σn1,..,nt , given by

σn1,..,nt : PG(n1, q)× ...×PG(nt, q)→ PG(
t∏
i=1

(ni+ 1) −1, q)

((v11 , ...,v1n1+1), ...,(vt1 , ...,vtnt+1) ) 7→ (
t∏
i=1

vi1 , ...,
t∏
i=1

vini+1).

It is a nonsingular absolutely irreducible variety whose dimension is n1 + ...+nt. It
is an example of a determinantal variety. For instance, the Segre variety Sn1,n2(Fq)
is the zero set of the quadratic forms: Xi,jXk,l−Xi,lXk,j , where the Xr,s’s denote
the coordinates in PG((n1 + 1)(n2 + 1) −1, q).

Examples 2.1. • The variety S2,2(Fq) is defined by

σ2,2 : ((u1,u2,u3),(v1,v2,v3)) 7→ (u1v1,u1v2,u1v3,u2v1,u2v2,u2v3,u3v1,u3v2,u3v3),

and has dimension 4.

• The map σ1,1 defines an embedding of the product of the projective line PG(1, q)
with itself in PG(3, q), whose image is a quadric defined by Z(X0,0X1,1 −
X0,1X1,0).

• The image of the diagonal ∆⊂ PG(n,q)×PG(n,q) under the Segre embedding
σn,n defines the Veronese surface of degree 2, V2(Fq) (see Section 2.4.4).

Remark 2.3. If we represent points of PG(ni, q) as 〈ui〉, then we can alternatively
define σn1,..,nt(〈u1〉, ...,〈ut〉) as 〈u1⊗ ...⊗ut〉.

Theorem 2.9. (Hirschfeld & Thas, 1991, Theorem 4.100)
The Segre variety, Sn1,n2(Fq), is not contained in any hyperplane of PG((n1 +1)(n2 +
1)−1, q).
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Remark 2.4. The Segre variety Sn1,n2(Fq) consists of all points

(x1,1,x1,2, ...,x1,n2+1,x2,1, ...,x2,n2+1,xn1+1,1, ...,xn1+1,n2+1)∈PG((n1 +1)(n2 +1)−1, q)

for which the rank of the matrix [xi,j ] is 1.

Example 2.2. Points of S2,2(Fq) are rank-1 points of PG(8, q), where the rank of a
point in PG(8, q) is the rank of its associated matrix of size 3×3 defined in Remark
2.4.

For further properties and examples related to Segre varieties defined over finite
fields, we refer the reader to Section 4.5 in (Hirschfeld & Thas, 1991).

2.4.4 Veronese variety

The Veronese variety of all quadrics of PG(n,q) is the algebraic set Vn(Fq) defined
as the image of the map

νn : PG(n,q)→ PG(
(
n+ 2

2

)
−1, q)

sending the coordinates of PG(n,q) to monomials of degree 2. Namely,

Vn(Fq) := {(x2
0,x0x1, ...,x0xn,x

2
1,x1x2, ...,x1xn,x

2
2, ...,xn−1xn,x

2
n) : (x0, ...,xn)∈PG(n,q)}.

It is also known as the quadric Veronesean of PG(n,q), which is a nonsingular
absolutely irreducible variety of dimension n.

Lemma 2.3. (Hirschfeld & Thas, 1991, Lemma 4.1)
The variety Vn(Fq) is the intersection of the (n+ 1)n2/2 quadrics Z(Fij) and
Z(Fabc), where

Fij =X2
ij−XiiXjj , Fabc =XaaXbc−XabXac,

and i, j,a,b,c ∈ {0, ..,n} such that i 6= j and a,b,c are distinct.

Remark 2.5. The variety Vn(Fq) consists of all points

(x0,0,x0,1, ...,x0,n, ...,xn−1,n,xn,n) ∈ PG(n(n+ 3)/2, q)
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for which the rank of the symmetric matrix defined by [xi,j ] is 1.

Example 2.3. The Veronese surface V2(Fq) (or simply V(Fq)) is a 2-dimensional
algebraic set in PG(5, q) defined as the image of the Veronese embedding

ν : PG(2, q)→ PG(5, q)

(u0,u1,u2) 7→ (u2
0,u0u1,u0u2,u

2
1,u1u2,u

2
2).

In particular, we have V(Fq) = Z(2×2 minors of M), where

M =


X00 X01 X02

X01 X11 X12

X02 X12 X22


and the Xij’s denote the coordinates in PG(5, q).

Theorem 2.10. (Hirschfeld & Thas, 1991, Theorem 4.3)
The quadrics of PG(n,q) are mapped by νn onto the hyperplane sections of Vn(Fq).

Corollary 2.1. (Hirschfeld & Thas, 1991, Corollary 4.4)
The variety Vn(Fq) is not contained in any hyperplane of PG(n(n+ 3)/2, q).

Theorem 2.11. (Hirschfeld & Thas, 1991, Theorem 4.11)
The variety Vn(Fq) is a cap of PG(n(n+3)/2, q), i.e., no three points of Vn(Fq) are
collinear.

Theorem 2.12. (Hirschfeld & Thas, 1991, Corollary 4.13)
For q 6= 2, any two points of Vn(Fq) are contained in a unique conic of Vn(Fq).

Theorem 2.13. (Hirschfeld & Thas, 1991, Corollary 4.16)
For (q,n) 6= (2,2), the group stabilising Vn(Fq) in PGL(n(n+3)

2 + 1, q) is isomorphic
to the projectivity group PGL(n+ 1, q).

We focus now on the properties of the Veronese surface V(Fq) in PG(5, q), for more
interesting properties we refer the reader to (Havlicek, 2003; Hirschfeld & Thas,
1991). We start by recalling the normal rational curve.

Remark 2.6. A normal rational curve is an algebraic set defined as the image of
the map

ν ′ : PG(1, q)→ PG(n,q)

(u0,u1) 7→ (un0 ,un−1
0 u1, ...,u0u

n−1
1 ,un1 ).

It is an example of a Veronese variety of degree n.
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2.4.4.1 Properties of V(Fq) in PG(5, q)

The Veronese surface V(Fq) contains q2 + q+ 1 conics, defined as the image of lines
in PG(2, q) via ν, where any two points P , Q of V(Fq) lie on one of these conics
given by

C(P,Q) := ν(〈ν−1(P ),ν−1(Q)〉).

Since the conics of V(Fq) correspond to the lines of PG(2, q) via ν (see Example 2.3),
any two of these conics have a unique point in common. The quadrics of PG(2, q)
correspond to the hyperplane sections of V(Fq). If the quadric C is a repeated line,
then the corresponding hyperplane of PG(5, q) meets V(Fq) in a conic, if C is a pair
of real lines, then the corresponding hyperplane meets V(Fq) in two conics, if C is a
pair of conjugate imaginary lines, then the corresponding hyperplane meets V(Fq)
in a point, if C is a nonsingular conic, then the corresponding hyperplane meets
V(Fq) in a normal rational curve. For q 6= 2, planes of PG(5, q) which meet V(Fq)
in a conic are called the conic planes.

Remark 2.7. Technically, a point of V(Fq) is also a conic, and if q= 2, all triples of
pairwise non-collinear points are conics. However, for simplicity, we will not consider
these as “conics in V(Fq)”. That is to say, by a “conic in V(Fq)”, we will mean the
image of a line of PG(2, q) under the Veronese map.

Theorem 2.14. (Hirschfeld & Thas, 1991, Theorem 4.17)
Any two distinct conic planes of V(Fq) meet in a unique point.

Lemma 2.4. (Hirschfeld & Thas, 1991, Lemma 4.20)
If q is even, then V(Fq) is the intersection of the quadrics Z(F01), Z(F02), Z(F12),
where

F01 =X2
01 +X00X11, F02 =X2

02 +X00X22, and F12 =X2
12 +X11X22.

Definition 2.6. The tangent lines of V(Fq) are the tangent lines to the conics in
V(Fq). Since V(Fq) has no singular points, it follows that all tangent lines of V(Fq)
at a point P ∈ V(Fq) are contained in a plane. This plane is known as the tangent
plane of V(Fq) at P .

Theorem 2.15. (Hirschfeld & Thas, 1991, Theorem 4.22)
The tangent planes of two distinct points in V(Fq) meet in exactly one point.

Remark 2.8. If q is even, then all tangent lines to a conic C in V(Fq) are concur-
rent, meeting at the nucleus of C.
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Theorem 2.16. (Hirschfeld & Thas, 1991, Theorem 4.23)
If q is even, the set of all nuclei of conics in V(Fq) coincides with the set of points
of a plane in PG(5, q) known as the nucleus plane of V(Fq).

Theorem 2.17. (Hirschfeld & Thas, 1991, Theorem 4.25)
If q is odd, then PG(5, q) has a polarity which maps the set of conic planes of V(Fq)
onto the set of tangent planes of V(Fq).

Theorem 2.18. (Hirschfeld & Thas, 1991, Theorem 4.42)
If q is even, then the subspace Z(X00,X11,X22) of PG(5, q) is the nucleus plane of
V(Fq).

2.5 Quadratic and cubic equations over Fq

2.5.0.1 Quadratic equations

Consider the quadratic equation f(X) = 0 where

f(X) = αX2 +βX+γ ∈ Fq[X],

and α 6= 0. Over a finite field of odd characteristic, solutions of f depend on the
discriminant ∆ = β2−4αγ. In particular, f has one solution if ∆ = 0, two solutions
if ∆ is a square, and no solutions if ∆ is a non-square (Hirschfeld, 1998, Section
1.4).

Over a finite field of characteristic 2, the square root defines an automorphism. To
study roots of f over F2h , we need first to introduce the trace (or absolute trace)
map, Tr, defined from Fph to Fp by Tr(x) = x+ xp + xp

2 + ...+ xp
h−1

, which is a
linear surjective map. In particular, if p= 2 then Tr is a q

2 -to-1 map.

Lemma 2.5. (Berlekamp, Rumsey & Solomon, 1967)
The polynomial f(X) = αX2 +βX+γ ∈ F2h [X] with α 6= 0 has exactly one root in
F2h if and only if β = 0, two distinct roots in F2h if and only if β 6= 0 and Tr(αγ

β2 ) = 0,
and no roots in F2h otherwise.

Remark 2.9. If α−1f(X) has no roots in Fq, then α−1f(X) has two conjugate roots
20



in the quadratic extension of Fq.

2.5.0.2 Cubic equations

Consider the cubic equation c(X) = 0 where

c(X) =X3 +a1X
2 +a2X+a3 ∈ Fq[X].

Solutions of c(X) can be retrieved by solving a cubic equation of the form g(θ) = 0,
where

(2.10) g(θ) = θ3 + bθ+a.

For instance, if q = 3h and a1 6= 0, we can work with X3 c(1/X + a2/a1). On the
other hand, if q = 2h and a2 6= a2

1, we can apply the substitution

X = (a2 +a2
1)

1
2 θ+a1,

to obtain the cubic polynomial g with b= 1 and

a= a3 +a2a1

(a2 +a2
1) 3

2
.

Notice that, as the product of the three roots of g is a∈ Fq, it follows that g is either
irreducible over Fq, have all its roots in Fq or exactly one root in Fq.

Over finite fields of characteristic 2, solutions of g were independently studied by
Berlekamp et. al in (Berlekamp, Rumsey & Solomon, 1966) and by Williams in
(Williams, 1975). Particularly, they proved the following theorems.

Theorem 2.19. (Berlekamp, Rumsey & Solomon, 1966, Lemma)
Let q = 2h > 2 and a 6= 0. The cubic equation θ3 + θ+a= 0 over Fq has

• three solutions in Fq if and only if q 6= 4, Tr(a−1) = Tr(1) and

a= v+v−1

(1 +v+v−1)3

for some v ∈ Fq \F4. In this case, “a” is called admissible,

• a unique solution in Fq if and only if Tr(a−1) 6= Tr(1),
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• no solutions in Fq if and only if Tr(a−1) = Tr(1) and a is not admissible.

Theorem 2.20. (Williams, 1975, Theorem 1)
The cubic equation θ3 + θ+a= 0 with q = 2h > 2 and a ∈ Fq \{0} has

• three solutions in Fq if and only if q 6= 4, Tr(a−1) = Tr(1) and the roots of
t2 +at+ 1 are both cubes in Fq (h even) or Fq2 (h odd),

• a unique solution in Fq if and only if Tr(a−1) 6= Tr(1),

• no solutions in Fq if and only if Tr(a−1) = Tr(1) and the roots of t2 + at+ 1
are both not cubes in Fq (h even) or Fq2 (h odd).

Over finite fields of odd characteristic, solutions of g(θ) = 0 where studied by Dickson
and Williams. Particularly, they proved the following theorems.

Theorem 2.21. (Dickson, 1906, Theorem)
If q = ph, p > 3 and −4b3−27a2 6= 0, then the equation θ3 +bθ+a= 0, with a,b∈ Fq,
has

• three solutions in Fq if and only if −4b3−27a2 is a square in Fq, say −4b3−
27a2 = 81e2, and 1/2(−a+ e

√
−3) is a cube in Fq if q ≡ 1 (mod 3), or in Fq2

if q ≡ 2 (mod 3),

• a unique solution in Fq if and only if −4b3−27a2 is not a square in Fq,

• no solutions in Fq if and only if −4b3− 27a2 is a square in Fq, say −4b3−
27a2 = 81e2, and 1/2(−a+ e

√
−3) is not a cube in Fq if q ≡ 1 (mod 3), or in

Fq2 if q ≡ 2 (mod 3),

Theorem 2.22. (Williams, 1975, Theorem 2)
If q = 3h, then the equation θ3 + bθ+a= 0, with a,b ∈ Fq, has

• three solutions in Fq if and only if −b is a square in Fq, say −b = e2, and
Tr(a/e3) = 0,

• a unique solution in Fq if and only if −b is not a square in Fq,

• no solutions in Fq if and only if −b is a square in Fq, say −b = e2, and
Tr(a/e3) 6= 0.

Remark 2.1. If g has no roots in Fq, then g has three roots in the cubic extension
of Fq. On the other hand, if g has exactly one root in Fq, then g has two conjugate
roots in the quadratic extension of Fq. Also, notice that the two roots of t2 +at+ 1
in Fq or Fq2 in Theorem 2.20 should both be cubes or non-cubes as their product is
1.
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2.6 Tensor products

Let V1, ...,Vt be finite dimensional vector spaces defined over the field Fq; dim(Vi) =
mi. The t-fold (t-ordered) tensor product space V = V1⊗ ...⊗ Vt is the space of
multilinear functions defined from V ∨1 × ...×V ∨t to Fq, where V ∨i is the dual space
of Vi.

Example 2.4. If t= 2, then V becomes the set of matrices of size m1×m2 over Fq.

Note that, this is not the only way to define tensors. We prefer to see them as
multilinear functions from the direct product of the dual spaces to the field Fq,
however, tensors can be viewed in alternative ways. For more equivalent definitions
and properties of tensors, we refer to chapter 2 in (Landsberg, 2011).

The set of symmetric tensors in V ′ = V1⊗ ...⊗Vt, where Vi ∼= Fmq , 1≤ i≤ t, defines a
subspace denoted by St(Fmq ). Alternatively, we may define St(Fmq ) as the subspace
of V ′ whose elements are invariant under the action of the symmetric group Symt

on V ′ defined by
(v1⊗ ...⊗vt)σ = (vσ(1)⊗ ...⊗vσ(t)),

and expanding linearly.

2.6.1 Ranks

Fundamental (pure or rank-1) tensors of V are tensors of the form v1⊗ ...⊗ vt.
Clearly, not every tensor A ∈ V is fundamental, however A can be written as the
sum of fundamental tensors. The smallest integer r for which such a writing exists
is called the rank of A and is denoted by rank(A). For instance, the rank of a 2-fold
tensor is the rank of its associated matrix.

Example 2.5. Let V = F2
q ⊗F3

q ⊗F3
q and {e1, . . . , e`} be the canonical basis of F`q,

for ` = 2,3. The rank of A = e1⊗ e3⊗ e1 + e2⊗ (e1⊗ e1 + e2⊗ e2 + e3⊗ e3) in V is
4, i.e, we cannot write A as the sum of 3 or less fundamental tensors.

In general, determining the rank of tensors when t ≥ 3 is a hard problem, and no
algorithms are available. Sometimes, this problem is generalised to finding bounds
on ranks of tensors in V . For instance, Ja’Ja’ bounded from above ranks of tensors

23



in Fn⊗Fn⊗Fn by
r = 3n

2

⌈
n

2

⌉
,

( Ja’Ja’, 1979). Later, this bound was improved to 6 in (Lavrauw, Pavan & Zanella,
2013), when n= 3.

Complexity of matrix multiplications: The problem of determining the com-
plexity of matrix multiplications is the problem of finding the minimal number of
arithmetic operations needed to multiply two n×n matrices. Note that, as the to-
tal number of arithmetic operations is bounded by the number of multiplications, it
follows that counting multiplications is a reasonable measure of complexity. There-
fore, finding the complexity of matrix multiplications is equivalent to determining the
rank of the matrix multiplication operator,Mn,n,n. Since the standard algorithm for
multiplication uses n3 (multiplicative) operations, it follows that rank(Mn,n,n)≤ n3.
For instance, if n= 2, we can expand this operator as

M2,2,2 =e∗1⊗ e∗1⊗ e1 + e∗2⊗ e∗3⊗ e1 + e∗1⊗ e∗2⊗ e2 + e∗2⊗ e∗4⊗ e2 + e∗3⊗ e∗1⊗ e3+

e∗4⊗ e∗3⊗ e3 + e∗3⊗ e∗2⊗ e4 + e∗4⊗ e∗4⊗ e4,

(2.11)

where {e1, ..., e4} is the standard basis of the set of 2×2-matrices and {e∗1, ..., e∗4} is
its associated dual basis. In 1969, Strassen improved this bound by writing M2,2,2

as the sum of 7 fundamental tensors instead of 8:

M2,2,2 = (e∗1 + e∗4)⊗ (e∗1 + e∗4)⊗ (e1 + e4) + (e∗3 + e∗4)⊗ e∗1⊗ (e3 + e4) + e∗1⊗ (e∗2 + e∗4)⊗

(e2− e4) + e∗4⊗ (e∗3− e∗1)⊗ (e3 + e1) + (e∗1 + e∗2)⊗ e∗4⊗ (e2− e1) + (e∗3− e∗1)⊗

(e∗1 + e∗2)⊗ e4 + (e∗2− e∗4)⊗ (e∗3 + e∗4)⊗ e1.

(2.12)

Later, Winograd proved that Rank(M2,2,2) = 7, i.e, we cannot multiply 2× 2-
matrices using less than 7 multiplications. For more details on this topic, we refer
to (Strassen, 1969; Winograd, 1971).

2.6.2 Contraction spaces and rank distributions

The j-th contraction space of a tensor A in V = V1⊗ ...⊗Vt is a subspace of V ∗j =
V1⊗ ...Vj−1⊗Vj+1...⊗Vt defined as

Aj = 〈u∨j (A) : u∨j ∈ Vj∨〉,
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where the u∨j (A)’s are the j-th contractions of A defined by u∨j (u1 ⊗ ...⊗ ut) =
u∨j (uj) u1⊗ ...uj−1⊗uj+1...⊗ut and expanding linearly.

Example 2.6. The first contraction space of a tensor A in F2
q ⊗ F3

q ⊗ F3
q is the

subspace of F3
q ⊗F3

q defined as A1 = 〈u∨1 (A) : u∨1 ∈ F2
q
∨〉. The second and the third

contraction spaces, A2 and A3, are defined analogously as subspaces of F2
q ⊗ F3

q.
Projectively, PG(A1) and PG(Ai) for i= 2,3 are subspaces of PG(8, q) and PG(5, q)
respectively.

Definition 2.7. The rank of the j-th contraction space of A is defined as the mini-
mum number of rank-1 tensors needed to span a subspace containing Aj.

In general, contraction spaces are useful tools to study tensors. For example, the
following proposition can be helpful in determining the rank of tensors.

Proposition 2.2. (Lavrauw & Sheekey, 2014, Proposition 2.1)
Let A ∈ V1⊗ ...⊗Vt and j ∈ {1, ..., t}. Then, rank(A) = rank(Aj).

Definition 2.8. The j-th rank distribution of A ∈ V is an m-tuple whose i-th co-
ordinate represents the number of rank-i tensors in Aj.

Example 2.7. The first, second and third rank-distributions of A∈ F2
q⊗F3

q⊗F3
q are

the 3-tuples Ri = [ai1,ai2,ai3], 1≤ i≤ 3, where aij is the number of rank-j points in
Ai, 1 ≤ j ≤ 3. Note that, the rank of a contraction in this case is the usual matrix
rank.

2.6.3 Natural actions on V

The group H = GL(Fm1
q )× ...×GL(Fmt

q ) acts on the set of fundamental tensors in
V via

(v1⊗·· ·⊗vm)(g1,...,gm) = vg1
1 ⊗ . . .vgm

m ,

and on all V by linearity. If some of the mi’s are equal, then we can extend H

by a subgroup of the symmetric group Symm to obtain the group G defined as the
setwise stabiliser of fundamental tensors in V . One may seek then to classify the
G-orbits and the H-orbits of tensors in V .

Example 2.8. If t= 2, the number of G-orbits of tensors in V is the min(m1,m2)
as tensors in Fm1

q ⊗Fm2
q are totally characterised by their ranks.
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Theorem 2.23. (Lavrauw & Sheekey, 2014, Theorem 3.5)
There are 5 G-orbits of tensors in F2

q⊗F2
q⊗F2

q.

Theorem 2.24. (Lavrauw & Sheekey, 2017, Theorems 5.2 and 5.3)
There are 18 G-orbits and 21 H-orbits of tensors in F2

q⊗F3
q⊗F3

q.

Remark 2.2. Ranks, contraction spaces and rank distributions of tensors are in-
variants under the actions of G and H on V .

2.6.4 Tensors in F2
q⊗F3

q⊗F3
q

Tensors in V = F2
q⊗F3

q⊗F3
q were classified by Lavrauw and Sheekey in (Lavrauw &

Sheekey, 2015) by studying their associated contraction spaces. Particularly, they
proved the existence of 18 G-orbits of tensors under the action of G ∼= GL(F2

q)×
(GL(F3

q) oSym(2)), as a subgroup of GL(V ) stabilising the set of fundamental tensors
in V . We collect in Table A.1 some information about these G-orbits of tensors and
their contraction spaces, which we use to define our main algorithms in Chapter 5.

Remark 2.10. Since ranks are not affected by multiplications with scalars, it makes
more sense to consider the problem of classifying tensors and determining their ranks
in the space PG(V ). Projectively, nonzero tensors of rank 1 in V correspond to points
of the Segre variety S1,2,2(Fq) defined in 2.4.3.

2.6.5 Representations of tensors in F2
q⊗F3

q⊗F3
q

Let {e1, . . . , e`} be the canonical basis of F`q, for ` = 2,3, and define the canonical
basis of V as {ei⊗ ej ⊗ ek : 1 ≤ i ≤ 2 and 1 ≤ j,k ≤ 3}. By decomposing A ∈ V as
A=∑

Ai,j,kei⊗ej⊗ek, we can view A as a rectangular cube whose entries are defined
by the Ai,j,k’s. This cube can be partitioned into slices that completely determine A.
For instance, we may view A as a set of two 3×3 matrices: (A1,j,k),(A2,j,k), called
the horizontal slices of A, or a set of three 2× 3 matrices (Ai,1,k),(Ai,2,k),(Ai,3,k),
called the lateral slices of A, or a set of three 2×3 matrices (Ai,j,1),(Ai,j,2),(Ai,j,3),
called the frontal slices of A. Note that these representations can be extended to
any vector space of the form V1⊗ ...⊗Vt.

Example 2.9. Let {e1, . . . , e`} be the canonical basis of F`q, for `= 2,3, and consider
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A ∈ F2
q⊗F3

q⊗F3
q defined by

e1⊗ (e1⊗ e1 + e2⊗ e2 + e3⊗ e3) + e2⊗ (e1⊗ e2 + e2⊗ e3).

The horizontal, lateral and frontal slices of A are defined by


1 0 0
0 1 0
0 0 1

 ,


0 1 0
0 0 1
0 0 0


 ,


1 0 0

0 1 0

 ,
0 1 0

0 0 1

 ,
0 0 1

0 0 0

 , and

1 0 0

0 0 0

 ,
0 1 0

1 0 0

 ,
0 0 1

0 1 0

 ,
respectively.

2.7 Subspaces of PG(5, q)

We summarize in this section orbits of points, lines and hyperplanes of PG(5, q)
under the action of the group stabilising the Veronese surface. We define as well
some useful combinatorial invariants that we use to classify solids and planes in
Chapters 3 and 4.

2.7.1 The group action

We are interested in the action on subspaces of PG(5, q) of the group K 6PGL(6, q)
defined as the lift of PGL(3, q) through the Veronese map ν (see 2.4.4). Explicitly,
if φA ∈ PGL(3, q) is represented by the matrix A ∈ GL(3, q) then we define the
corresponding projectivity α(φA) ∈ PGL(6, q) through its action on the points of
PG(5, q) by

α(φA) : P 7→Q where MQ = AMPA
T ,
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where MQ and MP are the matrix representations of Q and P defined in (2.13).
Then K := α(PGL(3, q)) is isomorphic to PGL(3, q) and leaves V(Fq) invariant.

Remark 2.11. If q > 2 then K ∼= PGL(3, q) is the full setwise stabiliser of V(Fq)
in PGL(6, q). If q = 2 then the full setwise stabiliser of V(Fq) is Sym7, as the kernel
of this action stabilising V(Fq) pointwise, is trivial.

2.7.2 Points, lines and hyperplanes of PG(5, q)

A point P = (y0,y1,y2,y3,y4,y5) of PG(5, q) can be represented by a symmetric 3×3
matrix

(2.13) MP =


y0 y1 y2

y1 y3 y4

y2 y4 y5

 .

This representation can be extended to any subspace of PG(5, q). For example, the
solid spanned by the first four points of the standard frame of PG(5, q) is represented
by

(2.14)


x y z

y t ·
z · ·

 :=



x y z

y t 0
z 0 0

 : (x,y,z, t) ∈ PG(3, q)

 ,

where the notation on the left is introduced for convenience (that is, · represents 0,
and the 4-tuple (x,y,z, t) is understood to range over all non-zero elements of F4

q).

In general, we define the rank distribution of a subspace U of PG(5, q) to be the
3-tuple [r1, r2, r3], where ri is the number of points of rank i in U .

The rank of a point P of PG(5, q) is defined to be the rank of the matrix MP .
The points of rank 1 are (therefore precisely) those belonging to V(Fq). Points of
PG(5, q) of rank at most 2 are the points of the secant variety of V(Fq), which we
denote by V(Fq)2.

In the above representation, points contained in the nucleus plane correspond to
symmetric 3×3 matrices with zeros on the main diagonal (see Theorem 2.18). Each
rank-2 point R of PG(5, q) defines a unique conic C(R) in V(Fq). If R lies on the
secant 〈P,Q〉 with P,Q∈ V(Fq) then C(R) = C(P,Q). If q is even and R is contained
in the nucleus plane, then R is the nucleus of C(R).
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Definition 2.9. (Alnajjarine, Lavrauw & Popiel , 2022, Definition 2.3)
LetG6PΓL(n+1, q) and let U1,U2, . . . ,Um denote (a chosen ordering of) the distinct
G-orbits of r-spaces in PG(n,q). The r-space G-orbit distribution of a subspace U
of PG(n,q) is the list

ODG,r(U) := [u1,u2, . . . ,um],

where ui is the number of elements of Ui incident with U .

The rank distribution of a subspace of PG(5, q) is related to its 0-space K-orbit
distribution as follows. There are four K-orbits of 0-spaces, i.e. points, in PG(5, q):
the orbit V(Fq) of rank-1 points, which has size q2 +q+1, the orbit of rank-3 points,
which has size q5− q2, and two orbits of rank-2 points. For q even, the orbits
of rank-2 points comprise the q2 + q+ 1 points of the nucleus plane πn, and the
(q2−1)(q2 +q+1) points contained in conic planes but not in πn∪V(Fq). Therefore,
the orbit distribution ODK,0(U) of a subspace U of PG(5, q), q even, is the 4-tuple
[r1, r2n, r2s, r3], where ri, i ∈ {1,3}, is the number of rank-i points in U , r2n is the
number of rank-2 points in U ∩πn, and r2s is the number of rank-2 points in U \πn.

For brevity, we also call ODK,r(U) with r = 0 the point-orbit distribution of a sub-
space U of PG(5, q). Similarly, we obtain the line-, plane-, solid-, and hyperplane-
orbit distributions of U for r = 1,2,3,4 respectively. These data serve as useful
invariants for studying K-orbits of subspaces of PG(5, q). For example, if q is odd
and U is a plane containing at least one point of V(Fq), then the line-orbit distri-
bution of U completely determines its K-orbit (Lavrauw, Popiel & Sheekey, 2020).
The line orbits themselves were determined (for all q) in (Lavrauw & Popiel, 2020),
as a consequence of the classification of the first contraction spaces of points in
PG(17, q) in (Lavrauw & Sheekey, 2015).

Theorem 2.25. (Lavrauw & Popiel, 2020, Table 2)
There are 15 K-orbits of lines in PG(5, q) as described in Tables 2.1 and 2.2.

Remark 2.12. Lines in o15,1 and o16 in PG(5, q), q odd, can be distinguished using
Lemma 5.1 . Similarly, we can distinguish lines in o15 and o16,2 when q is even.

Hyperplanes of PG(5, q) correspond to conics of PG(2, q) through the Veronese map
ν. We make this correspondence explicit via the following map δ between conics of
PG(2, q) and hyperplanes of PG(5, q):

δ : Z
( ∑

06i6j62
aijXiXj

)
7→ Z(a00Y0 +a01Y1 +a02Y2 +a11Y3 +a12Y4 +a22Y5).

Here, and throughout the thesis, the homogeneous coordinates in the domain
PG(2, q) of ν are denoted by (X0,X1,X2), the homogeneous coordinates in PG(5, q)
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Orbits Point-OD’s
o5 [2, q−1

2 , q−1
2 ,0]

o6 [1, q,0,0]
o8,1 [1,1,0, q−1]
o8,2 [1,0,1, q−1]
o9 [1,0,0, q]
o10 [0, q+1

2 , q+1
2 ,0]

o12 [0, q+ 1,0,0]
o13,1 [0,2,0, q−1]
o13,2 [0,1,1, q−1]
o14,1 [0,3,0, q−2]
o14,2 [0,1,2, q−2]
o15,1 [0,1,0, q]
o15,2 [0,0,1, q]
o16 [0,1,0, q]
o17 [0,0,0, q+ 1]

Table 2.1 The K-orbits of lines in PG(5, q), q odd.

Orbits Point-OD’s
o5 [2,0, q−1,0]
o6 [1,1, q−1,0]
o8,1 [1,0,1, q−1]
o8,2 [1,1,0, q−1]
o9 [1,0,0, q]
o10 [0,0, q+ 1,0]
o12,1 [0, q+ 1,0,0]
o12,2 [0,1, q,0]
o13,1 [0,1,1, q−1]
o13,2 [0,0,2, q−1]
o14 [0,0,3, q−2]
o15 [0,0,1, q]
o16,1 [0,1,0, q]
o16,2 [0,0,1, q]
o17 [0,0,0, q+ 1]

Table 2.2 The K-orbits of lines in PG(5, q), q even.

are denoted by (Y0, . . . ,Y5), and Z(f) denotes the zero locus of a form f . Note that a
point P in PG(2, q) lies on a (given) conic C if and only if ν(P ) lies in the hyperplane
δ(C). The definition of δ extends to a set S of conics in the obvious way:

δ(S) =
⋂
C∈S

δ(C).

Up to projective equivalence, there is a unique nonsingular conic in PG(2, q), and
three classes of singular conics, namely (i) double lines, (ii) pairs of real lines, and
(iii) pairs of (conjugate) imaginary lines. We denote the corresponding K-orbits of
hyperplanes (obtained via δ) as follows: H1, H2r and H2i denote the K-orbits of
hyperplanes corresponding to the PGL(3, q)-orbits of singular conics of types (i), (ii)
and (iii) respectively, and H3 denotes the K-orbit of hyperplanes corresponding to
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the PGL(3, q)-orbit of nonsingular conics.

2.8 Linear systems of conics

Let W be the space of 2-forms defined in PG(2, q). Linear systems of conics are
subspaces of the projective geometry associated with W . In particular, 1, 2 and
3-dimensional subspaces are pencils, nets and webs of conics.

Subspaces of PG(5, q) correspond to linear systems of conics in PG(2, q) via ν (de-
fined in 2.4.4): lines correspond to webs, planes to nets, and solids to pencils of
conics in PG(2, q). By Remark 2.11, the classifications of K-orbits of subspaces
of PG(5, q) correspond to the classifications of linear systems of conics in PG(2, q)
up to projective equivalence. In particular, the classification of webs of conics over
finite fields is equivalent to Theorem 2.25. The base (or set of base points) of a linear
system of conics is the intersection of the conics in the system. We end this section
with the following observation.

Lemma 2.6. Let Q be a point and P a pencil of conics in PG(2, q). Then Q is a
base point of P if and only if ν(Q) lies in the solid S = δ(P) of PG(5, q).

Proof. Let Q be a base point of a pencil P = 〈C,C′〉. Then ν(Q) lies on the two
hyperplane sections of V(Fq) defined by H and H′ whose dual coordinates are the
coefficients of C and C′ respectively. Therefore, ν(Q) lies in the solid δ(P) defined
by H∩H′. The inverse implication follows similarly.

In other words, the points of rank 1 in S are precisely the images under the Veronese
map of the base points of P .

Example 2.10. The pencil of conics generated by C1 = Z(X1X2) and C2 = Z(X2
2 )

has q+ 1 base points. Furthermore, the point ν(1,0,0) = (1,0,0,0,0,0) lies in the
associated solid S represented by 

x y z

y t ·
z · ·

 .
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2.9 Dual subspaces of PG(5, q)

For any finite field Fq of odd characteristic, there exists a polarity α of PG(5, q) that
maps the set of conic planes of V(Fq) onto the set of tangent planes of V(Fq). This
is Theorem 4.25. in (Hirschfeld & Thas, 1991), which implies the correspondence
between K-orbits of subspaces of PG(5, q) and K-orbits of their associated dual
spaces when q is odd. Therefore, one can deduce the classification of solids in
PG(5, q), q odd, from that of lines in (Lavrauw & Popiel, 2020). Moreover, by α we
get a correspondence between rank-1 nets of conics in PG(2, q), namely nets with
at least one double line, and planes in PG(5, q) meeting V(Fq) in at least one point,
q odd (Lavrauw, Popiel & Sheekey, 2021). However, as such a polarity does not
necessary exist when q is even, we cannot conclude the K-orbits of solids from those
of lines in (Lavrauw & Popiel, 2020). Furthermore, the equivalence between planes
in PG(5, q) meeting V(Fq) in at least one point and rank-1 nets of conics in PG(2, q)
fails when q is even as we will see later in Chapter 4.

2.10 Solids of PG(5, q), q odd

The correspondence between K-orbits of lines in PG(5, q), and pencils of conics in
PG(2, q), q odd, can be found in Table 5 in (Lavrauw & Popiel, 2020). We used this
correspondence to conclude the representatives of the 15 K-orbits of solids summa-
rized in Table 2.3. We computed as well their rank-distributions and hyperplane-
orbit distributions, summarized in Table 2.4.



K-orbits of solids Representatives Conditions

o5

 . x y
x . z
y z t


o6

 . . x
. y z
x z t


o8,1

 . x y
x z t
y t z


o8,2

 . x y
x γz t
y t z

 γ 6∈�

o9

 . x y
x −2y z
y z t


o10

 x uv
2 x y

uv
2 x −vx z
y z t

 (∗)

o12

x . y
. z .
y . t


o13,1

x . y
. z t
y t −z


o13,2

x . y
. −γt z
y z y

 γ 6∈�

o14,1

x y z
y −x t
z t x


o14,2

−γx y z
y x t
z t −γx

 γ 6∈�

o15,1

x y z
y −v1x t
z t −2y+uv1x

 (∗), −v1 6∈�

o15,2

x y z
y −v2x t
z t −2y+uv2x

 (∗), −v1 6∈�

o16

x y z
y −2z .
z . t


o17

αγz−2αt x y
x z t
y t −2x−βz

 (∗∗)

Table 2.3 The K-orbits of solids in PG(5, q), q odd, and their representatives.
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K-orbits of solids Rank distributions Hyperplane-orbit distributions

o5 [1,2q2 + q,q3− q2] [2, q−1
2 , q−1

2 ,0]
o6 [q+ 1,2q2, q3− q2] [1, q,0,0]
o8,1 [2, q2 + 2q−1, q3− q] [1,1,0, q−1]
o8,2 [0, q2 + 2q+ 1, q3− q] [1,0,1, q−1]
o9 [1, q2 + q,q3] [1,0,0, q]
o10 [1,2q2 + q,q3− q2] [0, q+1

2 , q+1
2 ,0]

o12 [q+ 2,2q2−1, q3− q2] [0, q+ 1,0,0]
o13,1 [3, q2 + 2q−2, q3− q] [0,2,0, q−1]
o13,2 [1, q2 + 2q,q3− q] [0,1,1, q−1]
o14,1 [4, q2 + 3q−3, q3−2q] [0,3,0, q−2]
o14,2 [0, q2 + 3q+ 1, q3−2q] [0,1,2, q−2]
o15,1 [2, q2 + q−1, q3] [0,1,0, q]
o15,2 [0, q2 + q+ 1, q3] [0,0,1, q]
o16 [2, q2 + q−1, q3] [0,1,0, q]
o17 [1, q2, q3 + q] [0,0,0, q+ 1]

Table 2.4 Rank distributions and hyperplane-orbit distributions of the K-orbits of
solids in PG(5, q), q odd.
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3 SOLIDS IN PG(5, q), q EVEN

In this chapter, we present our results from (Alnajjarine, Lavrauw & Popiel , 2022).
In particular, we determine orbits of solids of PG(5, q), q even, under the action of
the subgroup K of PGL(6, q) stabilising the Veronese surface. We also determine
two useful combinatorial invariants of each type of solid, namely their point-orbit
and hyperplane-orbit distributions (see Section 2.7). Additionally, we calculate the
stabiliser in PGL(3, q) of each type of solid S, and thereby determine the size of
each orbit.

Our main results are Theorem 3.1 and Corollary 3.1, where we prove the existence
of 15 K-orbits of solids in PG(5, q) and deduce the classification of pencils of conics
in PG(2, q) up to projective equivalence.

Theorem 3.1. (Alnajjarine, Lavrauw & Popiel , 2022, Theorem 1.1)
Let q be an even prime power. There are exactly 15 orbits of solids in PG(5, q) under
the induced action of PGL(3, q)6PGL(6, q) defined in Section 2.7.1. Representatives
of these orbits are given in Table 3.1, the notation of which is defined in Section
2.2.3.

Corollary 3.1. Let q be an even prime power. There are 15 pencils of conics in
PG(2, q) up to projective equivalence. Representatives of these pencils are given in
Table 3.1.

Corollary 3.2. (Alnajjarine, Lavrauw & Popiel , 2022, Corollary 1.2)
Let S and S′ be solids in PGL(5, q), q even. Suppose that the point-orbit distributions
of S and S′ are equal, and that the hyperplane-orbit distributions of S and S′ are
equal. Then either
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(i) S and S′ belong to the same K-orbit,

(ii) S and S′ belong to the union of the orbits Ω11 and Ω12, or

(iii) q = 2 and S and S′ belong to the union of the orbits Ω4 and Ω9.

Remark 3.1. (Alnajjarine, Lavrauw & Popiel , 2022, Remark 1.3)
In cases (ii) and (iii) of Corollary 3.2, one can determine whether S and S′ belong to
the same orbit by checking whether they intersect a certain orbit of lines in PG(5, q),
specifically the orbit labelled “o6” in (Lavrauw & Popiel, 2020). In (ii), a solid of
type Ω11 contains a line of type o6, but a solid of type Ω12 does not. In (iii), a
solid of type Ω4 contains a line of type o6, but a solid of type Ω9 does not. (See
Remark 3.5 and Section 3.4.)

This chapter is structured as follows. The proofs of Theorem 3.1 and the associated
data in Table 3.2 are given in Sections 3.1–3.3 for q 6= 2. The case q = 2 requires
special treatment, and is handled in Section 3.4. In Section 3.5, we compare our
results with the aforementioned partial classification of pencils of conics in PG(2, q),
q even (Campbell, 1927). We note that, our arguments intentionally exploit the
connection between solids in PG(5, q) and pencils of conics in PG(2, q). For example,
point-orbit distributions cannot be obtained by working directly with the associated
pencil of conics. On the other hand, stabilisers are easier to compute by working
with pencils of conics, as we can appeal to well-known transitivity properties of the
action of PGL(3, q) on PG(2, q) (see e.g. the proof of Lemma 3.9).

a3

0 1≤ ≤ q q+ 1

a1 = 1 a1 = 0

a2r ≥ 1 a2r = 0

4 orbits

3 orbits

6 orbits 1 orbit

1 orbit

Figure 3.1 The discussion structure of Chapter 3.
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Orbits Representatives Generating conics Conditions

Ω1

x y z
y t ·
z · t

 (X1 +X2)2

X1X2

Ω2

x y z
y t ·
z · ·

 X2
2

X1X2

Ω3

x y z
y · t
z t ·

 X2
1

X2
2

Ω4

x · y
· z ·
y · t

 X0X1
X1X2

Ω5

 · x y
x z t
y t x

 X0X1 +X2
2

X2
0

Ω6

x · y
· z t
y t ·

 X0X1 +X2
2

X2
2

Ω7

x y z
y x+γy t
z t y

 X0X1 +X2
2

(X0 +X1 +γX2)2 Tr(γ−1) = 1

Ω8

x y z
y t z
z z y

 X0X1 +X2
2

(X0 +X2)(X1 +X2)

Ω9

x x y
x z t
y t t

 X0(X0 +X1)
X2(X1 +X2)

Ω10

x y z
y y+γt t
z t y

 X0X1 +X2
2

X1(X0 +X1 +γX2) Tr(γ−1) = 1

Ω11

x y z
y t ·
z · y

 X0X1 +X2
2

X1X2

Ω12

x y z
y t γy+z
z γy+z y

 X0X1 +X2
2

X2(X0 +X1 +γX2) Tr(γ−1) = 1

Ω13

x y z
y γx+y t
z t γx+z

 γX2
0 +X0X1 +X2

1
γX2

0 +X0X2 +X2
2

Tr(γ) = 1

Ω14

 x y γx+y+γt
y γx+y z

γx+y+γt z t

 X2
1 +X0X2 +γX2

2
γX2

0 +X0X1 +X2
1

Tr(γ) = 1

Ω15

 x y bz+ cy
y z t

bz+ cy t y

 X0X1 +X2
2

X0X2 + bX2
1 + cX2

2
bλ3 + cλ+ 1 irreducible over Fq

Table 3.1 The K-orbits of solids in PG(5, q) and pencils of conics in PG(2, q), q even.

In what follows, let S be a solid in PG(5, q) and denote by Ψ(S) the cubic surface
defined by setting the determinant of the matrix representing S to zero (see Section
2.7). For example, for the solid S spanned by the first four points of the standard
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Orbit Point OD Hyperplane OD Stabiliser Orbit size

Ω1 [1, q+ 1,2q2−1, q3− q2] [1, q/2, q/2,0] E2
q o (Eq×Cq−1) (q3−1)(q+ 1)

Ω2 [q+ 1, q+ 1,2q2− q−1, q3− q2] [1, q,0,0] E1+2
q oC2

q−1 (q2 + q+ 1)(q+ 1)
Ω3 [1, q2 + q+ 1, q2−1, q3− q2] [q+ 1,0,0,0] E2

q oGL(2, q) q2 + q+ 1
Ω4 [q+ 2,1,2q2−2, q3− q2] [0, q+ 1,0,0] GL(2, q) q2(q2 + q+ 1)
Ω5 [1, q+ 1, q2−1, q3] [1,0,0, q] E2

q oCq−1 q(q3−1)(q+ 1)
Ω6 [2, q+ 1, q2 + q−2, q3− q] [1,1,0, q−1] C2

q−1 oC2
1
2q

3(q2 + q+ 1)(q+ 1)
Ω7 [0, q+ 1, q2 + q,q3− q] [1,0,1, q−1] D2(q+1)×Cq−1

1
2q

3(q3−1)
Ω8 [3,1, q2 + 2q−3, q3− q] [0,2,0, q−1] Cq−1×C2

1
2q

3(q3−1)(q+ 1)
Ω9 [4,1, q2 + 3q−4, q3−2q] [0,3,0, q−2] Sym4

1
24q

3(q3−1)(q2−1)
Ω10 [1,1, q2 + 2q−1, q3− q] [0,1,1, q−1] Cq−1×C2

1
2q

3(q3−1)(q+ 1)
Ω11 [2,1, q2 + q−2, q3] [0,1,0, q] Eq oCq−1 q2(q3−1)(q+ 1)
Ω12 [2,1, q2 + q−2, q3] [0,1,0, q] C2

2
1
4q

3(q3−1)(q2−1)
Ω13 [0,1, q2 + 3q,q3−2q] [0,1,2, q−2] C2

2 oC2
1
8q

3(q3−1)(q2−1)
Ω14 [0,1, q2 + q,q3] [0,0,1, q] C4

1
4q

3(q3−1)(q2−1)
Ω15 [1,1, q2−1, q3 + q] [0,0,0, q+ 1] C3

1
3q

3(q3−1)(q2−1)

Table 3.2 Invariants of K-orbits of solids in PG(5, q), q even.

frame of PG(5, q):

(3.1) S =


x y z

y t ·
z · ·

 ,

Ψ(S) is the cubic surface comprising points as in (3.1) with Z2T = 0. In particular,
we see that S has rank distribution [q+1,2q2, q3−q2], meaning that it contains q+1
points of rank 1, 2q2 points of rank 2, and q3− q2 points of rank 3. (The points
of rank 1 comprise the nonsingular conic given by Z = 0 and XT = Y 2.) The rank
distribution is related to a particular case of what we call an orbit distribution. For
more information about the terminology used in this chapter and the connection
between solids of PG(5, q) and pencils of conics in PG(2, q), we refer to Chapter 2.

Remark 3.2. As we will see later, studying cubic surfaces associated with solids
in PG(5, q) can be useful to differentiate between non-equivalent solids, but it is not
sufficient to completely characterize each orbit. For instance, by suitably reordering
the variables x,y,z and t, we can represent Ω2 by

S2 =


z y t

y x ·
t · ·

 ,

which has the same cubic surface as Ω3 defined by XT 2 = 0, however the two orbits
are distinct by their intersection with the Veronese surface.

Before proceeding, we mention the following lemma concerning the hyperplane-
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orbit distribution ODK,4(S) = [a1,a2r,a2i,a3] of a solid in PG(5, q), q even. Here
aj denotes the number of hyperplanes of type Hj incident with U for each of the
symbols j ∈ {1,2r,2i,3} (see Section 2.7).

Lemma 3.1. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 2.9)
Let S be a solid of PG(5, q), where q = 2h with h > 1, and let b denote the number of
points of S contained in V(Fq). Then the hyperplane-orbit distribution ODK,4(S) =
[a1,a2r,a2i,a3] of S satisfies:

(i) a1 + 2a2r +a3 = q+ b.

(ii) a2r−a2i+ 1 = b.

Proof. First note that (q+1)a1 +(2q+1)a2r +a2i+(q+1)a3− bq = q2 + q+1. This
follows from the fact that each point on V(Fq) either lies in S and belongs to q+ 1
hyperplanes through S, or belongs to exactly one hyperplane of PG(5, q) through
S, and the fact that the hyperplanes in the orbits H1, H2r, H2i, H3 intersect V(Fq)
in q+ 1, 2q+ 1, 1 and q+ 1 points, respectively. Now use the fact that a1 + a2r +
a2i+a3 = q+1 and divide by q to get (i). Substitution of a1 +a2r+a3 by q+1−a2i

gives (ii).

3.1 Solids not contained in any hyperplane of type H3

We begin by classifying the K-orbits of solids that are not contained in any hy-
perplane of type H3, namely, those for which the corresponding pencil of conics
contains no nonsingular conics. It is straightforward to list the possible configura-
tions of pairs of conics that can occur. However, since we are interested in K-orbits
of solids, i.e. pencils of conics as opposed to pairs of conics, we need to under-
stand when two different types of pairs of conics give rise to the same pencil up to
projective equivalence.

Here, and in subsequent sections, homogeneous coordinates in a solid S of PG(5, q)
are generally denoted by (X,Y,Z,T ), where the solid is represented as in (3.1). The
pencil of conics in PG(2, q) corresponding to S is denoted by P(S), and the cubic
surface obtained as the intersection of S with the secant variety V(Fq)2 of V(Fq) is
denoted by Ψ(S). As before, the homogeneous coordinates in the domain PG(2, q) of
the Veronese map ν are denoted by (X0,X1,X2), and those in PG(5, q) are denoted
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by (Y0, . . . ,Y5).

3.1.1 Solids contained in a hyperplane of type H1

We first treat the K-orbits of solids S corresponding to pencils P(S) that contain at
least one double line, namely those whose hyperplane-orbit distribution ODK,4(S) =
[a1,a2r,a2i,a3] has a1 > 0. If P(S) contains exactly one double line (i.e. a1 = 1) and
no pair of (distinct) real lines (a2r = 0), then the orbit of S will arise later in our
analysis, since any such pencil contains a nonsingular conic, by the following lemma.

Lemma 3.2. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 3.1) If ODK,4(S) =
[1,0,a2i,a3] with a2i > 0, then a3 > 0.

Proof. Putting a1 = 1 and a2r = 0 into Lemma 3.1(ii) gives b= 1−a2i, which implies
that a2i 6 1 since b> 0. Therefore, a2i = 1 and so a3 = (q+ 1)−2> 0.

We may therefore assume that if P(S) contains exactly one double line, say L2
1,

then it contains at least one pair of distinct real lines, say L2L3. We then have the
following possibilities:

(i) the three lines are distinct and concurrent,

(ii) L1 coincides with one of L2 or L3, or

(iii) the three lines are distinct and not concurrent.

Since PGL(3, q) acts transitively on each of these configurations of lines, two solids
corresponding to the same configuration belong to the same K-orbit. In case (iii),
P(S) has exactly two base points, so the following lemma implies, together with
Lemma 2.6, that S is contained in a hyperplane of type H3.

(i) (ii) (iii)

Figure 3.2 Pencils of conics generated by a double line L1 and a pair of real lines
L2∪L3.
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Lemma 3.3. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 3.2)
If ODK,4(S) = [1,a2r,a2i,a3] and S meets V(Fq) in two points, then a2i = 0 and
a3 > 0.

Proof. Since a hyperplane of type H2i meets V(Fq) in one point, it follows that
a2i = 0. Putting a1 = 1 and b= 2 into Lemma 3.1(i) gives a3 = (q+1)−2a2r. Since
q is even, (q+ 1)−2a2r is odd, so a3 > 1.

If follows that we are left with at most two K-orbits, corresponding to the cases (i)
and (ii). We label these orbits as Ω1 and Ω2, respectively, and choose representatives
for them as

(3.2) Ω1 :


x y z

y t ·
z · t

 , Ω2 :


x y z

y t ·
z · ·

 ,

obtained by taking L2 =Z(X1) and L3 =Z(X2) in both cases, L1 =Z((X1 +X2)2)
for Ω1 and L1 = Z(X2

2 ) for Ω2. We now calculate the point-orbit distributions,
hyperplane-orbit distributions, and stabilisers of the solids in these K-orbits. We
may use the representatives given in (3.2) for these calculations, since all of the
aforementioned data are K-invariant. We begin with the hyperplane-orbit distribu-
tions, verifying in particular the desired condition that each solid lies in a unique
hyperplane of type H1, and that the orbits Ω1 and Ω2 are indeed distinct (because
their hyperplane-orbit distributions are distinct).

Lemma 3.4. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 3.3)
The hyperplane-orbit distribution of a solid of type Ω1 is [1, q/2, q/2,0]. The
hyperplane-orbit distribution of a solid of type Ω2 is [1, q,0,0]. In particular, Ω1 6= Ω2.

Proof. Let Si denote the representative of Ωi defined in (3.2), for i ∈ {1,2}.
Lemma 2.2 implies that each of the pencils P(Si) does indeed contain a unique
double line (namely L2

1) and no nonsingular conics. Hence, in the notation of
Lemma 3.1, the hyperplane-orbit distribution of Si has the form [1,a2r,a2i,0] in
both cases, i.e. a1 = 1 and a3 = 0. The pencil P(S1) has a unique base point (the
unique point of concurrency of the three lines L1, L2 and L3), so putting b= 1 into
Lemma 3.1 yields a2r = a2i = q/2. On the other hand, P(S2) has q+ 1 base points
(those on the line L1), so a2r = q and a2i = 0.

Lemma 3.5. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 3.4)
The point-orbit distribution of a solid of type Ω1 is [1, q+ 1,2q2− 1, q3− q2]. The
point-orbit distribution of a solid of type Ω2 is [q+ 1, q+ 1,2q2− q−1, q3− q2].
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Proof. Consider again the representatives S1 and S2 in (3.2). Points of rank at most
2 in S1 correspond to points on the cubic surface Ψ(S1) = Z(XT 2 +Y 2T +Z2T ).
There are 2q2 +q+1 such points, exactly one of which has rank 1, namely the point
with homogeneous coordinates (X,Y,Z,T ) = (1,0,0,0), which is the image under ν
of the unique base point (X0,X1,X2) = (1,0,0) of the pencil P(S1) (cf. Lemma 2.6).
Hence, the rank distribution of S1 is [1,2q2 + q,q3− q2]. The points of S1 contained
in the nucleus plane are those on the line Z(X,T ), so the point-orbit distribution of
S1 is [1, q+ 1,2q2− 1, q3− q2]. The cubic surface Ψ(S2) is Z(Z2T ), which contains
2q2 + q+ 1 points, being the union of two planes meeting in a line. It intersects
V(Fq) in the conic Z(Z,XT +Y 2), and the nucleus plane in the line Z(X,T ).

We now calculate the stabiliser KSi
6K of Si ∈ Ωi for i ∈ {1,2}. Recall the group-

theoretic notation established in Notation 2.2.3.

Lemma 3.6. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 3.5)
If S1 ∈ Ω1 then KS1

∼= E2
q o (Eq×Cq−1). If S2 ∈ Ω2 then KS2

∼= E1+2
q oC2

q−1.

Proof. If S1 is the representative of Ω1 given in (3.2) then KS1 6KP , where P =
(1,0,0,0) is the unique point of rank 1 in S1. Notice that KP is equal to the
stabiliser of the plane π = Z(T ), because π is the tangent plane to V(Fq) at P . An
element of KP therefore fixes S1 if and only if it maps the point Q= (0,0,0,1) into
S1, since S1 = 〈π,Q〉. Elements of KP

∼= E2
q oGL(2, q) are represented by matrices

g = (gij) ∈GL(3, q) with g21 = g31 = 0. The subgroup H ∼= GL(2, q) of KP obtained
by setting g12 = g13 = 0 fixes the conic Z(Y 2

3 +Y4Y5) in the plane π′ =Z(Y0,Y1,Y2).
Since Q is a point external to this conic and distinct from its nucleus, it follows by
considering the quotient space of π′ that KS1

∼=E2
q o(Eq×Cq−1). The solid S2 ∈Ω2

given in (3.2) meets V(Fq) in a conic which spans the plane π :Z(Z), so KS2 6Kπ.
An element of K represented by a matrix (gij) ∈GL(3, q) belongs to Kπ if and only
if g31 = g32 = 0. It fixes S2 if and only if it also fixes the line Z(X,T ) in which S2

intersects the nucleus plane. This occurs if and only if g21 is also 0. Upon factoring
out scalars we therefore obtain KS2

∼= E1+2
q oC2

q−1.

If P(S) contains more than one double line, then it is a pencil of lines. There is
one K-orbit of such solids, which we call Ω3. Generating P(S) by the double lines
Z(X2

1 ) and Z(X2
2 ) gives the representative

Ω3 :


x y z

y · t

z t ·

 .

42



Lemma 3.7. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 3.6)
A solid S3 ∈ Ω3 has point-orbit distribution [1, q2 + q+1, q2−1, q3− q2], hyperplane-
orbit distribution [q+ 1,0,0,0], and stabiliser KS3

∼= E2
q oGL(2, q). In particular,

Ω3 6∈ {Ω1,Ω2}.

Proof. Let S3 denote the above representative of Ω3. Since all conics in the pencil
P(S3) are double lines, the hyperplane-orbit distribution of S3 is [q+1,0,0,0]. This
implies that Ω3 6∈ {Ω1,Ω2} (upon comparing with Lemma 3.4). The cubic surface
Ψ(S3) is the union of the nucleus plane Z(X) and the plane Z(T ). It contains
exactly one point of rank 1, namely the point P = (1,0,0,0). Therefore, we obtain the
asserted point-orbit distribution. The stabiliser is immediate from the hyperplane-
orbit distribution.

3.1.2 Solids not contained in a hyperplane of type H1

Next we classify the solids contained neither in hyperplanes of type H3, nor in
hyperplanes of type H1. Let S be such a solid, namely one with ODK,4(S) =
[0,a2r,a2i,0]. Since we are assuming that q > 2, it follows from Lemma 3.1(i) that
a2r > 2. Hence, there exist two pairs L1L2 and L3L4 of distinct real lines generating
P(S). There are a number of possible configurations of the lines L1, . . . ,L4 (see
Figure 3.3), but it turns out that only one of these gives a K-orbit with the assumed
hyperplane-orbit distribution.

3 base points 4 base points q+ 2 base points

1 base point q+ 1 base points

Figure 3.3 The possible configurations of the lines L1, . . . ,L4; q 6= 2.

Lemma 3.8. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 3.7)
There is a unique K-orbit of solids with hyperplane-orbit distribution [0,a2r,a2i,0].
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Proof. If the four lines L1, . . . ,L4 are concurrent, then S ∈ Ω1. If P(S) has one of
the lines as its base, then S ∈Ω2 since P(S) then also contains that base as a double
line. If the two pairs L1L2 and L3L4 meet in either three or four points, then P(S)
contains at least one nonsingular conic (and so a3 6= 0): this can be verified by a
direct computation, and also follows from the treatment of the orbits Ω8 and Ω9

in Section 3.2.2.1. The only remaining possibility is that the two pairs share a line
and do not meet in the same point, in which case the base of P(S) is an antiflag
(a non-incident point–line pair), consisting of the shared line and one extra point.
Since PGL(3, q) acts transitively on antiflags, there is one such K-orbit of solids.

The K-orbit of solids arising as above is denoted Ω4. Taking P(S) generated by the
pairs of real lines Z(X0X1) and Z(X1X2) gives the representative

Ω4 :


x · y

· z ·
y · t

 .

Lemma 3.9. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 3.8)
A solid S4 ∈ Ω4 has point-orbit distribution [q+ 2,1,2q2− 2, q3− q2], hyperplane-
orbit distribution [0, q+ 1,0,0], and stabiliser KS4

∼= GL(2, q). In particular, Ω4 6∈
{Ω1,Ω2,Ω3}.

Proof. Let S4 be the solid defined above. Every conic in the pencil P(S4) has
the form Z(X1(λX0 +µX2)) for some λ, µ, i.e. every conic in P(S4) is a pair of
real lines, so the hyperplane-orbit distribution is [0, q+1,0,0], and this implies that
Ω4 6∈ {Ω1,Ω2,Ω3}. The cubic surface Ψ(S4) =Z(Z(XT +Y 2)) is the union of a plane
and a quadratic cone with vertex P = (0,0,1,0), meeting in a conic C=Z(Y0Y5 +Y 2

2 ).
It intersects S4 in P ∪C, so S4 contains q+ 2 points of rank 1. The nucleus of C
is the unique point of S4 in the nucleus plane. The pencil P(S4) is fixed by an
element of PGL(3, q) if and only if the antiflag comprising its base is fixed, so KS4

is isomorphic to the stabiliser of an antiflag, i.e. KS4
∼= GL(2, q).

This completes the classification of solids contained in no hyperplane of type H3,
or equivalently, of pencils of conics containing no nonsingular conics. We make the
following observation for reference.

Corollary 3.3. (Alnajjarine, Lavrauw & Popiel , 2022, Corollary 3.9)
There is no pencil of conics in PG(2, q), q even, with q+1 singular conics and empty
base.
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Proof. If q > 2 then a pencil P with q+ 1 singular conics corresponds to a solid
S ∈ Ω1∪ . . .∪Ω4. By the point-orbit distributions calculated above, S meets V(Fq)
in at least one point, so Lemma 2.6 implies that P has at least one base point. By
Section 3.4, the result holds also for q = 2.

3.2 Solids contained in at least one and at most q hyperplanes of type H3

In this section we classify the K-orbits of solids contained in at least one hyperplane
of type H3 and at most q such hyperplanes. That is, we treat the solids S with
hyperplane-orbit distribution ODK,4(S) = [a1,a2r,a2i,a3] where 1 6 a3 6 q. The
cases (i) a1 6= 0, (ii) a1 = 0 and a2r 6= 0, and (iii) a1 = a2r = 0 and a2i 6= 0 are
analysed separately in Sections 3.2.1, 3.2.2 and 3.2.3, respectively. The following
observation implies that a1 +a2r +a2i 6 3 (and hence a3 > q−2) in all cases.

Lemma 3.10. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 4.1)
A pencil containing a nonsingular conic contains at most three singular conics.

Proof. A pencil generated by Z(f) and Z(g), with Z(g) nonsingular, contains a
singular conic Z(f +λg) if and only if λ is a root of a (certain) cubic in Fq[X] (cf.
Lemma 2.2).

3.2.1 Solids contained in a hyperplane of type H1

The stabiliser of a nonsingular conic C in PG(2, q) has three orbits on lines, namely
tangents to C, secants to C, and lines external to C. Hence, there are at most three
K-orbits of solids contained both in a hyperplane of type H3 (which corresponds to
a nonsingular conic) and a hyperplane of type H1 (which corresponds to a double
line). Since the corresponding types of pencils have different numbers of base points,
there are exactly three K-orbits. The following representatives are obtained using
the nonsingular conic C =Z(X0X1 +X2

2 ) and the double lines corresponding to the
tangent Z(X0), the secant Z(X2) and the external line Z(X0 +X1 +√γX2), where
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Orbit Point-orbit distribution Hyperplane-orbit distribution Stabiliser
Ω5 [1, q+ 1, q2−1, q3] [1,0,0, q] E2

q oCq−1
Ω6 [2, q+ 1, q2 + q−2, q3− q] [1,1,0, q−1] C2

q−1 oC2
Ω7 [0, q+ 1, q2 + q,q3− q] [1,0,1, q−1] D2(q+1)×Cq−1

Table 3.3 Data for Lemma 3.11.

γ is some fixed element of Fq with Tr(γ−1) = 1 (cf. Lemma 2.5):

(3.3) Ω5 :


· x y

x z t

y t x

 , Ω6 :


x · y

· z t

y t ·

 , Ω7 :


x y z

y x+γy t

z t y

 where Tr(γ−1) = 1.

Ω5 Ω6 Ω7

Figure 3.4 Pencils of conics associated with Ω5, Ω6 and Ω7.

Lemma 3.11. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 4.2)
The point-orbit distributions, hyperplane-orbit distributions, and stabilisers of solids
of types Ω5, Ω6 and Ω7 are as in Table 3.3. In particular, these orbits are distinct
from each other and from Ω1, . . . ,Ω4.

Proof. Let Si ∈ Ωi, i ∈ {5,6,7}, be the representatives given in (3.3). The
hyperplane-orbit distribution of S5 is an immediate consequence of Lemma 2.2,
which implies that a conic Z(λX2

0 +X0X1 +X2
2 ) in the pencil P(S5) cannot be singu-

lar. Similarly, a conic Z(λX2
2 +X0X1 +X2

2 ) in P(S6) is singular if and only if λ= 1,
in which case one obtains the pair of real lines Z(X0X1), both of which are tangents
to the conic Z(X0X1 +X2

2 ). Finally, a conic Z(λ(X2
0 +X2

1 + γX2
2 ) +X0X1 +X2

2 )
in P(S7) is singular if and only if λ = γ−1, in which case one obtains the pair of
conjugate imaginary lines Z(X2

0 +γX0X1 +X2
1 ). The hyperplane-orbit distributions

imply that Ω5, Ω6 and Ω7 are distinct and do not belong to {Ω1, . . . ,Ω4}.

Next, we calculate the point-orbit distributions. The cubic surface Ψ(S5) =Z(X3 +
Y 2Z) consists of q2 +q+1 points, being a cone with vertex a point and base a planar
rational cubic curve. It meets the nucleus plane πn in the line ` :Z(X,Z), and V(Fq)
in its unique singular point P = (0,0,1,0), i.e. the image of the base point of P(S5)
under ν. The cubic surface Ψ(S6) = Z(XT 2 +Y 2Z) consists of q2 + 2q+ 1 points,
since its point set is in one-to-one correspondence with the points on the hyperbolic
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quadric Z(XT +Y Z). It meets πn in the line Z(X,Z), and V(Fq) in the images of
the two base points of P(S6). Finally, Ψ(S7) = Z(γXY 2 + γY Z2 +XT 2 +X2Y +
XZ2 +Y 3) consists of two lines in the plane Z(Y ) and q2 additional points. It is
disjoint from V(Fq) and intersects πn in the line Z(X,Y ).

It remains to calculate the stabilisers. If an element of K represented by a matrix
(gij) ∈ GL(3, q) fixes S5 then it must fix the point P = S5∩V(Fq) and the line ` =
S5∩πn (both calculated above). This occurs if and only if g12 = g13 = g23 = g32 = 0.
An element of KP ∩K` fixes S5 if and only if it also maps the point Q = (1,0,0,0)
into S5, since S5 = 〈P,Q,`〉. This occurs if and only if also g2

33 = g11g22. Factoring
out scalars therefore gives KS5

∼= E2
q oCq−1. Since P(S6) contains a unique double

line L2
1 and a unique pair of real lines L2L3, its stabiliser in PGL(3, q) is equal

to the stabiliser of L1 inside the stabiliser C2
q−1 o Sym3 of {L1,L2,L3}. Hence,

KS6
∼= C2

q−1 oC2. Finally, a solid S7 ∈ Ω7 is contained in a unique hyperplane H1

of type H1, which meets V(Fq) in a conic C, and in a unique hyperplane H2 of
type H2i, which meets V(Fq) in a point P 6∈ H1. Therefore, KS7 is a subgroup of
KC∩KP

∼= GL(2, q). Since S7 is disjoint from V(Fq), it meets the conic plane π= 〈C〉
in a line ` external to C. By considering the action of KS7 on π, we therefore deduce
that KS7 is a subgroup of the stabiliser of ` in KC ∩KP , which is isomorphic to
D2(q+1)×Cq−1. The fact that KS7 is equal to this group follows from the one-to-
one correspondence between the hyperplanes of type H2i through P and the lines
external to C in π. (Over the quadratic extension of PG(5, q), ` meets C in a pair of
conjugate points, and H2 meets the Veronese surface in two conjugate conics which
pass through P and meet C in those points, so H2 is uniquely determined by `.)

Remark 3.3. (Alnajjarine, Lavrauw & Popiel , 2022, Remark 4.3)
It follows from the first part of the proof of Lemma 3.11 that Ω6 can also be obtained
by considering either (i) a pencil spanned by a nonsingular conic C and a pair of two
real lines tangent to C, or (ii) a pencil spanned by a pair of real lines and a double
line meeting the pair in two distinct points.

3.2.2 Solids contained in a hyperplane of type H2r and no hyperplane of

type H1

If S is a solid with hyperplane-orbit distribution [0,a2r,a2i,a3] where a2r > 0 and
16 a3 6 q, then we may assume without loss of generality that P(S) is generated by
a nonsingular conic C and a pair of real lines L1L2. Let us encode the configuration
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(C,L1,L2) by the pair of integers (k1,k2) where ki denotes the number of points in
Li∩C. The possible configurations are (k1,k2) ∈ {(2,2), (2,1), (2,0), (1,1), (1,0),
(0,0)}. By Remark 3.3, we may ignore the case (k1,k2) = (1,1).

(2,2) (2,2) (2,1) (2,0)

(1,1) (1,0) (0,0)

Figure 3.5 The possible configurations of pencils of conics generated by a nonsingular
conic C and a pair of real lines L1∪L2, where (k1,k2) denote the number of points
in Li∩C.

3.2.2.1 (k1,k2) = (2,2)

If (k1,k2) = (2,2) then P(S) has either three or four base points. Exactly one K-
orbit arises from each of these two cases. In the case of three base points, this
follows from the fact that the stabiliser of a nonsingular conic acts 3-transitively on
its points; in the case of four base points, it follows from the fact that the image of
a frame of PG(2, q) under ν spans a solid. The resulting orbits are

(3.4) Ω8 :


x y z

y t z

z z y

 , Ω9 :


x x y

x z t

y t t

 .

Here the representative for Ω8 is obtained from the pencil generated by C =
Z(X0X1 +X2

2 ) and the pair of real lines L1 = Z(X0 +X2) and L2 = Z(X1 +X2),
which meet in the point (1,1,1) on C. To obtain the representative for Ω9, note
that the conic C =Z(X0(X0 +X1)+λX2(X1 +X2)) is nonsingular for all λ 6∈ {0,1},
by Lemma 2.2. Fix C by choosing such a λ, and then take the pair of real lines
L1L2 = Z(X0(X0 +X1)), which meets C in the four points

(3.5) P1 = (0,1,0), P2 = (1,1,0), P3 = (0,1,1) and P4 = (1,1,1).
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Lemma 3.12. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 4.4)
The hyperplane-orbit distribution of a solid of type Ω8, respectively Ω9, is [0,2,0, q−
1], respectively [0,3,0, q−2]. In particular, these orbits are distinct and do not belong
to {Ω1, . . . ,Ω7}.

Proof. Let S8 and S9 denote the representatives in (3.4). A conic Z(X0X1 +X2
2 +

λ((X0 +X2)(X1 +X2))) in the pencil P(S8) is singular if and only if λ = 1, by
Lemma 2.2, and setting λ = 1 yields a pair of real lines. As noted above, a conic
Z(X0(X0 +X1) +λX2(X1 +X2)) in P(S9) is singular if and only if λ ∈ {0,1}, and
both values produce pairs of real lines distinct from the chosen generator Z(X0(X0 +
X1)).

Remark 3.4. (Alnajjarine, Lavrauw & Popiel , 2022, Remark 4.5)
If S8 ∈Ω8 then the second pair of real lines in P(S8) has (k1,k2) = (2,1): it comprises
the secant Z(X2) and the tangent Z(X0 +X1) to the generating nonsingular conic
Z(X0X1 +X2

2 ). Since the stabiliser of a nonsingular conic C acts 3-transitively on
the points of C, this implies that Ω8 is the only K-orbit obtained from a pencil
generated by a nonsingular conic C and a real line pair consisting of a secant and a
tangent to C meeting at a point not on C. (Note that the above lines meet in the
point (1,1,0), which is not on Z(X0X1 +X2

2 ).) On the other hand, the three pairs
of real lines in P(S9) all have (k1,k2) = (2,2).

Lemma 3.13. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 4.6)
The point-orbit distribution of a solid of type Ω8 is [3,1, q2 + 2q− 3, q3− q]. The
point-orbit distribution of a solid of type Ω9 is [4,1, q2 + 3q−4, q3−2q].

Proof. Consider again the solids S8 and S9 in (3.4). The cubic surface Ψ(S8) =
Z(XY T +XZ2 + Y 3 +Z2T ) intersects the plane Z(X) in a rational cubic curve
with q+ 1 points, and the points of Ψ(S8) \ Z(X) comprise the set {(1,0,0, t) :
t ∈ Fq}∪ {(1,1,1, t) : t ∈ Fq}∪ {(1,y,z,f(y,z)) : y,z ∈ Fq; y 6= z2}, where f(y,z) =
(z2 + y3)/(y+ z2), which has size q2 + q. It meets V(Fq) in the image of the base
of P(S8), and the nucleus plane in a unique point. The cubic surface Ψ(S9) =
Z(Z(XT +Y 2)+XT 2 +X2T ) meets the plane Z(X) in two lines and contains q2 +q
additional points, namely those comprising the set {(1,0, z,0) : z ∈ Fq}∪{(1,1, z,1) :
z ∈ Fq}∪{(1,y,g(y, t), t) : y, t ∈ Fq; t 6= y2} where g(y, t) = (t+ t2)/(t+y2). It meets
V(Fq) in the image of the base of P(S9), and the nucleus plane in a point.

Lemma 3.14. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 4.7)
If S8 ∈ Ω8 then KS8

∼= Cq−1×C2. If S9 ∈ Ω9 then KS9
∼= Sym4.

49



Proof. The solid S8 ∈ Ω8 given in (3.4) contains exactly two pairs of real lines,
namely L1L2 and L′1L′2 where L1 = Z(X1 +X2), L2 = Z(X0 +X2), L′1 = Z(X2)
and L′2 = Z(X0 +X1). Note that L1 and L2 meet in a point P = (1,1,1) which
also lies on L′2, while L′1 and L′2 meet in a point P ′ = (1,1,0) disjoint from L1L2.
The stabiliser G6PGL(3, q) of P(S8) therefore fixes both of L′1 and L′2, because L′1
meets L1L2 in the unique point P while L′2 meets L1L2 in two points, Q= (1,0,0)
and R = (0,1,0). Hence, it also fixes L1L2 and therefore P . That is, G is equal to
the stabiliser of P , P ′ and {Q,R}. Since P ′, Q and R are collinear, G∼= Cq−1×C2.
Explicitly, KS8

∼=G is generated by the elements of K represented by the matrices

(3.6)


0 1 0
1 0 0
0 0 1

 and


1 0 ω+ 1
0 1 ω+ 1
0 0 ω

 , where 〈ω〉= F×q .

If S9 ∈ Ω9 then the base of P(S9) is the frame of PG(2, q) given in (3.5), so KS4
∼=

Sym4.

3.2.2.2 (k1,k2) = (1,0)

To prove that the configuration (k1,k2) = (1,0) leads to a unique K-orbit, we
consider extending the nonsingular conic C to a conic in the quadratic extension
PG(2, q2) of PG(2, q). For clarity, we write C for the extension of C to PG(2, q2),
and use the same ‘bar’ notation for the corresponding extensions of other objects,
in particular L1 and L2 for the pair of real lines L1 and L2. Let σ ∈ PΓL(3, q2)
be the Frobenius collineation of PG(2, q2) induced by the automorphism a 7→ aq of
Fq2 . Since L2 is external to C (i.e. k2 = 0), L2 intersects C in a pair of conju-
gate points (P2,P σ2 ). Let P1 denote the unique point in which L1 meets C, and let
GC
∼= PGL(2, q2) denote the stabiliser of C in PGL(3, q2). Consider another real point

R1 and pair of conjugate points R2 and Rσ2 , associated with a second pair of real
lines L′1L′2 with (k1,k2) = (1,0). Let α denote the unique projectivity in GC mapping
the triple (P1,P 2,P σ2 ) to (R1,R2,Rσ2 ). Since GC acts sharply 3-transitively on the
points of C and ασα−1σ fixes the triple (P1,P 2,P σ2 ) pointwise, α commutes with σ
and therefore belongs to PGL(3, q). In other words, the stabiliser of C in PGL(3, q)
acts transitively on pairs of real lines meeting C in the configuration (k1,k2) = (1,0),
so there is a unique K-orbit of solids arising from this configuration. We denote this
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orbit by Ω10 and choose the representative

Ω10 :


x y z

y y+γt t

z t y

 , where Tr(γ−1) = 1,

obtained by taking C = Z(X0X1 +X2
2 ), L1 = Z(X1) and L2 = Z(X0 +X1 +γX2).

Lemma 3.15. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 4.8)
A solid S10 ∈ Ω10 has point-orbit distribution [1,1, q2 + 2q− 1, q3− q], hyperplane-
orbit distribution [0,1,1, q−1], and stabiliser KS10

∼=Cq−1×C2. In particular, Ω10 6∈
{Ω1, . . . ,Ω9}.

Proof. Let S10 be the solid given above. The hyperplane-orbit distribution is cal-
culated via Lemma 2.2, and implies that Ω10 is distinct from all previously con-
sidered K-orbits. Explicitly, the only singular conic in P(S10) other than L1L2

is the pair of imaginary lines L′1L′2 = Z(X2
1 + γX1X2 +X2

2 ). The cubic surface
Ψ(S10) = Z(T 2X + γTXY + γTZ2 +XY 2 + T 3 + TZ2) meets the plane Z(Y ) in
the union of the nonsingular conic C′ = Z(Y,TX + γZ2 + T 2 +Z2) and the line
Z(Y,T ), which is tangent to C′. The remaining points of Ψ(S10) comprise the
set {(f(z, t),1, z, t) : z, t ∈ Fq}, where f(z, t) = (z2(1 + γt) + 1)/(t2 + γt+ 1), which
has size q2. Moreover, Ψ(S10) meets V(Fq) in the (unique) point (1,0,0,0), and
the nucleus plane in the point (0,0,1,0). To calculate the stabiliser, note that L′1
and L′2 meet in a point P ′ = (1,0,0) which also lies on L1, while L1 and L2 meet
in a point P = (γ,0,1) disjoint from L′1L′2. Extending to PG(2, q2), we therefore
obtain a pencil P(S10) of type Ω8. In particular, the stabiliser G 6 PGL(3, q2)
of P(S10) is equal to the stabiliser of P , P ′ and {Q,R} = L2 ∩L′1L′2. Hence,
G ∼= Cq2−1×C2 by Lemma 3.14, and comparing with (3.6) we see that over Fq
we obtain KS10

∼= Cq−1×C2.

3.2.2.3 (k1,k2) = (1,2)

Next we consider the configuration (k1,k2) = (1,2), namely the case in which L1 is
a tangent to C and L2 is a secant to C. If the point P = L1∩L2 is not on C then,
by Remark 3.4, we obtain the K-orbit Ω8. Hence, we may assume that P is on C,
and since the stabiliser of a nonsingular conic acts 3-transitively on the points of
the conic, a unique K-orbit arises in this way. (Indeed, 2-transitivity is sufficient to
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guarantee this.) We denote this K-orbit by Ω11 and choose the representative

Ω11 :


x y z

y t ·
z · y

 ,

obtained by taking C = Z(X0X1 +X2
2 ), L1 = Z(X1) and L2 = Z(X2).

Lemma 3.16. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 4.9)
A solid S11 ∈ Ω11 has point-orbit distribution [2,1, q2 + q− 2, q3], hyperplane-orbit
distribution [0,1,0, q], and stabiliser KS11

∼= Eq o Cq−1. In particular, Ω11 6∈
{Ω1, . . . ,Ω10}.

Proof. Let S11 be the solid given above. Lemma 2.2 implies that the pair of real
lines L1L2 is the only singular conic in the pencil P(S11), so the hyperplane-orbit
distribution of S11 is [0,1,0, q]. In particular, Ω11 is distinct from all of Ω1, . . . ,Ω10.
The cubic surface Ψ(Ω11) = Z(XY T +Y 3 +Z2T ) intersects the plane Z(Y ) in the
two lines Z(Y,Z) and Z(Y,T ) and contains q2−q additional points, comprising the
set {(x,1, z,(x+ z2)−1) : x,z ∈ Fq; x 6= z2}. There are two points in S11 ∩V(Fq),
namely P1 = (1,0,0,0) and P2 = (0,0,0,1), and one point Q = (0,0,1,0) in which
S11 meets the nucleus plane. The stabiliser KS11 certainly fixes Q and {P1,P2}.
However, P1 is the image under ν of the point of intersection of L1L2, so KS11 must
fix P1 and P2 pointwise. An element of KP1 ∩KP2 ∩KQ is represented by a matrix
(gij) ∈GL(3, q) with g12 = g21 = g23 = g31 = g32 = 0. It fixes S11 if and only if it also
maps the point R = (0,1,0,0) into S11. This occurs if and only if also g11g22 = g2

33,
so KS11

∼= EqoCq−1.

3.2.2.4 (k1,k2) = (2,0)

We now show that the configuration (k1,k2) = (2,0) also produces exactly one new
K-orbit. As in the case (k1,k2) = (1,0), consider the extension C of the nonsingular
conic C to PG(2, q2). The extension L1 of the secant line C meets C in two Fq-
rational points, and the extension L2 of the external line L2 meets C in two Fq2-
rational points which are conjugate under the Frobenius collineation σ induced by
the automorphism a 7→ aq of Fq2 . These four points form a frame of PG(2, q2), since
they lie on C. Any two such configurations are therefore PGL(3, q2)-equivalent, via
some α ∈ PGL(3, q2). Verifying that ασα−1σ fixes the frame obtained from L1L2

implies that α ∈ PGL(3, q), cf. the case (k1,k2) = (1,0). Hence, we obtain at most
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one K-orbit from the configuration (k1,k2) = (2,0). We verify below that this orbit
is distinct from all previously considered orbits, and therefore label it Ω12 and choose
the representative

Ω12 :


x y z

y t γy+ z

z γy+ z y

 , where Tr(γ−1) = 1,

obtained by taking C = Z(X0X1 +X2
2 ), L1 = Z(X2) and L2 = Z(X0 +X1 +γX2).

Lemma 3.17. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 4.10)
A solid of type Ω12 has point-orbit distribution [2,1, q2 + q− 2, q3], hyperplane-orbit
distribution [0,1,0, q], and stabiliser KS12

∼= C2
2 . In particular, Ω12 6∈ {Ω1, . . . ,Ω11}.

Proof. The proof is similar to that of Lemma 3.16 (for Ω11). Taking S12 to be the
solid defined above, Lemma 2.2 yields the hyperplane-orbit distribution. The cubic
surface Ψ(S12) meets the plane Z(Y ) in two lines and contains q2−q further points.
It meets V(Fq) in the two points P1 = (1,0,0,0) and P2 = (0,0,0,1), and the nucleus
plane in the point Q = (0,0,1,0). The stabiliser KS12 must fix Q and {P1,P2}. It
induces a permutation group of order 2 on {P1,P2} because e.g. the element of
K represented by the matrix obtained by swapping the first and second columns
of the identity fixes S12 and swaps P1 and P2. An element of KP1 ∩KP2 ∩KQ is
represented by a matrix (gij)∈GL(3, q) with g12 = g21 = g31 = g32 = 0, g22 = g11 and
g23 = g13. It fixes S12 if and only if it also maps the point (0,1,0,0) into S12, which
occurs if and only if g33 = g11 and g13 ∈ {0,γg11}. Factoring out scalars, we see that
the kernel of the action of KS12 on {P1,P2} also has order 2. Therefore, KS12

∼= C2
2 .

The point- and hyperplane-orbit distributions of S12 imply that Ω12 is distinct from
all previously considered K-orbits, with the possible exception of Ω11. However,
KS12

∼=C2
2 is not isomorphic to KS11

∼=EqoCq−1 (for any q), so also Ω12 6= Ω11.

Remark 3.5. (Alnajjarine, Lavrauw & Popiel , 2022, Remark 4.11)
It is also possible to distinguish between the K-orbits Ω11 and Ω12 using their
line-orbit distributions, rather than their stabilisers, as follows. As per Lavrauw &
Popiel (2020), a line of type “o6” is characterised by having point-orbit distribution
[1,1, q− 1,0]. Considering again the solids Si ∈ Ωi, i ∈ {11,12}, used above, we
therefore see that in each case the only candidates for lines of type o6 are the two
lines 〈Q,P1〉 and 〈Q,P2〉, where Q= (0,0,1,0) is the unique point in which Si meets
the nucleus plane, and P1 = (1,0,0,0) and P2 = (0,0,0,1) are the two points of rank
1 in Si. Only one of these four lines has type o6, namely 〈Q,P1〉 in the case i= 11.
Therefore, S11 and S12 have different line-orbit distributions, and so Ω11 6= Ω12. (We
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note also that there is a typo in (Lavrauw & Popiel, 2020, Table 4): the fifth column
should say that a line of type o6 contains one point of the nucleus plane. This is,
however, clear from the representative given in (Lavrauw & Popiel, 2020, Table 2).)

3.2.2.5 (k1,k2) = (0,0)

Finally, we show that the configuration (k1,k2) = (0,0) also produces a unique K-
orbit. It suffices to use an argument similar to the one used in the case (k1,k2) =
(2,0). This time, both L1 and L2 are external to C and so both give rise to pairs
of conjugate points (with respect to the Frobenius collineation σ). The four points
again form a frame, so the same argument as before shows that at most one K-orbit
arises. We denote this orbit by Ω13 and choose the representative

Ω13 :


x y z

y γx+y t

z t γx+ z

 , where Tr(γ) = 1,

obtained as follows. Consider the two pairs of imaginary lines Ci = Z(fi) where
f1 = γX2

0 +X0Xi +X2
i , i ∈ {1,2}. Then the pencil P(S13) corresponding to the

solid S13 defined above is generated by C1 and C2. We must show that P(S13)
contains a nonsingular conic C and a pair of real lines external to C. By Lemma 2.2,
the conic Z(λ1f1 +λ2f2) is singular if and only if λ1 = 0, λ2 = 0 or λ1 = λ2. Setting
λ1 = λ2 yields the pair of real lines L1 = Z(X1 +X2) and L2 = Z(X0 +X1 +X2),
both of which are external to every nonsingular conic in the pencil, by Lemma 2.5.

Lemma 3.18. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 4.12)
A solid S13 ∈ Ω13 has point-orbit distribution [0,1, q2 + 3q,q3 − 2q], hyperplane-
orbit distribution [0,1,2, q − 2], and stabiliser KS13

∼= C2
2 o C2. In particular,

Ω13 6∈ {Ω1, . . . ,Ω12}.

Proof. Let S13 be the solid defined above. The preceding discussion gives the
hyperplane-orbit distribution, which implies that Ω13 6∈ {Ω1, . . . ,Ω12}. The cubic
surface Ψ(S13) intersects the plane Z(X) in three concurrent lines Z(X,Y ), Z(X,Z)
and Z(X,Y +Z), and contains a further q2 points, parameterised as (1,y,z,f(y,z))
where f(y,z) = (γ + γy+ γz + γy2 + γz2 + yz + y2z + yz2)1/2. It is disjoint from
V(Fq) and meets the nucleus plane in a unique point, so the point-orbit distribution
of S13 is [0,1, q2 + 3q,q3− 2q]. It remains to calculate the stabiliser. As per the
discussion preceding the lemma, if we extend P(S13) to PG(2, q2) we obtain a pencil
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with four base points comprising a frame B = {P1,P2,P3,P4}, say. This pencil has
type Ω9, so its stabiliser G 6 PGL(3, q2) is isomorphic to Sym4, by Lemma 3.14.
The stabiliser G = G∩PGL(3, q) of P(S13) is therefore a subgroup of Sym4. Now,
P(S13) also contains a unique pair of real lines L1L2, and over F2

q each of these lines
meets two points of B, say L1 = 〈P1,P2〉 and L2 = 〈P3,P4〉. Since G fixes L1L2, it
fixes {{P1,P2},{P3,P4}} over F2

q , and therefore induces a subgroup of the permu-
tation group H = 〈(P1,P2),(P3,P4),(P1,P3)(P2,P4)〉 ∼= C2

2 oC2 on B. Conversely,
a calculation shows that KS13 contains the group generated by the elements of K
represented by the matrices

1 0 0
1 1 0
0 0 1

 ,


1 0 0
0 1 0
1 0 1

 and


1 0 0
0 0 1
0 1 0

 ,

which is isomorphic to H. We therefore conclude that KS13
∼= C2

2 oC2.

3.2.3 Solids contained in no hyperplanes of type H1 or H2r

Of the solids S with hyperplane-orbit distribution ODK,4(S) = [a1,a2r,a2i,a3] where
1 6 a3 6 q, we have now classified those for which at most one of a1 and a2r is 0.
It therefore remains to consider the case in which ODK,4(S) = [0,0,a2i,a3]. This
assumption implies, of course, that a2i > 1, since a3 6 q. On the other hand,
Lemma 3.1(ii) implies that a2i 6 1, since a2r = 0 and b > 0. Therefore, we must
have ODK,4(S) = [0,0,1, q]. Note that this then forces b = 0 in Lemma 3.1, so
that P(S) must have empty base. We claim that the hyperplane-orbit distribution
[0,0,1, q] gives rise to a unique K-orbit, with representative

(3.7) Ω14 :


x y γx+y+γt

y γx+y z

γx+y+γt z t

 , where Tr(γ) = 1.

This solid, call it S14, is obtained from the pencil generated by the nonsingular conic
Z(X2

1 +X0X2 +γX2
2 ) and the pair of imaginary lines L1L2 =Z(γX2

0 +X0X1 +X2
1 ).

Lemma 2.2 confirms that P(S14) contains no other singular conics, and so S14 has
the desired hyperplane-orbit distribution; it also has empty base, since the unique
real point (0,0,1) on L1L2 does not lie on any of the nonsingular conics.
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Lemma 3.19. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 4.13)
A solid of type Ω14 has point-orbit distribution [0,1, q2 + q,q3] and hyperplane-orbit
distribution [0,0,1, q]. In particular, Ω14 6∈ {Ω1, . . . ,Ω13}.

Proof. It remains to calculate the point-orbit distribution. Taking S14 ∈ Ω14 as
above, we find that the cubic surface Ψ(S14) meets the plane Z(X) in the line
Z(X,Y ) and contains a further q2 points, parameterised as (1,y,f(y, t), t) with
f(y, t) = (γ2t2 +γyt2 +γ+γy+γt+γy2 + ty+ ty2 +y3)1/2. It is disjoint from V(Fq)
(since P(S14) has empty base) and meets the nucleus plane in one point.

We now show that all solids with hyperplane-orbit distribution [0,0,1, q] belong to
the K-orbit Ω14, before finally calculating the stabiliser of such a solid.

Lemma 3.20. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 4.14)
The solids with hyperplane-orbit distribution [0,0,1, q] form one K-orbit.

Proof. Let S be a solid with hyperplane-orbit distribution [0,0,1, q], and let L1L2

be the unique pair of imaginary lines in the pencil P(S). To prove the result, we
consider the extension of P(S) to PG(2, q2). Since L1 and L2 are conjugate with
respect to the Frobenius collineation σ induced by the automorphism a 7→ aq of Fq2 ,
let us relabel them as ` and `σ. Choose a nonsingular conic C in P(S), and denote
the extensions of P(S), C, ` and `σ to PG(2, q2) using a ‘bar’ (as in previous such
arguments). Recall from the discussion preceding Lemma 3.19 that ` and `σ are
external to C, since P(S) necessarily has empty base. We claim that ` and `σ are
likewise external to C. If ` is a tangent to C, meeting C in a point P , then `σ is
the tangent to C at the point P σ. By the classification in Section 3.2.1, specifically
Remark 3.3, the pencil P(S) then has type Ω6 (over Fq2). In particular, {P,P σ} is
the base of P(S), and the line 〈P,P σ〉 is its unique double line. However, this line is
fixed by σ, so we have a contradiction. If ` is a secant to C then it meets C in a pair
of conjugate points {P,P σ}, and `σ is also a secant, meeting C in another pair of
conjugate points {Q,Qσ}. These four points are distinct because the point of inter-
section of ` and `σ does not belong to C, so it follows from Section 3.2.2.1 that P(S)
has type Ω9. However, the conic comprising the pair of lines 〈P,Q〉 and 〈P σ,Qσ〉
then belongs to P(S), a contradiction since this line pair is fixed by σ. Hence, `
and `σ are external to C as claimed. Section 3.2.2.5 therefore implies that P(S) has
type Ω13. Now suppose that S′ is a second solid with hyperplane-orbit distribution
[0,0,1, q], and letm, mσ be the unique imaginary line pair in P(S′). Since P(S′) also
has type Ω13, there exists a projectivity α ∈ PGL(3, q2) mapping S to S′. Choose
two points R1 and R2 on ` that do not belong to `σ. Then Λ = (R1,R2,Rσ1 ,R

σ
2 ) is

a frame of PG(2, q2), mapped by α to a frame (W1,W2,W σ
1 ,W

σ
2 ), where without
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loss of generality the points W1 and W2 are on m \mσ. The projectivity ασα−1σ

fixes Λ pointwise, and so is equal to the identity element of PGL(3, q2). Hence, α
commutes with σ, and therefore belongs to PGL(3, q). In other words, there exists
an element of PGL(3, q) mapping P(S) to P(S′), and so the solids S and S′ belong
to the same K-orbit.

Lemma 3.21. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 4.15)
If S14 ∈ Ω14 then KS14

∼= C4.

Proof. Let ` and `σ be the unique pair of imaginary lines in P(S14), where σ is
the Frobenius collineation of PG(2, q2) induced by the automorphism a 7→ aq of
Fq2 . As explained above, the extension P(S14) of the pencil P(S14) to PG(2, q2)
has type Ω13. The base B of P(S14) comprises two distinct points P and Q on
the line ` and their conjugates P σ and Qσ on `σ. By the proof of Lemma 3.18,
the stabiliser of P(S14) in PGL(3, q2) is isomorphic to the permutation group
H = 〈(P,Q),(P σ,Qσ),(P,P σ)(Q,Qσ)〉6 Sym(B), which has order 8. Now, observe
that the projectivity inducing the permutation (P,Q) does not belong to PGL(3, q),
because if an element of PGL(3, q) swaps P and Q then it must also swap P σ and
Qσ. (Indeed, none of the given generators of H are realised over Fq.) Therefore,
the stabiliser of P(S14) in PGL(3, q) has order at most 4. Conversely, if we take
S14 to be the solid defined in (3.7) then a calculation shows that S14 is fixed by the
subgroup of K generated by the element of order 4 represented by the matrix

1 0 0
1 1 0
0 γ−1 1


We therefore conclude that KS14

∼= C4, as claimed.

3.3 Solids contained in q+ 1 hyperplanes of type H3

It remains to consider the possibility that a solid S of PG(5, q) is contained in q+1
hyperplanes of type H3, or, equivalently, that the associated pencil of conics P(S)
contains q+ 1 nonsingular conics. We first establish the existence of such solids.
Choose b,c∈ Fq such that the cubic bλ3 +cλ+1 has no roots over Fq. (For example,
take the minimal polynomial of a primitive element α of the field extension Fq3/Fq,
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scale it to make the constant term 1, and then apply a coordinate transformation to
eliminate the λ2 term.) Lemma 2.2 shows that the pencil generated by Z(X0X1 +
X2

2 ) and Z(X0X2 + bX2
1 + cX2

2 ) contains q+1 nonsingular conics, and so we obtain
the desired orbit of solids with hyperplane-orbit distribution [0,0,0, q+ 1],

(3.8) Ω15 :


x y bz+ cy

y z t

bz+ cy t y

 , where bλ3 + cλ+ 1 is irreducible over Fq.

By Lemma 3.1, a pencil of conics corresponding to a solid in this orbit has a unique
base point.

Lemma 3.22. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 5.1)
A solid of type Ω15 has point-orbit distribution [1,1, q2− 1, q3 + q] and hyperplane-
orbit distribution [0,0,0, q+ 1].

Proof. Let S15 be the solid defined in (3.8), for some fixed b,c ∈ Fq such that bλ3 +
cλ+ 1 is irreducible over Fq. It remains to calculate the point-orbit distribution of
S15. The cubic surface Ψ(S15) intersects the plane Z(Z) in a rational cubic curve
consisting of q+ 1 points, and contains a further q2− q points, parameterised as
(f(y, t),y,1, t) with f(y, t) = (b+ cy2 + y3)/(t2 + y) and t2 6= y. It meets V(Fq) in
a unique point, and the nucleus plane in a unique point. Hence, the point-orbit
distribution of S15 is [1,1, q2−1, q3 + q].

We now show that every solid with hyperplane-orbit distribution [0,0,0, q+ 1] be-
longs to the K-orbit Ω15. We need to know the sizes of the following unions of
K-orbits, which are calculated via the orbit–stabiliser theorem using the relevant
stabilisers (from Table 3.2) and the fact that |K|= |PGL(3, q)|= q3(q3−1)(q2−1):

|Ω6∪Ω7|= q4(q2 +q+1), |Ω8∪Ω10|= q3(q3−1)(q+1), |Ω9∪Ω13|= 1
6q

3(q3−1)(q2−1).

Note also that |H1|= q2 +q+1, |H2r|= 1
2q(q+1)(q2 +q+1), |H2i|= 1

2q(q−1)(q2 +
q+1) and |H3|= q5−q2. Write H2 =H2r∪H2i and note that |H2|= q2(q2 +q+1).

Lemma 3.23. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 5.2)
A hyperplane belonging to the K-orbit H3 contains exactly q2 solids that are con-
tained in a hyperplane of type H1 and in a hyperplane of type H2.

Proof. Since H3 is a K-orbit, each of its hyperplanes contains the same number of
solids that are contained in a hyperplane of type Hj for both j ∈ {1,2}. Denote
this number by k. Let H ∈ H3 and H1 ∈ H1. By Section 3.2.1, the solid H ∩H1
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belongs to one of the K-orbits Ω5, Ω6 or Ω7, and accordingly has hyperplane orbit
distribution [1,0,0, q], [1,1,0, q− 1] or [1,0,1, q− 1] (by Lemma 3.11). If a solid
H ∩H2 with H2 ∈H2 belongs to a hyperplane of type H1, it therefore has type Ω6

or Ω7, and each such solid belongs to q− 1 hyperplanes of type H3. Counting the
flags (H,S) where H ∈H3 and S is a solid contained in a hyperplane of type Hj for
both j ∈ {1,2} gives |H3| ·k = |Ω6∪Ω7| · (q−1), so k = q2.

Lemma 3.24. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 5.3)
There are exactly 1

3q
3(q3 − 1)(q2 − 1) solids with hyperplane-orbit distribution

[0,0,0, q+ 1].

Proof. Consider a hyperplane H of type H3. If a solid contained in H is contained
in a hyperplane of type H1, then it is contained in exactly one such hyperplane, by
the classification in Section 3.2, so there are |H1| = q2 + q+ 1 such solids in H. If
a solid in H is not contained in a hyperplane of type H1, then it is contained in i
hyperplanes of type H2 for some i ∈ {0,1,2,3}, by Lemma 3.10. Let ni denote the
number of solids contained in H in each case. The total number of solids in PG(5, q)
with hyperplane-orbit distribution [0,0,0, q+ 1] is then equal to

(3.9) |H3| ·n0
q+ 1 ,

so we must calculate n0. The total number of solids in H is N = (q5−1)/(q−1), so∑3
i=0ni =N −|H1|= q(q3 +1). Now count the flags (S,H ′) where S is a solid in H

that is not contained in a hyperplane of type H1 and H ′ is a hyperplane of type H2.
By Lemma 3.23, we obtain ∑3

i=1 i ·ni = |H2|−q2 = q(q3 +1). In particular, we have∑3
i=0ni =∑3

i=1 i ·ni and so n0 = n2 +2n3. Now, a solid contributing to n2 belongs to
Ω8∪Ω10, so n2 = (q− 1)|Ω8∪Ω10|/|H3| = q(q2− 1). Similarly, a solid contributing
to n3 belongs to Ω9 ∪Ω13, giving n3 = (q− 2)|Ω9 ∪Ω13|/|H3| = 1

6q(q
2− 1)(q− 2).

Therefore, n0 = n2 + 2n3 = 1
3q(q+ 1)(q2− 1). Putting this into the expression in

(3.9) completes the proof.

Lemma 3.25. (Alnajjarine, Lavrauw & Popiel , 2022, Lemma 5.4)
If S15 ∈ Ω15 then KS15

∼= C3.

Proof. To prove this, consider the cubic extension P(S15) of the pencil P(S15),
namely its extension to PG(2, q3). Since P(S15) contains no singular conics, P(S15)
contains exactly three singular conics (cf. Lemma 3.10), which must be conjugate
under the Frobenius collineation σ of PG(2, q3) induced by the automorphism a 7→ aq

of Fq3 . In particular, these conics must all correspond to hyperplanes of PG(5, q3)
of the same type. According to the hyperplane-orbit distributions in Table 3.2,
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the only possibility is that S15 has type Ω9 over Fq3 . Hence, by Lemma 3.14, the
stabiliser G 6 PGL(3, q3) of P(S15) is isomorphic to the full permutation group of
the four base points of P(S15). Only one of these base points, call it Q, is Fq-
rational, since P(S15) has a unique base point; the other three are conjugate under
σ, so we may label them as P , P σ, P σ2 . The stabiliser G6 PGL(3, q) of P(S15) is
therefore a subgroup of GQ ∼= Sym3. We claim that G induces a group of order 3
on {P,P σ,P σ2}. If α ∈ G fixes one of these points, say P , but is not the identity,
then it swaps P σ and P σ2 (and fixes Q), so Pασ = P σ and P σα = P σ

2 , contradicting
the fact that α commutes with σ. Therefore, α is the identity, and so G induces no
transpositions on {P,P σ,P σ2}. Conversely, consider the element β ∈ PGL(3, q3) in
the stabiliser of P(S15) corresponding to the 3-cycle (P,P σ,P σ2). Then β commutes
with σ and so belongs to G6 PGL(3, q). Hence, G has order 3.

Remark 3.6. (Alnajjarine, Lavrauw & Popiel , 2022, Remark 5.5)
For reference, we also record a matrix representative g ∈GL(3, q) for a generator of
KS15 , where S15 is the solid given in (3.8). If q = 2n with n even then we may choose
c = 0 and b a non-cube. In this case, g = diag(1, ζ, ζ2) where ζ ∈ Fq is a primitive
third root of unity. If n is odd then all elements of Fq are cubes, so c 6= 0 and we
can instead take c= b after a change of variable λ→

√
cb−1λ. In this case,

g =


1 0 0
0 ζ b

0 b ζ2 + b2

 , where ζ = b2
2

+ b2
4

+ · · ·+ b2
n−1

.

Lemmas 3.24 and 3.25 together imply that there is a unique K-orbit of solids with
hyperplane-orbit distribution [0,0,0, q+1], as claimed (by the orbit–stabiliser theo-
rem, since |K|= q3(q3−1)(q2−1)).

3.4 Solids in PG(5,2)

Tables 3.1 and 3.2 are also correct for q = 2, but some of the arguments in Sec-
tions 3.1–3.3 do not apply in this case. For instance, the orbit Ω1 can no longer be
obtained by considering two pairs of real lines meeting in a point, because a pencil
of conics P(S1) corresponding to a solid S1 ∈ Ω1 has a unique real line pair over
F2. Similarly, if S9 ∈ Ω9 then P(S9) no longer contains any nonsingular conics, so
the construction preceding Lemma 3.12 is not valid (but the generators given in
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Table 3.1 are). Moreover, the point- and hyperplane-orbit distributions of S9 now
coincide with those of a solid S4 ∈ Ω4, but the orbits of these solids can be distin-
guished either by their stabilisers, or by their line-orbit distributions: S4 contains
three lines of type o6, while S9 contains none (cf. Remark 3.5). In any case, it is
straightforward to check the correctness of Tables 3.1 and 3.2 for q= 2 either by hand
or via the FinInG package in GAP ( Bamberg, Betten, Cara, De Beule, Lavrauw
& Neunhöffer , 2018; GAP, 2021). (Note that the descriptions of the stabilisers in
Table 3.2 simplify in the obvious ways when q = 2, i.e. Cq−1 is the trivial group,
Eq ∼=C2, and GL(2, q)∼=D2(q+1)∼= Sym3. Similarly, we necessarily have γ = b= c= 1
in Table 3.1.)

Remark 3.7. By Remark 2.11, K ∼= PGL(3, q) is not the full setwise stabiliser of
the Veronese surface when q = 2. The full stabiliser is Sym7, and there are only 7
orbits of solids under this group, namely Ω1∪Ω10, Ω2∪Ω8, Ω3∪Ω5∪Ω15, Ω4∪Ω9,
Ω6∪Ω11∪Ω12, Ω7∪Ω14, and Ω13. Finally, note that the point-orbit distribution of
a subspace is not an invariant under Sym7, since the nucleus plane is not preserved
under the action.

Theorem 3.2. There are 7 J-orbits of solids, where J ∼= Sym7 is the group stabil-
ising V(F2). In particular, these orbits split under the action of PGL(3,2) into 15
orbits as described in Remark 3.7.

3.5 Comparison with Campbell’s partial classification

Campbell provided a list of 17 “classes” and “sets of classes” of pencils of conics
in PG(2, q), q even (Campbell, 1927). His analysis divided the classes of pencils
into the following sets: pencils with at least one double line (set 1); pencils with no
double lines and at least one real pair of lines (set 2); pencils with no double lines,
no real pairs of lines, and at least one conjugate imaginary pair of lines (set 3); and
pencils with no degenerate (singular) conics (set 4). The correspondence between
our classification and Campbell’s work (Campbell, 1927) is summarised in Table 3.4.
We remark that in the study of his set 3, Campbell claimed that a pencil belonging
to “set 15” has three imaginary pairs of lines and q− 2 nonsingular conics. The
non-existence of such a pencil was observed by Saniga (Saniga, 2000) (and also
follows from Table 3.2). Moreover, the existence of the K-orbit Ω14, whose elements
have hyperplane-orbit distribution [0,0,1, q], disproves Campbell’s claim (Campbell,

61



Class/Set of pencils Orbit(s) of solids

Class 1 Ω3
Class 2 Ω5
Class 3 Ω1
Class 4 Ω2
Class 5 Ω7
Class 6 Ω6
Class 7 Ω9
Class 8 Ω12
Class 9 Ω8
Set 10 Ω9, Ω12, Ω13
Class 11 Ω11
Class 12 Ω4
Class 13 Ω10
Set 14 Ω14
Set 15 Ω13
Set 16 Ω15
Set 17 Ω15

Table 3.4 Correspondence between K-orbits of solids in PG(5, q) and Campbell’s
“classes” and “sets of classes” of pencils of conics in PG(2, q), q even.

1927, p. 405) that there exists no pencil with a unique pair of imaginary conjugate
lines and q nonsingular conics.

Remark 3.8. In Table 3.4, the blue colour indicates a completion of the discussion
of Campbell’s sets of classes of pencils, while the red colour indicates a completion
and a correction of Campbell’s sets of classes of pencils. In particular, we proved
that the Set 10 splits into three orbits and each of the Sets 14, 15, 16 and 17 defines
a unique orbit, we corrected as well the hyperplane-orbit distributions of the pencils
in the Sets 14 and 15 as mentioned earlier.
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1≤ a3 ≤ q :

a3 = 0 :

a3 = q + 1 :

Figure 3.6 The 15 pencils of conics in PG(2, q), q 6= 2 even, up to projective equiva-
lence.
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4 PLANES INTERSECTING THE VERONESE SURFACE

NON-TRIVIALLY IN PG(5, q), q EVEN

In this chapter, we present our results from (Alnajjarine & Lavrauw, 2022). In
particular, we classify planes intersecting the Veronese surface in at least one point
in PG(5, q), q even, under the action of the subgroup K of PGL(6, q) stabilising the
Veronese surface. We compute for each (type of) plane π ⊆ PG(5, q) its point-orbit
distribution represented by the 4-tuple [r1, r2n, r2s, r3], where ri is the number of
rank-i points in π for i ∈ {1,3}, r2n is the number of rank-2 points in π meeting the
nucleus plane and r2s is the number of the remaining rank-2 points in π. In general,
we distinguish between orbits using point-orbit distributions, line-orbit distributions
and inflexion points defined in Chapter 2. Some of the arguments that we use here
come from the classification of planes meeting the Veronese surface non-trivially over
finite fields of odd characteristics (Lavrauw, Popiel & Sheekey, 2020). Note that,
similar to solids’ representations, planes in PG(5, q) can be seen as 3× 3-matrices.
For instance, the plane spanned by the first three points of the standard frame of
PG(5, q) can be represented by:

(4.1)


x y z

y . ·
z · ·

 :=



x y z

y 0 0
z 0 0

 : (x,y,z) ∈ PG(2, q)

 .

In this chapter, the homogeneous coordinates in PG(2, q) and PG(5, q) are denoted
by (X,Y,Z) and (Y0, . . . ,Y5) respectively, and Z(f) denotes the zero locus of a form
f .
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Definition 4.1. We define inflexion points of a plane π in PG(5, q) to be inflexion
points of its associated cubic curve in PG(2, q) defined as the determinant of the
matrix representation of π.

Remark 4.1. As we will see later, studying cubic curves associated with planes in
PG(5, q) can be useful to differentiate between non-equivalent planes, but it is not
sufficient to completely characterize each orbit. For instance, the representatives of
the orbits Σ8 and Σ9 in Table 4.1 share the same cubic curve Z(XZ2), however the
two orbits are distinct by their intersection with the nucleus plane N .

This chapter is structured as follows. The proof of our main result, Theorem 4.1,
is given in Sections 4.1–4.4. Note that, the case q = 2 requires special treatment,
and is handled in Section 4.5. Finally, we give in Section 4.6 a comparison with the
similar classification over finite fields of odd characteristic.

π

r1 ≥ 3 r1 = 2 r1 = 1

π = 〈points of rank ≤ 2〉 π 6= 〈points of rank ≤ 2〉

r2n = 0r2n 6= 0

2 orbits 3 orbits

5 orbits 4 orbits

1 orbit

Figure 4.1 The discussion structure of Chapter 4.

Theorem 4.1. (Alnajjarine & Lavrauw, 2022, Theorem 1.1)
Let q be an even prime power. There are exactly 15 orbits of planes having at least
one rank-1 point in PG(5, q) under the induced action of PGL(3, q) 6 PGL(6, q)
defined in Section 2.7.1. Representatives of these orbits are given in Table 4.1, the
notation of which is also defined in Section 2.2.3.

Before we start recall the 15 K-orbits of lines in PG(5, q), q even, from (Lavrauw
& Popiel, 2020), summarized in Table 2.2. The following two lemmas give bounds
on the number of rank-2 points in planes of PG(5, q) meeting V(Fq) in one or two
points.

Lemma 4.1. (Alnajjarine & Lavrauw, 2022, Lemma 2.8)
There is no plane in PG(5, q) with rank distribution [1,0, q2 + q].
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Proof. Let Q1 be the unique rank-1 point in a plane π ⊂ PG(5, q) having no rank-
2 points. By inspecting point-orbit distributions of lines of PG(5, q) from Table
2.2, we conclude that all lines through Q1 in π must be of type o9. There-
fore, we may assume without loss of generality that π = 〈Q1,Q2,Q3〉, where
〈Q1(1,0,0,0,0,0),Q2(0,0,1,1,0,0)〉 is the representative of the line orbit o9 in
(Lavrauw & Popiel, 2020, Table 2) and Q3 is a point of rank 3 with homogeneous co-
ordinates (0,a,0, b, c,d); a,b,c,d ∈ Fq. As Q3 has rank three, it follows that a,d 6= 0.
Thus, we may take Q3 as the point (0,1,0,a,b,c) for some a,b,c ∈ Fq with c 6= 0 and
the representative of π becomes 

x y z

y ay+ z by

z by cy

 .

The cubic curve associated with π has the form XF (Y,Z) +G(Y,Z), where

F (Y,Z) = b2Y 2 +acY 2 + cY Z, G(Y,Z) = aY Z2 + cY 3 +Z3.

Since F defines a quadric on PG(1, q) where each of its points satisfying F (Y,Z) 6= 0
corresponds to a point in π of rank 2, it follows that F must be identically zero.
Therefore, b= c= 0, a contradiction.

Lemma 4.2. (Lavrauw, Popiel & Sheekey, 2020, Lemma 4.6)
Every plane π in PG(5, q) with rank distribution [2, r2, r3] has at least q rank-2 points,
i.e., r2 ≥ q.

Proof. Let Q1,Q2 ∈ π ∩V(Fq). Since points on 〈Q1,Q2〉 have rank at most 2, it
follows that π has at least q−1 rank-2 points. Assume by way of contradiction that
r2 < q. Then, r2 = q− 1, and thus all rank-2 points in π lie on the line 〈Q1,Q2〉.
Consequently, the cubic curve C defining points of rank at most 2 in π is the triple
line 〈Q1,Q2〉. Assume without loss of generality that π = 〈Q1,Q2,Q3〉 where Q1 =
ν(e1), Q2 = ν(e2) and Q3 is a point of rank 3. Then,

MQ3 =


0 a b

a 0 c

b c d

 ,

for some a,b,c,d ∈ Fq. Hence, the cubic curve C = Z(dXY Z + c2XZ2 + a2dZ3 +
b2Y Z2) associated with π is a triple line. Therefore, c= d= 0, a contradiction with
the rank of Q3 being 3.
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4.1 Planes containing at least three rank-1 points

Let π be a plane in PG(5, q) with at least three rank-1 points. As V(Fq) is a cap,
it follows that no three rank-1 points in π are collinear. Thus, π can be viewed
as π = 〈Q1,Q2,Q3〉 where Qi = ν(qi) for 1 ≤ i ≤ 3. We differentiate between the
following two possibilities:

(i) If q1, q2 and q3 are collinear in PG(2, q), then Q1,Q2,Q3 ∈ C(Q1,Q2). As
PGL(3, q) acts transitively on lines in PG(2, q), it follows that planes satisfying
this configuration define a unique K-orbit Σ1. In particular, by taking 〈q1, q2〉 as
the line 〈e1, e2〉 we obtain the following representative

Σ1 :


x y .

y z .

. . .

 .

Lemma 4.3. The point-orbit distribution of a plane in Σ1 is [q+ 1,1, q2−1,0].

Proof. Points of rank one in Σ1 correspond to points on the quadric Z(XZ+Y 2).
The remaining q2 points in Σ1 are of rank two, where only the point parametrized
by (x,y,z) = (0,1,0) is contained in the nucleus plane N . Therefore, the point-orbit
distribution of a plane in Σ1 is [q+ 1,1, q2−1,0].

(ii) If q1, q2 and q3 are non-collinear in PG(2, q), then without loss of generality we
may take qi = 〈ei〉 for 1≤ i≤ 3. This gives a new plane orbit Σ2 whose representative
is

Σ2 :


x . .

. y .

. . z


and whose uniqueness is guaranteed by the 3-regular action of PGL(3, q) on points
of PG(2, q).

Lemma 4.4. The point-orbit distribution of a plane in Σ2 is [3,0,3q−3, q2−2q+1]
and Σ1 6= Σ2.

Proof. Points of rank at most two in Σ2 correspond to points on the cubic curve
C2 = Z(XY Z). The rank-1 points are particularly those with parametrized co-
ordinates (x,y,z) = (1,0,0), (0,1,0) and (0,0,1). The remaining 3q− 3 points on
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C2 correspond to rank-2 points in Σ2 where none of these is contained in the nu-
cleus plane Z(Y0,Y3,Y5). Therefore, the point-orbit distribution of a plane in Σ2 is
[3,0,3q−3, q2−2q+ 1] and Σ1 6= Σ2 by their distinct point-orbit distributions.

Remark 4.1. Combining results of Lemma 4.1, Lemma 4.2 and Section 4.1 implies
that every plane in PG(5, q) intersecting the Veronese surface in at least one point
can be represented by π = 〈Q1,Q2,Q3〉 where the rank of Q1 and Q2 is at most 2.

4.2 Planes containing two rank-1 points

We consider in this section planes of PG(5, q) intersecting the Veronese surface
in exactly two points. Let π be such a plane containing the rank-1 points Q1

and Q2. By Lemma 4.2, there exists a rank-2 point in π not lying on the line
Q1Q2. Hence, we may assume that π = 〈Q1,Q2,Q3〉 where rank(Q3) = 2. Let
U = C(Q1,Q2)∩C(Q3) where C(Q1,Q2) and C(Q3) are the two conics associated
with {Q1,Q2} and Q3 respectively (see Section 2.7). We study separately the cases
where U ∈ {Q1,Q2} or U 6∈ {Q1,Q2}.

〈C(Q3)〉

〈C(Q1,Q2)〉

Q1

Q2

U

Q1

Q2

〈C(Q1,Q2)〉

〈C(Q3)〉

Figure 4.2 Configurations associated with cases (i) and (ii), respectively.

(i) If U ∈ {Q1,Q2}, then without loss of generality we may assume that U = Q1.
Let q1, q2 and l3 be the preimages under ν of Q1, Q2 and C(Q3) respectively. As the
elation group E(q1,〈q1, q2〉), with centre q1 and axis 〈q1, q2〉, acts transitively on the
affine points of PG(2, q)\〈q1, q2〉, it follows that we may fix 〈q1, q2〉 and l3 as 〈e1, e2〉
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and 〈e1, e3〉 respectively. Hence the points Q1,Q2 can be represented by

MQ1 =


1 0 0
0 0 0
0 0 0

 and MQ2 =


0 0 0
0 1 0
0 0 0

 ,

respectively. Since π contains the line 〈Q1,Q2〉, we have two possibilities: (i-a)
Q3 ∈ TQ1(C(Q3)), or (i-b) Q3 ∈ 〈C(Q3)〉 \ (C(Q3)∪TQ1(C(Q3))).

(i−a) If Q3 ∈ TQ1(C(Q3)), then π is completely determined by 〈Q1,Q2〉 and
TQ1(C(Q3)) = Z(Y5), where C(Q3) = Z(Y0Y5 + Y 2

2 ) ∩ Z(Y1,Y3,Y4), leading to a
unique orbit represented by

Σ3 :


x . z

. y .

z . .

 .

Lemma 4.5. The point-orbit distribution of a plane in Σ3 is [2,1,2q−2, q2−q]. In
particular, Σ3 6∈ {Σ1,Σ2}.

Proof. Let π3 be the above representative of Σ3. Points of rank at most 2 in π3

correspond to points on the cubic curve C3 = Z(Y Z2). Among these 2q+ 1 points,
there are exactly two rank-1 points corresponding to points of Z(Z,XY ) and a
unique rank-2 point in N ∩ π3 = Z(X,Y ) with parametrized coordinates (0,0,1).
Therefore, the point-orbit distribution of a plane in Σ3 is [2,1,2q− 2, q2− q]. In
particular, Σ3 6∈ {Σ1,Σ2}.

(i−b) Assume now that Q3 ∈ 〈C(Q3)〉 \ (C(Q3) ∪ TQ1(C(Q3))) and let
R3 = ν(r3) = 〈Q1,Q3〉 ∩ C(Q3). The subgroup in PGL(3, q) stabilising {q1, q2}
and l3 contains the elation group with center q1 and axis 〈q1, q2〉, and thus it acts
transitively on points of l3 \{q1}. Hence, without loss of generality we may also fix
r3. Now , as π = 〈Q1,Q2,Q3〉 = 〈Q1,Q2,R3〉, it follows that π intersects V(Fq) in
three points, returning us to the already obtained Σ2.

(ii) If U 6∈ {Q1,Q2}, then the preimages of these points under ν must be collinear
in PG(2, q). Without loss of generality, let q1 = 〈e1〉, q2 = 〈e2〉 and u= 〈e1 +e2〉. As
E(q1,〈q1, q2〉) acts transitively on the affine points of PG(2, q) \ 〈q1, q2〉, it follows
that we may fix l3 = ν−1(C(Q3)) as 〈e1 + e2, e3〉. We study separately the following
possibilities of Q3 in the conic plane 〈C(Q3)〉: (ii-a) Q3 = N(C(Q3))(0,0,1,0,1,0)
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, (ii-b)Q3 ∈TU (C(Q3))\{N(C(Q3)),U} or (ii-c)Q3 ∈ 〈C(Q3)〉\(C(Q3)∪TU (C(Q3))).

(ii−a) If Q3 is the nucleus point N(C(Q3)), then we obtain the orbit represented
by

Σ4 :


x . z

. y z

z z .

 .

Lemma 4.6. The point-orbit distribution of a plane in Σ4 is [2,1,2q−2, q2−q]. In
particular, Σ4 6∈ {Σ1,Σ2,Σ3}.

Proof. Let π4 be the above representative of Σ4. Rank-1 points in π4 correspond
to points on Z(XY,Z). Namely, points with parametrized coordinates (1,0,0) and
(0,1,0). The remaining points on the cubic curve C4 = Z(Z2(X +Y )) correspond
to points of rank 2, where only the point parametrized by (0,0,1) lies in π4∩N =
Z(X,Y ). Therefore, the point-orbit distribution of a plane in Σ4 is [2,1,2q−2, q2−q]
and Σ4 6∈ {Σ1,Σ2} by their different point-orbit distributions. Finally, by observing
that C3, the cubic curve associated with π3, is the union of two lines of type o5 and
o6, while C4 is the union of two lines of type o5 and o12,2, we can deduce that Σ3

and Σ4, which share the same point-orbit distribution, are also distinct.

(ii−b) If Q3 ∈ TU (C(Q3))\{N(C(Q3)),U}, then without loss of generality we may
assume that Q3 is (a,a,1,a,1,0) for some a ∈ Fq \{0}. It follows that π, represented
by

πa :


x+az az z

az y+az z

z z .


for some a ∈ Fq \ {0}, intersects the nucleus plane in a unique point Q′3 with
homogeneous coordinates (0,a,1,0,1,0). By considering the two possibilities where
U ′ = C(Q1,Q2)∩CQ′3 belongs to {Q1,Q2} or not, we end up in one of the orbits Σ3

or Σ4. Hence, this case will not define a new orbit.

(ii−c) Finally, if Q3 ∈ 〈C(Q3)〉 \ (C(Q3) ∪ TU (C(Q3))), then let R3 = ν(r3) =
〈U,Q3〉 ∩ C(Q3). The subgroup in PGL(3, q) stabilising {u,q1, q2} and l3 contains
the elation group with center u and axis 〈q1, q2〉, and thus it acts transitively on
points of l3 \ {u}. Hence, without loss of generality we may also fix r3. Now, as
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PGL(3, q) acts sharply transitively on frames in PG(2, q), it follows that the sub-
group stabilising {u,q1, q2, r3} pointwise acts transitively on points of l3 \ {u,r3}.
This shows that any choice of Q3 as a point on the secant 〈U,R3〉 defines the same
orbit. More generally, any choice of a point on 〈C(Q3)〉\(C(Q3)∪TU (C(Q3))) defines
a unique orbit which we denote by Σ5 and has the representative

Σ5 :


x . z

. y z

z z z

 ,

for the choice Q3 = (0,0,1,0,1,1).

Lemma 4.7. The point-orbit distribution of a plane in Σ5 is [2,0,2q−2, q2−q+1].
In particular, Σ5 6∈ {Σ1,Σ2,Σ3,Σ4}.

Proof. Let π5 be the above representative of Σ5. Points of rank at most 2 in π

correspond to points of the cubic curve C5 = Z(XY Z +XZ2 + Y Z2), which in-
tersect the nucleus plane N trivially and the Veronese surface V(Fq) in exactly
two points. Namely, points with parametrized coordinates (1,0,0) and (0,1,0).
Therefore, the point-orbit distribution of a plane in Σ5 is [2,0,2q−2, q2−q+1] and
Σ5 6∈ {Σ1,Σ2,Σ3,Σ4}.

4.3 Planes containing one rank-1 point and spanned by points of rank

at most 2

We investigate in this section planes of PG(5, q) spanned by points of rank at most
2 and which meet the Veronese surface in exactly one point. Let π = 〈Q1,Q2,Q3〉
be such a plane where rank(Q1) = 1 and rank(Q2) = rank(Q3) = 2, and consider
the two conics C(Q2) and C(Q3) associated with Q2 and Q3 respectively. Denote by
q1, l2 and l3 the respective preimages of Q1, C(Q2) and C(Q3) under the Veronese
embedding. We discuss independently the following possibilities:

(a) l2 = l3,

(b) q1 = l2∩ l3,

(c) q1 ∈ l2 \ l3, and,
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(d) q1 6∈ l2∪ l3.

l2 = l3

q1

l2 = l3

q1or

(a) (c)

l2 l3

q1

(b)

l2 l3

q1

u

(d)

l2 l3

u

q1

Figure 4.3 The configurations defined by cases (a), (b), (c) and (d) in Section 4.3.

4.3.1 (a) l2 = l3

If l2 = l3, then assume first that q1 ∈ l2. In this case, π becomes a conic plane
and thus lies in Σ1. Assume next that q1 6∈ l2. As PGL(3, q) acts transitively on
antiflags in PG(2, q) and π has a unique rank-1 point, it follows that we may fix Q1

and C(Q2) as ν(〈e1〉) and ν(〈e2, e3〉) respectively, where the line 〈Q2,Q3〉 must be
external to C(Q2). Now, as the group stabilising Q1 and C(Q2) acts transitively on
external lines to C(Q2), we obtain a unique orbit of such planes which we label as
Σ6. Indeed, we may fix Q2Q3 as the line Z(Y3 + cY4 +Y5) where Tr(c−1) = 1 to get
the following representative

Σ6 :


x . .

. y+ cz z

. z y

 .

Lemma 4.8. The point-orbit distribution of a plane in Σ6 is [1,0, q+ 1, q2−1]. In
particular, Σ6 6∈ {Σ1,Σ2,Σ3,Σ4,Σ5}.

Proof. Let π6 be the above representative of Σ6. Points of rank at most 2 in π6

correspond to points on the cubic curve C6 = Z(XY 2 + cXY Z+XZ2). In partic-
ular, points of rank one in π6 correspond to points on Z(XY,XZ,Y 2 + cY Z+Z2).
As Tr(c−1) = 1, we obtain a unique rank-1 point parametrized by (1,0,0). The
remaining points on C6 parametrize q+1 rank-2 points in π6, where none of these is
contained in the nucleus plane N . Therefore, the point-orbit distribution of a plane
in Σ6 is [1,0, q+ 1, q2−1], and thus Σ6 6∈ {Σ1,Σ2,Σ3,Σ4,Σ5}.
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Lemma 4.9. A plane π ∈ Σ6 has q+ 1 lines in o8,1 and a unique line in o10.

Proof. By Lemma 4.8, π intersects the nucleus plane trivially and has q+ 1 rank-2
points lying on the line 〈Q2,Q3〉. Therefore, π has a unique line in o10 and each
of the q+ 1 lines through the rank-1 point Q1 must have q rank-3 points, and thus
belongs to the line-orbit o8,1.

4.3.2 (b) q1 = l2∩ l3

If q1 = l2 ∩ l3, then as the group fixing q1 in PGL(3, q) acts transitively on lines
passing through it, it follows that we may fix q1, l2 and l3 as e1, 〈e1, e2〉 and 〈e1, e3〉
respectively. Furthermore, as π contains a unique rank-1 point, it follows that
Q2 ∈ TQ1(C(Q2)) and Q3 ∈ TQ1(C(Q3)). Therefore, π is completely determined by
Q1, C(Q2) and C(Q3). This yields to a unique K-orbit Σ7 represented by

Σ7 :


x y z

y . .

z . .

 .

Lemma 4.10. The point-orbit distribution of a plane in Σ7 is [1, q+1, q2−1,0]. In
particular, Σ7 6∈ {Σ1,Σ2,Σ3,Σ4,Σ5,Σ6}.

Proof. It follows from the above representative that points of Σ7 have rank at
most two. Particularly, Σ7 has a unique rank-1 point obtained for y = z = 0 and
q+1 points in the nucleus plane parametrized by {(0,y,z) : y,z ∈ Fq; (y,z) 6= (0,0)}.
Therefore, the point-orbit distribution of a plane in Σ7 is [1, q+ 1, q2− 1,0]. More-
over, by comparing this property with the previous orbits, we conclude that
Σ7 6∈ {Σ1,Σ2,Σ3,Σ4,Σ5,Σ6}.

4.3.3 (c) q1 ∈ l2 \ l3

If q1 ∈ l2 \ l3, then without loss of generality we may consider U = ν(u) =
C(Q2)∩ C(Q3) and Q1 = ν(q1) as ν(〈e2〉) and ν(〈e1〉) respectively. The elation
group E(u,〈u,q1〉) acts transitively on the affine points of PG(2, q) \ l2, and thus
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we may also fix l3 as 〈e2, e3〉. Since π has a unique rank-1 point, it follows
that Q2 lies on the tangent line TQ1(C(Q2)). We next consider the following
possibilities: (c-i) Q3 = N(C(Q3)), (c-ii) Q3 ∈ TU (C(Q3)) \ {N(C(Q3)),U} and
(c-iii) Q3 ∈ 〈C(Q3)〉 \ (C(Q3)∪TU (C(Q3))).

(c−i) IfQ3 is the nucleus pointN(C(Q3)), then π= 〈TQ1(C(Q2)),Q3〉, which defines
a new orbit represented by

Σ8 :


x y .

y . z

. z .

 .

Lemma 4.11. The point-orbit distribution of a plane in Σ8 is [1, q+1, q−1, q2−q].
In particular, Σ8 6∈ {Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,Σ7}.

Proof. Points of rank at most 2 in Σ8 correspond to points on the cubic curve
C8 = Z(XZ2). Among these 2q + 1 points, there is a unique rank-1 point ly-
ing on C8 ∩Z(Y,Z) and q + 1 points in the nucleus plane lying on C8 ∩Z(X).
Therefore, the point-orbit distribution of a plane in Σ8 is [1, q+ 1, q−1, q2− q] and
Σ8 6∈ {Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,Σ7} by their distinct point-orbit distributions.

(c−ii) Assume now that Q3 ∈ TU (C(Q3)) \ {N(C(Q3)),U}. The subgroup of
PGL(3, q) fixing {q1,u} and l3 contains the elation group E(u,〈u,q1〉), and thus
it acts transitively on points of l3 \ {u}. Therefore, any different choice of Q′3 as a
point on TU (C(Q3))\{N(C(Q3)),U,Q3} defines the same orbit, Σ9. Without loss of
generality, we may choose Q3 as (0,0,0,1,1,0) to obtain the following representative

Σ9 :


x y .

y z z

. z .

 .

Lemma 4.12. The point-orbit distribution of a plane in Σ9 is [1,1,2q− 1, q2− q].
In particular, Σ9 6∈ {Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,Σ7,Σ8}.

Proof. Similar to case Σ8, points of rank at most 2 in Σ9 correspond to points
on the cubic curve C9 = Z(XZ2). In particular, Σ9 has a unique rank-1 point
parametrized by (1,0,0) and a unique rank-2 point in N parametrized by (0,1,0).
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Therefore, the point-orbit distribution of a plane in Σ9 is [1,1,2q− 1, q2− q], and
thus Σ9 6∈ {Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,Σ7,Σ8}.

Remark 4.2. The two planes π8 and π9 define the same cubic curve Z(XZ2),
however they are not K-equivalent.

(c−iii) Finally, assume that Q3 ∈ 〈C(Q3)〉 \ (C(Q3)∪TU (C(Q3))). The subgroup
in PGL(3, q) stabilising {u,q1} and l3 contains the elation group with center u and
axis 〈u,q1〉, and thus it acts transitively on points of l3 \ {u}. Hence, without loss
of generality we may fix R3 = ν(r3) = 〈U,Q3〉 ∩ C(Q3) as the point ν(〈e3〉). Now,
as PGL(3, q) acts sharply transitively on frames in PG(2, q), it follows that the
subgroup stabilising {u,q1, r3} pointwise acts transitively on points of l3 \ {u,r3}.
This shows that any other choice of a point Q′3 6=Q3 on the secant 〈U,R3〉 defines the
same orbit. More generally, any choice of a point on 〈C(Q3)〉 \ (C(Q3)∪TU (C(Q3)))
defines a unique K-orbit which we call Σ10 and represent by

Σ10 :


x y .

y z .

. . z

 ,

for the choice Q3 = (0,0,0,1,0,1).

〈C(Q3)〉

〈C(Q2)〉
Q1

U

Q2

Q3

Q′
3

R3

Figure 4.4 The configuration defined in case (c-iii), Section 4.3.3.

Lemma 4.13. The point-orbit distribution of a plane in Σ10 is [1,1,2q−1, q2− q].
In particular, Σ10 6∈ {Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,Σ7,Σ8,Σ9}.

Proof. Let π10 be the above representative of Σ10. Points of rank at most 2 in π10

correspond to the 2q+1 points on the cubic curve C10 =Z(XZ2 +Y 2Z). In partic-
ular, π10 has a unique rank-1 point parametrized by (1,0,0) and a unique point lying
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on π10∩N =Z(X,Z) parametrized by (0,1,0). Therefore, the point-orbit distribu-
tion of a plane in Σ10 is [1,1,2q−1, q2− q] and Σ10 6∈ {Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,Σ7,Σ8}
by their distinct point-orbit distributions. It remains to show that Σ9 6= Σ10. But
this follows immediately by observing that C9 is the union of two lines of type o6

and o12,2, while C10 is the union of a nonsingular conic and one of its tangent lines
(which is a line of type o6).

4.3.4 (d) q1 6∈ l2∪ l3

Finally, assume that q1 6∈ l2∪ l3 and let U = ν(u) = C(Q2)∩C(Q3). We study sep-
arately the following cases: (d-i) π∩N 6= ∅ and (d-ii) π∩N = ∅, where N is the
nucleus plane.

4.3.4.1 (d-i) π∩N 6= ∅

As π intersects the nucleus plane non-trivially, we may assume that Q2 =N(C(Q2)).
The line joining Q2 and the unique rank-1 point Q1 is either of type o6 or o8,2

by Table 2.2. As lines of type o6 in PG(5, q) are tangent lines to conics in V(Fq),
it follows that 〈Q1,Q2〉 ∈ o8,2. Hence, without loss of generality, we may start by
fixing u, q1 and r2 as 〈e1〉, 〈e2 +e3〉, 〈e2〉 respectively and consider l2 as ν−1(C(Q2)) =
〈e1, e2〉. The group fixing {u,q1, r2} acts transitively on points of PG(2, q) not lying
on the triangle defined by {u,q1, r2}, and thus we may fix l3 = ν−1(C(Q3)) as 〈e1, e1 +
e3〉. Let r3 = 〈q1, r2〉 ∩ l3 and define Ri as ν(ri) for i = 2,3. The subgroup of
PGL(3, q) stabilising {u,q1, r2, l3} is induced by the elation group of centre u and
axis 〈u,q1〉, and acts on 〈C(Q3)〉 as the stabiliser of C(Q3) and the two points U
and R3. If Q3 = N(C(Q3)), then π contains the point (0,1,1,0,0,0) which is the
nucleus of the conic defined by ν(〈q1,u〉). Hence, π = 〈Q1,N(C(U,Q1)),Q3〉 and
it is completely determined by TQ1(C(U,Q1)) and Q3. Thus, this case returns us
to the already obtained Σ8. Assume next that Q3 ∈ TU (C(Q3)) \ {N(C(Q3)),U}.
As the group stabilising {u,q1, r2, l3} acts on 〈C(Q3)〉 as the stabiliser of C(Q3)
and the two points U and R3, it follows that any other choice of a point Q′3 on
TU (C(Q3)) \ {N(C(Q3)),U,Q3} defines the same orbit. Therefore, we may choose
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Q3 as the point (1,0,1,0,0,0) to obtain the orbit represented by

x y x

y z z

x z z

 .

This case will not define a new orbit as π intersects the Veronese surface in two
points, namely (1,0,0,0,0,0) and (1,0,1,1,1,0), implying that π ∈ {Σ3,Σ4,Σ5}. It
remains to consider the case whereQ3 ∈ 〈C(Q3)〉\TU (C(Q3)). Similar to the previous
argument, we may assume without loss of generality that Q3 is (1,0,0,0,0,1). This
gives a unique new orbit Σ11 represented by

Σ11 :


x y .

y z z

. z x+ z

 .

〈C(Q3)〉

〈C(Q2)〉

Q1
UQ2

Q3

Q′
3

R3

R2

Figure 4.5 The configuration defining Σ11.

Lemma 4.14. The point-orbit distribution of a plane in Σ11 is [1,1, q− 1, q2]. In
particular, Σ11 6∈ {Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,Σ7,Σ8,Σ9,Σ10}.

Proof. Let π11 be the above representative of Σ11. Points of rank at most 2 in π11 cor-
respond to points on the cubic curve C11 =Z(X2Z+XY 2 +Y 2Z). Particularly, π11

has a unique rank-1 point and a unique rank-2 point lying onN ∩π11 =Z(X,Z) with
parametrized coordinates (0,0,1) and (0,1,0) respectively. Therefore, the point-orbit
distribution of a plane in Σ11 is [1,1, q−1, q2] and Σ11 is distinct from the previously
defined orbits by their point-orbit distributions.
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4.3.4.2 (d-ii) π∩N = ∅

Assume now that π intersects the nucleus plane trivially, where the unique rank-1
point Q1 is not lying on C(Q2)∪C(Q3). We begin with an essential lemma that
gives a correspondence between types of lines spanned by two rank-2 points in
PG(5, q) and their associated configurations defined by {C(Q2),C(Q3),U}, where
C(Q2) 6= C(Q3) and U = C(Q2)∩C(Q3).

Lemma 4.15. Let L be a line in PG(5, q) intersecting the nucleus plane trivially and
spanned by two rank-2 points R and S, where C(R) 6= C(S). Then, L ∈ {o13,2,o14}.
Furthermore, L∈ o13,2 if and only if R∈ TV (C(R)) and S 6∈ TV (C(S)), and L∈ o14 if
and only if R 6∈ TV (C(R)) and S 6∈ TV (C(S)), where V = C(R)∩C(S). In particular,
if L ∈ o14, then the preimage under the Veronese embedding of the three conics
associated with rank-2 points on L define a triangle in PG(2, q).

Proof. The hyperplane spanned by C(R) and C(S) intersects V(Fq) in C(R)∪C(S),
and thus L has no rank-1 points. It follows that L ∈ {o10,o13,2,o14} by Table
2.2. Since a line of type o10 lies in a conic plane and C(R) 6= C(S), we conclude
that L ∈ {o13,2,o14}. Let L13,2 and L14 be the representatives of o13,2 and o14 in
(Lavrauw & Popiel, 2020, Table 2). The line L13,2 has two rank-2 points with homo-
geneous coordinates {(0,1,0,1,0,0),(0,0,0,1,0,1)} and the line L14 has three rank-
2 points defined as {P1(1,0,0,1,0,0),P2(0,0,0,1,0,1),P3(1,0,0,0,0,1)}. By a di-
rect computation, we have (0,1,0,1,0,0)∈ TV (C((0,1,0,1,0,0))) and (0,0,0,1,0,1) 6∈
TV (C((0,0,0,1,0,1))) where V = ν(e2). A similar computation shows that the three
conics associated with Pi, 1≤ i≤ 3;

C(P1) = Z(Y0Y3 +Y 2
1 ,Y2,Y4,Y5),

C(P2) = Z(Y3Y5 +Y 2
4 ,Y0,Y1,Y2),

C(P3) = Z(Y0Y5 +Y 2
2 ,Y1,Y3,Y4);

intersect pairwise in V ∈ {U12(0,0,0,1,0,0),U13(1,0,0,0,0,0),U23(0,0,0,0,0,1)},
where each pair (Pi,Pj), i < j, has both of its points not lying on the tangent
of their conics through Uij .

Remark 4.2. By inspecting point-orbit distributions of lines in PG(5, q), we can
see that 〈Q1,Qi〉 ∈ o8,1 for i = 2,3. Moreover, Lemma 4.15 implies that 〈Q2,Q3〉 ∈
{o13,2,o14}, where: 〈Q2,Q3〉 ∈ o13,2 if and only if Q2 ∈ TU (C(Q2)) and Q3 6∈
TU (C(Q3)), and 〈Q2,Q3〉 ∈ o14 if and only if Q2 6∈ TU (C(Q2)) and Q3 6∈ TU (C(Q3)).
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Next, we consider the two possibilities where π can be represented by 〈Q1,Q2,Q3〉
where the unique rank-1 point Q1 is not lying on C(Q2)∪C(Q3) such that: (d-ii-
A) 〈Q2,Q3〉 ∈ o13,2 or (d-ii-B) 〈Q2,Q3〉 6∈ o13,2, i.e, π has no line of type o13,2 and
〈Q2,Q3〉 ∈ o14 by Lemma 4.15.

(d−ii−A) Let π = 〈Q1,Q2,Q3〉 where the unique rank-1 point Q1 is not lying on
C(Q2)∪ C(Q3), π ∩N = ∅ and 〈Q2,Q3〉 ∈ o13,2. Without loss of generality, take
〈Q2,Q3〉 as the representative of o13,2 in (Lavrauw & Popiel, 2020, Table 2), and let
Q1 be a point with homogeneous coordinates ν(a,b,c). As Li = 〈Q1,Qi〉 ∈ o8,1 for
i= 2,3, it follows that Li has a unique rank-1 point and a unique rank-2 point not
contained in the nucleus plane, and thus a,c 6= 0. Therefore, π can be represented
by

πb,c :


x bx+y cx

bx+y b2x+y+ z bcx

cx bcx c2x+ z

 ,
which is K-equivalent to

πc :


x y cx

y y+ z .

cx . c2x+ z



for the choice of X as


1 0 0
b 1 0
0 0 1

 with XπcXT = πb,c.

Before proceeding with the study of planes of the form πc, c 6= 0, recall the definition
and the characterisation of inflexion points in Definition 2.2 and Lemma 2.1. Note
that, for fields of characteristic different from two, inflexion points are points of
the intersection of the cubic with the classical Hessian (the determinant of the 3×3
matrix of second derivatives), which is zero over fields of characteristic 2. For further
details about inflexion points over characteristic two finite fields, we refer to (Glynn,
1998).

Lemma 4.16. A plane πc with c 6= 0 has

• three inflexion points if and only if q 6= 4, Tr(c) = Tr(1) and c−1 is admissible.

• one inflexion point if and only if Tr(c) 6= Tr(1).

• no inflexion points if and only if Tr(c) = Tr(1) and c−1 is not admissible.

Proof. Let C = Z(f) be the cubic curve associated with πc defined by f =X(Z2 +
Y Z+ c2Y 2) +Y 2Z. By Lemma 2.1, inflexion points of C correspond to nonsingu-

79



lar points of C ∩C ′′, where C ′′ = Z(f ′′) and f ′′ = X(Z2 +Y Z+ c2Y 2) +Z3 + (1 +
c2)Y 2Z+ c2Y 3. The points in C ∩C ′′ therefore satisfy the equation:

(4.2) Z3 + c2Y 2Z+ c2Y 3 = 0.

The affine points (X,1,Z) in πc \Z(Y ) satisfy

(4.3) Z3 + c2Z+ c2 = 0.

Let θ = c−1Z, then inflexion points of C correspond to solutions of

(4.4) θ3 + θ+ c−1 = 0,

where (4.4) has three solutions if and only if q 6= 4, Tr(c) = Tr(1) and c−1 is admis-
sible, a unique solution if and only if Tr(c) 6= Tr(1), and no solution if and only if
Tr(c) = Tr(1) and c−1 is not admissible (see Lemma 2.19).

Lemma 4.17. Let q = 2h, h > 1. There exist c0 and c1 in Fq \{0} such that πc0 has
no inflexion points and πc1 has a unique inflexion point. Moreover, if h > 2, then
there exists c3 ∈ Fq \{0} such that πc3 has three inflexion points.

Proof. This is a consequence of having exactly bq−2
6 c admissible scalars in Fq \{0},

q 6= 4 (Berlekamp, Rumsey & Solomon, 1966, Lemma 1), and by noting that Tr is
a q

2 -to-1 map.

Remark 4.3. Let q = 2h, h > 1. Lemma 4.17 implies the existence of at least three
K-orbits of planes of the form πc, when h > 2, and at least two K-orbits of planes
of the form πc, when h= 2. In particular, we denote by

• Σ12 the union of K-orbits of planes represented by πc where Tr(c) = 1 and c−1

is not admissible if h is odd.

• Σ13 the union of K-orbits of planes represented by πc where Tr(c) = 0 and c−1

is not admissible if h is even.

• Σ14 the union of K-orbits of planes represented by πc where h > 2, Tr(c) =
Tr(1) and c−1 is admissible.

Lemma 4.18. For q = 2h > 4, inflexion points of planes in Σ14 are collinear. Fur-
thermore, there exists a one-to-one correspondence between planes in Σ14 and lines
in o14 being their inflexion lines.
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Proof. Consider πc as the plane defined in Section 4.3.4.2, where c is an admissible
scalar in Fq \{0}. By Lemma 1 in (Berlekamp, Rumsey & Solomon, 1966), inflexion
points of πc are the points parametrized by ( zi

z2
i +zi+c2 ,1, zi) where

z1 = (1 +v+v−1)2, z2 = v(1 +v+v−1)2

v+v−1 , z3 = v−1(1 +v+v−1)2

v+v−1 ,

and v ∈ Fq \F4. In particular, these points are collinear lying on the line Lv with
parametrized dual coordinates

[(v+v−1)(1+v+v−1)2,(v+v−1)(1+v+v−1)2,
(v+v−1)2 + (v+v−1)4 + (v3 +v−3)2

(v+v−1)4 ].

We call Lv an inflexion line. As rank-2 points in planes in Σ14 define distinct conic
planes, it follows by Table 2.2 that Lv ∈ o14. We prove next that no two planes
in Σ14 have the same inflexion line L. Without loss of generality, we may start by
fixing L as the representative of o14 in (Lavrauw & Popiel, 2020, Table 2). More
precisely, let E1 = (1,0,0,1,0,0), E2 = (0,0,0,1,0,1), and E3 = (1,0,0,0,0,1) be the
three inflexion points on L parametrised by (0,1,0), (0,0,1) and (0,1,1) respectively,
and consider Qa,b,c = ν(a,b,c) as a point on V(Fq). If πa,b,c = 〈L,Qa,b,c〉 is a plane of
type Σ14, then 〈Qa,b,c,Ei〉 ∈ o8,1, 1≤ i≤ 3. This implies that a,b,c 6= 0. Therefore,
we may assume without loss of generality that a= 1, Qa,b,c =Qb,c and πa,b,c = πb,c,
where

πb,c =


x+y bx cx

bx b2x+y+ z bcx

cx bcx c2x+ z

 .
The cubic curve Cb,c associated with πb,c is defined by

(4.5) XZ2 + c2XY 2 +Y 2Z+Y Z2 + (1 + b2 + c2)XY Z = 0.

If 1 + b + c = 0, then πb,c intersects the nucleus plane N in a unique point
parametrised by (1,1,1 + b2), a contradiction as planes in Σ14 have no intersection
with the nucleus plane. Therefore, we may assume that 1 + b+ c 6= 0. By Lemma
2.1, inflexion points of πb,c are nonsingular points of Cb,c∩C ′′b,c, where C ′′b,c =Z(hb,c),
α = (1 + b2 + c2) and

hb,c =c2α5XY 2 +α5XZ2 + c2(1 + b2)αY 3 +α((1 + b2) +α3(b2 + c2))Y Z2+

α(c2(b2 + c2) +α3(1 + b2))Y 2Z+ (b2 + c2)αZ3.
(4.6)
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Imposing the conditions: Ei ∈ C ′′b,c, 1≤ i≤ 3, implies that

c2(1 + b2)α+α((1 + b2) +α3(b2 + c2)) +α(c2(b2 + c2) +α3(1 + b2)) + (b2 + c2)α =

c2(1 + b2)α =

(b2 + c2)α = 0.

(4.7)

As α,c 6= 0, we get b = c = 1. Therefore, every line in o14 is the inflexion line of a
unique plane in Σ14, and thus we obtain a one-to-one correspondence between the
set of planes in Σ14 and the set of lines in o14 being their inflexion lines.

Lemma 4.19. For q = 2h > 4, planes in Σ14 define a unique K-orbit.

Proof. Consider the plane

π1,1 =


x+y x x

x x+y+ z x

x x x+ z

 ,

defined in Lemma 4.18. The stabiliser of π1,1 in K, denoted by Kπ1,1 , is the
intersection of the two subgroups of K stabilising the unique rank-1 point Q

and the inflexion line L, i.e, Kπ1,1 = KQ ∩KL. By (Lavrauw & Popiel, 2020),
we have KL

∼= Sym3, being the group represented by the six 3× 3 permutation
matrices. Moreover, a matrix g = (gij) ∈ GL(3, q) stabilises Q if and only if
g11 + g12 + g13 = g21 + g22 + g23 = g31 + g32 + g33. Therefore, KQ

∼= E2
q oGL(2, q),

and thus Kπ1,1
∼= Sym3. Additionally, as the set Σ14 has |K|/6 planes by Lemma

4.18, it follows that Σ14 is equal to the K-orbit of π1,1 in PG(5, q). Therefore, planes
in Σ14 define a unique K-orbit represented by π1,1.

Remark 4.3. In the next lemmas, the notations (oi)qj and (Σi)qj , 1 ≤ j ≤ 3, are
used to denote orbits of lines and planes considered over Fq, Fq2 and Fq3 respectively.
Furthermore, if L and π are a line and a plane in PG(5, q), then we denote by L(Fqs)
and π(Fqs), s ∈ {2,3}, their extensions over Fq2 and Fq3 respectively.

Lemma 4.20. For q = 2h > 2, where h is even, planes in Σ12 define a unique
K-orbit with one inflexion point, and planes in Σ13 define a unique K-orbit with
no inflexion points. Furthermore, there exists a one-to-one correspondence between
planes in Σ12 (resp. Σ13) and lines in o15 (resp. o17).

Proof. The uniqueness of (Σ12)q and (Σ13)q can be deduced from the uniqueness of
(Σ14)q by expanding to the quadratic and the cubic extensions of Fq. Recall that

82



(Σ12)q and (Σ13)q are the union of orbits represented by πc1 and πc0 respectively,
where c1, c0 6= 0, Tr(c1) = 1 and Tr(c0) = 0. If h is even, then (Σ12)q has a unique
inflexion point while (Σ13)q has none. By expanding πc1 to Fq2 and πc0 to Fq3 ,
we obtain two planes πc1(Fq2)⊂ PG(5, q2) and πc0(Fq3)⊂ PG(5, q3) of type (Σ14)qs ,
s ∈ {2,3}, where each plane is uniquely determined by an inflexion line of type
(o14)qs , s ∈ {2,3}, say L1(Fq2) and L0(Fq3). Let σ1 (resp. σ0) be the Frobenius
collineation of PG(5, q2) (resp. PG(5, q3)) induced by the automorphism x 7→ xq

of Fq2 (resp. Fq3). As πc1(Fq2) has a unique Fq-rational and two Fq2-conjugate
inflexion points, while πc0(Fq3) has three Fq3-conjugate inflexion points, it follows
that L1 = πc1 ∩L1(Fq2) ∈ (o15)q and L0 = πc0 ∩L0(Fq3) ∈ (o17)q. Note that, L1

cannot be of type o16,2 as the representative of this orbit in (Lavrauw & Popiel,
2020, Table 2) is spanned by (0,0,1,1,0,0) and (0,0,0,0,1,1), which generate a line
of type o16,2 over Fq2 . Therefore, L1 and L0 are uniquely determined in πc1 and πc0

respectively. Moreover, these lines uniquely determine the planes πc1 and πc0 as their
extension define a unique inflexion line in (o14)qs , s ∈ {2,3}. Hence, there exists a
one-to-one correspondence between planes in (Σ12)q (resp. (Σ13)q) and lines in (o15)q
(resp. (o17)q). This yields to |K|/2 planes in (Σ12)q and |K|/3 planes in (Σ13)q by
(Lavrauw & Popiel, 2020). On the other hand, let Kπci

and KLi
be the stabilisers

in K of πci and Li respectively, i ∈ {0,1}, and consider KQ as the stabiliser of the
unique rank-1 point Q defined in Lemma 4.19. Then, Kπci

= KLi
∩KQ, i ∈ {0,1}.

Indeed, the description of stabilisers of lines of types (o15)q and (o17)q from (Lavrauw
& Popiel, 2020), implies that Kπc1

∼= C2 and Kπc0
∼= C3. Therefore, each of Σ12 and

Σ13 defines a unique K-orbit over F2h , h is even.

Lemma 4.21. For q= 2h > 2, where h is odd, planes in Σ12 define a unique K-orbit
with no inflexion points, and planes in Σ13 define a unique K-orbit with one inflexion
point. Furthermore, there exists a one-to-one correspondence between planes in Σ12

(resp. Σ13) and lines in o17 (resp. o15).

Proof. Follows by a similar proof to that of Lemma 4.20.

Lemma 4.22. Point-orbit distributions of planes in Σ12, Σ13 and Σ14 are given by
[1,0, q+1, q2−1], [1,0, q−1, q2 +1] and [1,0, q∓1, q2±1], respectively. In particular,
these orbits are distinct from each other and from the previously defined orbits Σi,
1≤ i≤ 11.

Proof. Consider the cubic curve associated with Σi, i ∈ {12,13,14}, defined by

(4.8) X(Z2 +Y Z+ c2Y 2) +Y 2Z = 0.

83



If Tr(c) = 1 (resp. Tr(c) = 0), then Σ12 (resp. Σ13) has q+1 (resp. q) rank-2 points
parametrized by

(4.9) ( y2z

z2 +yz+ c2y2 ,y,z).

Furthermore, depending on the Tr(c), being 0 if h is even or 1 if h is odd, the
orbit Σ14 has either q−1 or q+1 rank-2 points. Therefore, point-orbit distributions
of planes in Σ12, Σ13 and Σ14 are given by [1,0, q+ 1, q2−1], [1,0, q−1, q2 + 1] and
[1,0, q∓1, q2±1] respectively. Note that, the orbits {Σ12,Σ13,Σ14} are distinct from
each other by their inflexion points (see Lemma 4.17 and Remark 4.3), and from the
previously defined orbits by their point-orbit distributions. Indeed, Σ6 6∈ {Σ12,Σ14}
as some rank-2 points of Σ6 define the same conic plane, while all rank-2 points of
Σ12 and Σ14 define distinct conic planes.

(d−ii−B) Finally, assume that π= 〈Q1,Q2,Q3〉, where π∩N = ∅, Q1 is not lying on
C(Q2)∪C(Q3) and Q2,Q3 are both not lying on the tangent of their conics through
U = C(Q2)∩C(Q3). Indeed, provided that q > 2, we prove the existence of such
planes if and only if q = 4. Without loss of generality, let q1 = 〈e1〉, u = 〈e3〉, l2 =
Z(X0) and l3 = Z(X0 +X1), where (X0,X1,X2) are the homogeneous coordinates
in π, Q1 = ν(q1), U = ν(u), C(Q2) = ν(l2) and C(Q3) = ν(l3). Furthermore, let
R2 = ν(r2) and R3 = ν(r3) denote C(Q2)∩〈U,Q2〉 and C(Q3)∩〈U,Q3〉 respectively.
We have two possibilities, either r3 = 〈q1, r2〉 ∩ l3 or r3 6= 〈q1, r2〉 ∩ l3. In the first
case, we may fix r3 as e1 + e2, and thus π can be represented by

x+ z z .

z y+ z .

. . by+ cz

 ,

for some b,c ∈ Fq, where Q2 = (0,0,0,1,0, b) and Q3 = (1,1,0,1,0, c). This case will
not define a new orbit, since for any point (x,y,z) on the line Z(bY + cZ), we
obtain Q ∈ 〈Q2,Q3〉 where Q1 ∈ C(Q), returning us to Case 4.3.3. Therefore, we
may assume without loss of generality that r3 6= 〈q1, r2〉∩ l3. Let r3 = 〈e1 +e2 +e3〉.
Then, Q2 = (0,0,0,1,0, b) and Q3 = (1,1,1,1,1, c) for some b,c in Fq. It follows that
π can be represented by

πb,c =


x+ z z z

z y+ z z

z z by+ cz

 ,

where b(c−1) 6= 0 as the rank of Q2,Q3 is 2.
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Lemma 4.23. If πb,c 6∈ Σi, 1 ≤ i ≤ 14 and b(c− 1) 6= 0, then πb,c has q± 1 rank-2
points.

Proof. The cubic curve Cb,c associated with πb,c is defined by

(4.10) Xfb,c(Y,Z) +gb,c(Y,Z) = 0,

where

(4.11) fb,c(Y,Z) = bY 2 + (b+ c)Y Z+ (1 + c)Z2,

and

(4.12) gb,c(Y,Z) = bY 2Z+ (1 + c)Y Z2,

and thus πb,c has q+ 1, q or q− 1 rank-2 points depending on points of Z(fb,c) on
PG(1, q) being zero, one or two respectively. By Remark 4.2, any line in πb,c passing
through two rank-2 points must belong to o14. Therefore, fixing a rank-2 point
Q ∈ πb,c and considering all lines spanned by Q and the remaining rank-2 points
in πb,c gives a pair partition of the set of rank-2 points in πb,c \ {Q}. Hence, the
number of rank-2 points in πb,c is odd. More precisely, πb,c has q+ 1 rank-2 points
if Z(fb,c) has no points in PG(1, q) and q−1 rank-2 points if Z(fb,c) has two points
in PG(1, q).

Lemma 4.24. If πb,c 6∈ Σi, 1≤ i≤ 14 and b(c−1) 6= 0, then q = 4.

Proof. By Lemma 4.23, the cubic curve associated with πb,c is defined by

(4.13) Xfb,c(Y,Z) +gb,c(Y,Z) = 0,

where fb,c and gb,c are as defined in (4.11) and (4.12) respectively. As fb,c has 0 or
2 points on PG(1, q), it follows that b 6= c. Consider the line L of πb,c parametrized
by (x,y,z) where x= z. Since Q1 is not lying on L, it follows that L is of type o14,
o15 or o16,2, by Remark 4.2 and Table 2.2. More specifically, L has either 3 points
of rank 2 or a unique point of rank 2. In particular, rank-2 points on L satisfy the
equation

(4.14) X2((1 + c)X+ (1 + b)b) = 0,

which has exactly two solutions unless b= 1. Similarly, we can consider the line L′

parametrized by (x,y,z) where y = z. This line has no rank-1 points and has exactly
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two rank-2 points satisfying

(4.15) X2(X+ cY ) = 0,

unless c = 0. Therefore, b = 1, c = 0 and π reduces to π1,0, which has q+ 1 rank-2
points if n is odd and q−1 rank-2 points if n is even. By Lemma 2.1, the Hessian
of C1,0 defined by

(4.16) Z(X(Y 2 +Y Z+Z2) +Y 3 +Y Z2 +ZY 2),

intersects C1,0 in three collinear points lying on the line L′′ parametrized by (x,y,z);
x = y. Since Q1 6∈ L′′ and the configuration of π1,0 coincides with the second con-
figuration of Σ14 described in Lemma 4.18, it follows that for q > 4, π1,0 ∈ Σ14.
Therefore, π1,0 defines a new orbit if and only if q = 4.

We denote this orbit by Σ′14 which can be represented by

Σ′14 :


x+ z z z

z y+ z z

z z y

 .

Remark 4.4. Lemma 4.24 shows that every plane π = 〈Q1,Q2,Q3〉 in PG(5, q),
q = 2h > 4, containing a unique rank-1 point Q1, where Q1 6∈ C(Q2)∪C(Q3) and
π∩N = ∅, must belong to {Σ12,Σ13,Σ14}.

Lemma 4.25. The point-orbit distribution of a plane in Σ′14 is [1,0,3,17]. In par-
ticular, Σ′14 6∈ {Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,Σ7,Σ8,Σ9,Σ10,Σ12,Σ13}.

Proof. The first part is treated in the proof of Lemma 4.24. The second part follows
from the difference of point-orbit distributions between Σ′14 and Σi; 1≤ i≤ 12 and
the property that Σ′14 has three inflexion points by Lemma 4.24 while Σ13 has none
(see Lemma 4.17 and Remark 4.3).

4.4 Planes containing one rank-1 point and not spanned by points of
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rank at most 2

Let π be a plane containing a unique point Q1 of V(Fq) and not spanned by points
of rank at most 2. Then, all rank-2 points in π through Q1 must lie on a unique
line (such points exist by Lemma 4.1) and each of the remaining q lines through
Q1 must have q rank-3 points, and thus belongs to the line-orbit o9 by (Lavrauw
& Popiel, 2020). Without loss of generality, let π = 〈Q1,Q2,Q3〉 where 〈Q1,Q3〉 is
the representative of o9 in (Lavrauw & Popiel, 2020, Table 2). In particular, take
Q1(1,0,0,0,0,0), Q3(0,0,1,1,0,0) and Q2(0,1,0,a,b,c) for some a,b,c ∈ Fq, then π
can be represented by 

x y z

y ay+ z by

z by cy

 .
Since points of rank at most two in π lie on a line, it follows that the cubic curve
C =Z(X(b2Y 2 +acY 2 +cY Z)+aY Z2 +cY 3 +Z3) associated with π is a triple line.
Hence, a = b = c = 0 and the equation of C reduces to Z3 = 0. This gives a unique
orbit of planes intersecting the Veronese surface in one point and not spanned by
points of rank at most two. We denote this orbit by Σ15, which can be represented
by

Σ15 :


x y z

y z .

z . .

 .

Lemma 4.26. The point-orbit distribution of a plane in Σ15 is [1,1, q− 1, q2]. In
particular, Σ15 6= Σi for 1≤ i≤ 14.

Proof. Clearly, Σ15 6= Σi, for all 1≤ i≤ 14, as Σ15 is not spanned by points of rank at
most 2. Let π15 be the above representative of Σ15. Points of rank at most 2 in π15

correspond to points on the line 〈Q1,Q2〉, where only the point with homogeneous
coordinates (0,1,0,0,0,0) is contained in the nucleus plane which intersects π15

in Z(X,Z). Therefore, the point-orbit distribution of a plane in Σ15 is [1,1, q−
1, q2].

4.5 Planes in PG(5,2)
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Table 4.1 is not completely correct under the action of PGL(3,2). In particular, the
orbits Σ1,...,Σ12 can be obtained analogously. However, the orbit Σ13 does not exist
for q = 2. Furthermore, Σ′14 can no be longer obtained by considering the span of a
rank-1 point and a line of type o14 as described in Section 4.4 as no such line exists
in this case. More interestingly, planes meeting the Veronese surface non-trivially
and not spanned by points of rank at most 2 split under the action of PGL(3,2)
into Σ15 and Σ′15 which is represented by

Σ′15 :


x y z

y z .

z . y

 .

Remark 4.4. Over the field of two elements, the full setwise stabiliser of the
Veronese surface is Sym7 (see Remark 2.11) which strictly contains PGL(3,2) and
does not preserve the nucleus plane. Therefore, under this action the number of or-
bits reduces to 5. Precisely, we have Σ1 = Σ2, Σ3 = Σ4 = Σ5, Σ6 = Σ10, Σ7 = Σ9 = Σ12

and Σ8 = Σ11 = Σ′14 = Σ15 = Σ′15, which is easy to check by hand computations or
by using the FinInG package in GAP (Bamberg, Betten, Cara, De Beule, Lavrauw
& Neunhöffe, 2018; GAP, 2021).

Theorem 4.2. There are 5 J-orbits of planes meeting V(F2) is at least one point,
where J ∼= Sym7 is the group stabilising V(F2). In particular, these orbits split under
the action of PGL(3,2) into 15 orbits as described in Remark 4.4.

4.6 Comparison with the q odd case

Over finite fields of odd characteristic, there exists a polarity of PG(5, q) that maps
the set of conic planes of V(Fq) onto the set of tangent planes of V(Fq). This is The-
orem 4.25. in (Hirschfeld & Thas, 1991), which allows the correspondence between
rank-1 nets of conics in PG(2, q), namely, nets with at least one double line, and
planes in PG(5, q) meeting V(Fq) in at least one point, q odd. This correspondence
fails over finite fields of characteristic 2. For instance, let π6 be the representative
of Σ6 defined in Table 4.1. Then, π6 meets V(Fq) in a unique point, however its
associated net of conics N6 defined by

(4.17) αX0X1 +βX0X2 +γ(X2
1 + cX1X2 +X2

2 ) = 0
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has by Lemma 2.2 q+ 1 pairs of real lines defined by the pencil of type Ω4

Z(X0X1,X0X2),

and a unique pair of conjugate imaginary lines given by

Z(X2
1 + cX1X2 +X2

2 ).

Therefore, the hyperplane-orbit distribution of π6 is [0, q+ 1,1, q2− 1], and Σ6 has
no double lines. In other words, N6 is not a rank-1 net of conics.

Corollary 4.1. Rank-1 nets of conics in PG(2, q) do not correspond to planes having
at least one rank-1 point in PG(5, q) for q even.
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K-orbits of planes Representatives Point-OD Conditions

Σ1

x y .
y z .
. . .

 [q+ 1,1, q2−1,0]

Σ2

x . .
. y .
. . z

 [3,0,3q−3, q2−2q+ 1]

Σ3

x . z
. y .
z . .

 [2,1,2q−2, q2− q]

Σ4

x . z
. y z
z z .

 [2,1,2q−2, q2− q]

Σ5

x . z
. y z
z z z

 [2,0,2q−2, q2− q+ 1]

Σ6

x . .
. y+ cz z
. z y

 [1,0, q+ 1, q2−1] Tr(c−1) = 1

Σ7

x y z
y . .
z . .

 [1, q+ 1, q2−1,0]

Σ8

x y .
y . z
. z .

 [1, q+ 1, q−1, q2− q]

Σ9

x y .
y z z
. z .

 [1,1,2q−1, q2− q]

Σ10

x y .
y z .
. . z

 [1,1,2q−1, q2− q]

Σ11

x y .
y z z
. z x+z

 [1,1, q−1, q2]

Σ12

 x y cx
y y+z .
cx . c2x+z

 [1,0, q+ 1, q2−1] Tr(c) = 1, (∗)

Σ13

 x y cx
y y+z .
cx . c2x+z

 [1,0, q−1, q2 + 1] Tr(c) = 0, (∗∗)

Σ14

 x y cx
y y+z .
cx . c2x+z

 [1,0, q∓1, q2±1] Tr(c) = Tr(1), q 6= 4, (∗∗∗)

Σ′14

x+z z z
z y+z z
z z y

 [1,0, q−1, q2 + 1] q = 4

Σ15

x y z
y z .
z . .

 [1,1, q−1, q2]

Table 4.1 The K-orbits of planes in PG(5, q) meeting V(Fq) in at least one point
and their point-orbit distributions, where q 6= 2 and c is: (∗) not admissible if q =
22m+1, (∗∗) not admissible if q = 22m and (∗∗∗) admissible if q > 4. The point-orbit
distribution in Σ14 is given with respect to q = 22m and q = 22m+1 respectively.



5 TENSOR RANKS IN F2
q⊗F3

q⊗F3
q

In this chapter, we present our results from (Alnajjarine & Lavrauw, 2020). Partic-
ularly, we follow the classification of tensors in V = F2

q ⊗F3
q ⊗F3

q under the action
of the subgroup of GL(V ) stabilising the set of fundamental tensors in V (Lavrauw
& Sheekey, 2015), to define the GAP-package T233 which determines ranks and
orbits of points in PG(V )∼= PG(17, q).

This chapter is structured as follows. We begin with an essential proposition that
reflects the importance of studying contraction spaces while classifying tensors in
Fmq ⊗Fnq ⊗Fnq ; m 6= n. Then, we define in Section 5.1 the role of each function in
T233. In Section 5.2, we explain the implementation of our main functions and
give representatives of the orbits o17, o10 and o15. Finally, we end with Section 5.3
by an example illustrating the importance of T233 while computing tensor ranks
in PG(17, q), especially when q is large. For further details about the terminology
used in this chapter we refer to Section 2.6.4. Note that, we consider the problem of
determining tensors’ orbits and ranks from a projective perspective, where nonzero
rank-1 tensors in V correspond to points of the Segre variety S1,2,2(Fq).

Proposition 5.1. Let B 6= C ∈ Fmq ⊗Fnq ⊗Fnq ; m 6= n, G1 = GL(Fnq ) oSym(m) and
Gi = GL(Fmq )×GL(Fnq ); i= 2,3, then the following are equivalent:

• B is G-equivalent to C.

• B1 is G1-equivalent to C1.

• Bi is Gi-equivalent to one of {Ci,CTi }, where i= 2,3 and T is the map sending
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u⊗v to v⊗u and expanded linearly.

Proof. Combine Lemma 2.1 and Corollary 2.2 in (Lavrauw & Sheekey, 2015).

5.1 T233 package

T233 is a GAP-package (GAP, 2021) which uses some functionality from the FinInG
package (Bamberg, Betten, Cara, De Beule, Lavrauw & Neunhöffe, 2018) to compute
ranks and orbits of points in the projective space PG(V )∼= PG(17, q). This package
is formed of 2 main and 12 auxiliary codes which are described as follows:

• OrbitOfTensor : takes a point in PG(V ) and returns its G-orbit and a canonical
representative of the orbit.

• RankOfTensor : returns the rank of a point in PG(V ) by computing itsG-orbit.

• MatrixOfPoint: returns a matrix representation of a point in PG(V ).

• RankOfPoint: returns the rank of the associated matrix representation of a
point in PG(V ).

• RankDistribution: computes the rank distribution of a projective subspace.

• CubicalArrayFromPointInTensorProductSpace: gives the horizontal slices of a
point in PG(V ).

• ContractionOfPointInTensorProductSpace: returns the projective contraction
of a point in PG(V ).

• SubspaceOfContractions: returns the contraction spaces of a point in PG(V ).

• Rank1PtsOftheContractionSubspace: returns rank-1 points of the contraction
subspaces associated with a point in PG(V ).

• RepO10odd: returns a canonical representative of o10 when q is odd.

• AlternativeRepresentationOfFiniteFieldElements: gives an alternative repre-
sentation of elements of Fq.

• RepO10even: returns a canonical representative of o10 when q is even.

• RepO15odd: returns a canonical representative of o15 when q is odd.
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• RepO15even: returns a canonical representative of o15 when q is even.

For more about the construction of these functions we refer to (Alnajjarine &
Lavrauw, 2020).

5.2 Implementation

5.2.1 OrbitOfTensor

The OrbitOfTensor function uses information from Table A.1 to determine for an
arbitrary tensor B in PG(V ) its orbit and a representative of the orbit. It computes
first the rank distribution R1 and compares it with Table A.1 to specify the orbit
containing B. However, sometimes R1 is not sufficient to distinguish among orbits.
For instance, o6 and o7 (resp. o10, o11 and o12) have the same first rank distribution
R1. In this case, we use properties of the second and third contraction spaces to
differentiate among them. By (Lavrauw & Sheekey, 2015), o4, o7 and o11 are the
only G-orbits of tensors which split under the action of PGL(2, q)×PGL(3, q) to
oi and oTi . Therefore, using properties of B2 and B3 directly from Table A.1 will
not be sufficient to distinguish between o6 and o7 (resp. o10, o11 and o12). For this
reason, we use algorithmically some extra possibilities of R2 and R3 to insure that
if B ∈ oj then BT ∈ oj , for j = 7,11 (see Proposition 5.1). Notice that, since o4 is
completely determined by R1, there is no need for a similar work in this case.

Although in most cases the set {R1,R2,R3} is sufficient to specify tensors orbits,
it is not helpful in distinguishing between o15 and o16 as they have same rank
distributions. In this case, we use Lemma 5.1 to differentiate between them.

Lemma 5.1. (Alnajjarine & Lavrauw, 2020, Lemma 1.1)
Let B ∈ PG(V ) such that R1 = [0,1, q] and R2 = R3 = [1, q2 + q,0], and denote by
x1 and x2 a rank-3 point and the unique rank-2 point on the line B1 respectively
(see Table A.1). Then, there exists a unique solid S containing x2 and intersecting
S2,2(Fq) in a subvariety Q(x2) equivalent to the Segre variety S1,1(Fq). Furthermore,
for U := 〈S,x1〉, we have B ∈ o15 if U \Q(x2) intersects S2,2(Fq) nontrivially and
B ∈ o16 otherwise.
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Proof. Let x2 ∈ 〈y,z〉 where y 6= z ∈S2,2(Fq). If y= σ2,2(y1×y2) and z= σ2,2(z1×z2),
then x2 ∈ 〈Qy,z〉 where Qy,z := σ2,2(〈y1, z1〉 × 〈y2, z2〉) ∼= S1,1(Fq). We then iden-
tify Q(x2) by Qy,z, whose uniqueness is guaranteed by Lemma 2.4 in (Lavrauw &
Sheekey, 2015). Let S = 〈Q(x2)〉 and consider the two possibilities for B to have 2
points y′i, i= 1,2 of rank i such that x1 is on the line 〈y′1,y′2〉 and Q(x2) =Q(y′2) or
no such points exist, to conclude that B ∈ o15 or B ∈ o16 respectively (see section
3.2 in (Lavrauw & Sheekey, 2015)).

For the same reason, we deal with the case q = 2 separately. In particular, we can
distinguish between o10 and {o12,o14} by their second rank distribution R2. But, as
o12 and o14 share the same three rank distributions, we use the geometric description
of the second contraction space to differentiate between them. More precisely, the
difference between these orbits is that the second contraction space in o14 is a plane
spanned by its three rank-1 points, however, this is not the case for o12 (see Table
A.1).

Finally, except for o10, o15 and o17, representatives are obtained directly from Table
A.1 and are defined by a set of two horizontal slices 2.6.5. For instance, a represen-
tative of o16 is e1⊗ (e1⊗ e1 + e2⊗ e2 + e3⊗ e3) + e2⊗ (e1⊗ e2 + e2⊗ e3) (see Table
A.1) which can be represented by




1 0 0
0 1 0
0 0 1

 ,


0 1 0
0 0 1
0 0 0


 .

5.2.2 Representative for o17

A representative of o17 is given by: e1⊗ (e1⊗e1 +e2⊗e2 +e3⊗e3)+e2⊗ (e1⊗e2 +
e2⊗ e3 + e3⊗ (αe1 +βe2 +γe3)) where λ3 +γλ2−βλ+α 6= 0 for all λ in Fq. Since
determining α, β and γ is computationally infeasible for large q, we give an explicit
construction that does not require any computations. First, notice that o17 is the
unique orbit of lines in the space PG(F3

q ⊗F3
q) consisting entirely of rank-3 points

(Lavrauw & Popiel, 2020). Therefore, constructing a line of constant rank 3 is suffi-
cient to obtain the desired representative. For this aim, consider the cubic extension
of Fq, Fq3 , and define U = {Mθ : θ ∈ Fq3} where Mθ is the matrix representative of
the linear operator on Fq3 sending x to θx. Since U is a three dimensional Fq-vector
space containing q3−1 matrices of rank three, it follows that any two dimensional
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Fq-subspace of U , W , can serve as a representative of o17, where basis of W gives us
the two horizontal slices. Particularly, let w be a primitive element of the extension
Fq3 over Fq and consider the subspace generated by the identity matrix and the
companion matrix of the minimal polynomial of w.

5.2.3 Representatives for o10 and o15

The orbits o10 and o15 can be represented by e1⊗ (e1⊗e1 +e2⊗e2 +ue1⊗e2)+e2⊗
(e1⊗e2 +ve2⊗e1) and e1⊗(e1⊗e1 +e2⊗e2 +e3⊗e3 +ue1⊗e2)+e2⊗(e1⊗e2 +ve2⊗
e1) respectively, where u,v ∈ Fq \{0} and vλ2 +uvλ−1 6= 0 for all λ in Fq. Similar to
the o17 case, we give an explicit construction of a representative of o10 which requires
no computations. Observe first that o10 can be represented by a line of constant
two-rank 2× 2-matrices, which is external to a conic in V(Fq) (Lavrauw & Popiel,
2020). Thus, constructing such a line will be sufficient to represent o10. Before
proceeding, recall that interior points of the conic C = Z(X0X2−X2

1 ) correspond
to {(x,y,z) ∈ PG(2, q) : xz− y2 6∈ �}. Therefore, when q is odd, we can compute
the image of a primitive root in Fq under the polarity associated with C to obtain
an external line to C in PG(2, q). This line can be embedded in PG(8, q) by setting
the third rows and columns of its points to zero. A similar argument works for
q even. Particularly, we may start with the minimal polynomial of a generator of
the group Fq2 \ {0} to obtain an irreducible quadratic polynomial over Fq, whose
coordinates can be viewed as the dual coordinates of a line in PG(2, q) external
to the conic defined by {(a2,ab,b2) : a,b ∈ Fq; (a,b) 6= (0,0)}. We can then embed
this line in PG(8, q) by setting the last columns and rows of its points to zero.
Finally, by finding u and v from the obtained representative of o10, we can obtain a
representative of o15.

5.3 Computations and summary

Example 5.1.
gap> q:=13441;

13441

gap> pg:=AmbientSpace(sv);
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ProjectiveSpace(17, 13441)

gap> sv:=SegreVariety([PG(1,q),PG(2,q),PG(2,q)]);

Segre Variety in ProjectiveSpace(17, 13441)

gap> n:=Size(Points(pg));

15253488921344444155506510918187382354088690586830800870048462872993938

gap> m:=Size(Points(sv)); # number of rank-1 points in PG(17,q)

438788099250605865618

gap> D:=VectorSpaceToElement(pg,[Z(q)^0,Z(q)^336,Z(q)^339,

> Z(q)^37,Z(q)^233,Z(q)^56,Z(q)^268,Z(q)^363,Z(q)^342,

> Z(q)^297,Z(q)^146,Z(q)^71,Z(q)^57,Z(q)^84,Z(q)^33,

> Z(q)^203,Z(q)^229,Z(q)^191]);

<a point in ProjectiveSpace(17, 13441)>

gap> OrbitOfTensor(D); # [orbit, representative]

[ 17,

[ [ [ Z(13441)^0, 0*Z(13441), 0*Z(13441) ],

[ 0*Z(13441), Z(13441)^0, 0*Z(13441) ],

[ 0*Z(13441), 0*Z(13441), Z(13441)^0 ] ],

[ [ 0*Z(13441), 0*Z(13441), Z(13441) ],

[ Z(13441)^0, 0*Z(13441), Z(13441)^2008 ],

[ 0*Z(13441), Z(13441)^0, 0*Z(13441) ] ] ] ]

gap> time; # in ms

2406

gap> RankOfTensor(D);

4

gap> time; # in ms

2438

T233 is an efficient tool to compute orbits and ranks of points in PG(17, q). With-
out this tool, it is computationally infeasible to find ranks of points in PG(17, q),
especially when q is large. For instance, if we consider the point D in Example
5.1, we can see that its rank was computed within seconds. However, finding this
manually requires to check an 82-digit number of possible 4-combinations of rank-1
points which might generate a solid containing D. This reflects how hard it would
be to compute ranks of tensors in PG(17, q) without this algorithm.
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APPENDIX A

Description and Representative Tensor’s Rank
Rank Distributions

o1 e1⊗e1⊗e1 1
PG(A1) : Point on S3,3 [1,0,0]
PG(A2) : Point on S2,3 [1,0,0]
PG(A3) : Point on S2,3 [1,0,0]
o2 e1⊗ (e1⊗e1 +e2⊗e2) 2
PG(A1) : Point of rank 2 [0,1,0]
PG(A2) : Line on S2,3 [q+ 1,0,0]
PG(A3) : Line on S2,3 [q+ 1,0,0]
o3 e1⊗ (e1⊗e1 +e2⊗e2 +e3⊗e3) 3
PG(A1) : Point of rank 3 [0,0,1]
PG(A2) : Plane on S2,3 [q2 + q+ 1,0,0]
PG(A3) : Plane on S2,3 [q2 + q+ 1,0,0]
o4 e1⊗e1⊗e1 +e2⊗e1⊗e2 2
PG(A1) : Line on S3,3 [q+ 1,0,0]
PG(A2) : Point of rank 2 [0,1,0]
PG(A3) : Line on S2,3 [q+ 1,0,0]
o5 e1⊗e1⊗e1 +e2⊗e2⊗e2 2
PG(A1) : Secant line [2, q−1,0]
PG(A2) : Secant line [2, q−1,0]
PG(A3) : Secant line [2, q−1,0]
o6 e1⊗e1⊗e1 +e2⊗ (e1⊗e2 +e2⊗e1) 3
PG(A1) : Tangent line contained in an < S2,2 > [1, q,0]
PG(A2) : Tangent line contained in an < S2,2 > [1, q,0]
PG(A3) : Tangent line contained in an < S2,2 > [1, q,0]
o7 e1⊗e1⊗e3 +e2⊗ (e1⊗e1 +e2⊗e2) 3
PG(A1) : Tangent line contained in an < S2,3 >, [1, q,0]

not contained in an < S2,2 >

PG(A2) : Tangent line, not contained in an < S2,2 > [1, q,0]
PG(A3) : Plane containing 2 lines of an S2,2 [2q+ 1, q2− q,0]
o8 e1⊗e1⊗e1 +e2⊗ (e2⊗e2 +e3⊗e3) 3
PG(A1) : Tangent line not contained in an < S2,3 >, [1,1, q−1]

containing a point of rank 2
PG(A2) : Plane containing a line and a point of S2,3 [q+ 2, q2−1,0]

not contained in an < S2,2 >

PG(A3) : Plane containing a line and a point of S2,3 [q+ 2, q2−1,0]
not contained in an < S2,2 >

o9 e1⊗e3⊗e1 +e2⊗ (e1⊗e1 +e2⊗e2 +e3⊗e3) 4
PG(A1) : Tangent line not contained in an < S2,3 >, [1,0, q]
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not containing a point of rank 2
PG(A2) : Plane containing a line of S2,3, [q+ 1, q2,0]

not contained in an < S2,2 >

PG(A3) : Plane containing a line of S2,3 [q+ 1, q2,0]
not contained in an < S2,2 >

o10 e1⊗ (e1⊗e1 +e2⊗e2 +ue1⊗e2) +e2⊗ (e1⊗e2 +ve2⊗e1) 3
vλ2 +uvλ−1 6= 0 for all λ ∈ Fq

PG(A1) : Line of constant rank 2, contained in an < S2,2 >, [0, q+ 1,0]
PG(A2) : Line of constant rank 2, contained in an < S2,2 >, [0, q+ 1,0]
PG(A3) : Line of constant rank 2, contained in an < S2,2 >, [0, q+ 1,0]
o11 e1⊗ (e1⊗e1 +e2⊗e2) +e2⊗ (e1⊗e2 +e2⊗e3) 3
PG(A1) : Line of constant rank 2, contained in an < S2,3 >, [0, q+ 1,0]

but not in an < S2,2 >

PG(A2) : Line of constant rank 2, contained in an < S2,3 >, [0, q+ 1,0]
but not in an < S2,2 >

PG(A3) : Plane in an < S2,2 >, meeting in a conic [q+ 1, q2,0]
o12 e1⊗ (e1⊗e1 +e2⊗e2) +e2⊗ (e1⊗e3 +e3⊗e2) 4
PG(A1) : Line of constant rank 2, not contained in an < S2,3 >, [0, q+ 1,0]
PG(A2) : Plane containing a line of S2,3 [q+ 1, q2,0]
PG(A3) : Plane containing a line of S2,3 [q+ 1, q2,0]
o13 e1⊗ (e1⊗e1 +e2⊗e2) +e2⊗ (e1⊗e2 +e3⊗e3) 4
PG(A1) : Line with 2 points of rank 2 [0,2, q−1]
PG(A2) : Plane containing 2 points of S2,3 [2, q2 + q−1,0]
PG(A3) : Plane containing 2 points of S2,3 [2, q2 + q−1,0]
o14 e1⊗ (e1⊗e1 +e2⊗e2) +e2⊗ (e2⊗e2 +e3⊗e3) 3
PG(A1) : Line with 3 points of rank 2 [0,2, q−1]
PG(A2) : Plane containing 3 points of S2,3 [0,3, q−2]
PG(A3) : Plane containing 3 points of S2,3 [0,3, q−2]
o15 e1⊗ (e+ue1⊗e2) +e2⊗ (e1⊗e2 +ve2⊗e1); 4

vλ2 +uvλ−1 6= 0 for all λ ∈ Fq

and e= e1⊗e1 +e2⊗e2 +e3⊗e3.
PG(A1) : Line having one point of rank 2 [0,1, q]
PG(A2) : Plane containing one point of S2,3 [1, q2 + q,0]
PG(A3) : Plane containing one point of S2,3 [1, q2 + q,0]
o16 e1⊗ (e1⊗e1 +e2⊗e2 +e3⊗e3) +e2⊗ (e1⊗e2 +e2⊗e3) 4
PG(A1) : Line having one point of rank 2 [0,1, q]
PG(A2) : Plane containing one point of S2,3 [1, q2 + q,0]
PG(A3) : Plane containing one point of S2,3 [1, q2 + q,0]
o17 e1⊗ (e) +e2⊗ (e1⊗e2 +e2⊗e3 +e3⊗ (αe1 +βe2 +γe3)); 4 if q ≥ 3

λ3 +γλ2−βλ+α 6= 0 for all λ ∈ Fq 5 if q = 2
and e= e1⊗e1 +e2⊗e2 +e3⊗e3.

PG(A1) : Line of constant rank 3 [0,0, q+ 1]
PG(A2) : Plane disjoint from S2,3 [0, q2 + q+ 1,0]
PG(A3) : Plane disjoint from S2,3 [0, q2 + q+ 1,0]

Table A.1 Projective description and properties of the G-orbits of tensors in V
(Lavrauw & Sheekey, 2015).
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