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Abstract

In this chapter, we present an overview of how negotiation and group decision processes are
modeled and analyzed in cooperative game theory. This area of research, typically referred to
as cooperative bargaining theory, originated in a seminal paper by J. F. Nash (1950). There, Nash
provided a way of modeling negotiation processes and applied an axiomatic methodology to analyze
such models. Nash’s (1950) approach to modeling negotiation processes is (i) identifying the set
of all alternative agreements, (ii) determining the implications of disagreement, (iii) determining
how each negotiator values alternative agreements, as well as the disagreement outcome, and (iv)
using the obtained payoff functions to reconstruct the negotiations in the payoff space. The feasible
payoff set is the set of all payoff profiles resulting from an agreement and the disagreement point
is the payoff profile obtained in case of disagreement. This pair is called a bargaining problem in
cooperative game theory. The object of study in cooperative bargaining theory is a (bargaining)
rule. It maps each bargaining problem to a payoff profile in the feasible payoff set. Studies on
cooperative bargaining theory employ the axiomatic method to evaluate bargaining rules. (A
similar methodology is used for social choice and fair division problems, as discussed in chapters 10
and 11 of this handbook.) An axiom is simply a property of a bargaining rule that the researcher
argues to be desirable. A typical study on cooperative bargaining theory considers a set of axioms,
motivated by a particular application, and identifies the class of bargaining rules that satisfy them.
In this chapter, we review and summarize several such studies. In the first part of the chapter, we
present the bargaining model of Nash (1950). In the second part, we introduce the main bargaining
rules and axioms in the literature. Here, we present the seminal characterizations of the Nash rule,
the Kalai-Smorodinsky rule, and the Egalitarian rule. We also discuss some well-known rules such
as the Utilitarian rule, the Dictatorial rule, the Equal Area rule, and the Perles-Maschler rule. In
the third part of the chapter, we discuss strategic issues related to cooperative bargaining, such
as the Nash program, implementation of bargaining rules, and games of manipulating bargaining
rules (for more on strategic issues, see Chapter 8 of this handbook). In the final part, we present
the recent literature on ordinal bargaining rules, that is, rules that do not rely on the assumption
that the agents have von Neumann-Morgenstern preferences.
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1 Introduction

Negotiation is an important aspect of social, economic, and political life. People negotiate at
home, at work, at the marketplace; they observe their team, political party, country negotiating
with others; and sometimes, they are asked to arbitrate negotiations among others. Thus, it is no
surprise that researchers from a wide range of disciplines have studied negotiation processes.

In this chapter, we present an overview of how negotiation and group decision processes are
modeled and analyzed in cooperative game theory.1 This area of research, typically referred to as
cooperative bargaining theory, originated in a seminal paper by J. F. Nash (1950). There,
Nash provided a way of modeling negotiation processes and applied an axiomatic methodology
to analyze such models. In what follows, we will discuss Nash’s work in detail, particularly in
application to the following example.

Example 1 (An Accession Negotiation) The European Union, E, and a candidate country, C, are
negotiating on the tariff rate that C will impose on its imports from E during C’s accession process
to the European Union. In case of disagreement, C will continue to impose the status-quo tariff
rate on import goods from E and the accession process will be terminated, that is, C will not be
joining the European Union.

Nash’s (1950) approach to modeling negotiation processes such as Example 1 is as follows.
First, the researcher identifies the set of all alternative agreements.2 (Among them, the negotiators
must choose by unanimous agreement, that is, each negotiator has the right to reject a proposed
agreement.) Second, the researcher determines the implications of disagreement. In our example,
disagreement leads to the prevalence of the status-quo tariff rate coupled with the fact that C will
not be joining the European Union. Third, the researcher determines how each negotiator values
alternative agreements, as well as the disagreement outcome. Formally, for each negotiator, a
payoff function that represents its preferences are constructed. In the above example, this amounts
to an empirical analysis that evaluates the value of each potential agreement for the European
Union and the candidate country. Finally, using the obtained payoff functions, the negotiation is
reconstructed in the payoff space. That is, each possible outcome is represented with a payoffprofile
that the negotiating parties receive from it. The feasible payoff set is the set of all payoff profiles
resulting from an agreement (i.e. it is the image of the set of agreements under the players’payoff
functions) and the disagreement point is the payoff profile obtained in case of disagreement.
Via this transformation, the researcher reduces the negotiation process into a set of payoff profiles
and a payoff vector representing disagreement. It is this object in the payoff space that is called
a (cooperative) bargaining problem in cooperative game theory. For a typical bargaining
problem, please see Figure 1.

1Cooperative game theory, pioneered by von Neumann and Morgenstern (1944), analyzes interactions where agents
can make binding agreements and it inquires how cooperative opportunities faced by alternative coalitions of agents
shape the final agreement reached. Cooperative games do not specify how the agents interact or the mechanism
through which their interaction leads to alternative outcomes of the game (and in this sense, they are different than
noncooperative games). Instead, as will be exemplified in this chapter, they present a reduced form representation
of all possible agreements that can be reached by some coalition.

2This set contains all agreements that are physically available to the negotiators, including those that are “unrea-
sonable”according to the negotiators’preferences.
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The object of study in cooperative bargaining theory is a (bargaining) rule. It maps each
bargaining problem to a payoff profile in the feasible payoff set. For example, the Nash bargaining
rule (Nash, 1950) chooses, for each bargaining problem, the payoff profile that maximizes the
product of the bargainers’gains with respect to their disagreement payoffs.

There are two alternative interpretations of a bargaining rule. According to the first interpreta-
tion, which is proposed by Nash (1950), a bargaining rule describes, for each bargaining problem,
the outcome that will be obtained as result of the interaction between the bargainers. According to
Nash (1950), a rule is thus a positive construct and should be evaluated on the basis of how well
a description of real-life negotiations it provides. The second interpretation of a bargaining rule
is alternatively normative. According to this interpretation, a bargaining rule produces, for each
bargaining problem, a prescription to the bargainers (very much like an arbitrator). It should thus
be evaluated on the basis of how useful it is to the negotiators in obtaining desirable agreements.

Studies on cooperative bargaining theory employ the axiomatic method to evaluate bargaining
rules. (A similar methodology is used for social choice and fair division problems, as discussed
in chapters 10 and 11 of this handbook.) An axiom is simply a property of a bargaining rule.
For example, one of the best-known axioms, Pareto optimality, requires that the bargaining rule
choose a Pareto optimal agreement.3 Researchers analyze implications of axioms that they believe
to be “desirable”. According to the positive interpretation of bargaining rules, a “desirable”axiom
describes a common property of a relevant class of real-life negotiation processes. For example,
Nash (1950) promotes the Pareto optimality axiom on the basis that the negotiators, being rational
agents, will try to maximize their payoffs from the negotiation outcome and thus, will not terminate
the negotiations at an agreement that is not optimal. According to the normative interpretation of
a bargaining rule, an axiom is a normatively appealing property which we as a society would like
arbitrations to a relevant class of negotiations to satisfy. Note that the Pareto optimality axiom
can also be promoted on this basis.

It is important to note that an axiom need not be desirable in every application of the theory
to real-life negotiations. Different applications might call for different axioms.

A typical study on cooperative bargaining theory considers a set of axioms, motivated by a
particular application, and identifies the class of bargaining rules that satisfy them. An example is
Nash (1950) which shows that the Nash bargaining rule uniquely satisfies a list of axioms including
Pareto optimality. In Section 3, we discuss several such studies in detail.

As will be detailed in Section 2, Nash’s (1950) model analyzes situations where the bargainers
have access to lotteries on a fixed and publicly known set of alternatives. It is also assumed that
the bargainers’ von Neumann-Morgenstern preferences are publicly known. While most of the
following literature works on Nash’s standard model, there also are many studies that analyze the
implications of dropping some of these assumptions. For example, in Section 5, we discuss the
recent literature on ordinal bargaining which analyzes cases where the agents do not necessarily
have access to lotteries or do not have von Neumann-Morgenstern preferences.

It is important to mention that, two negotiation processes who happen to have the same feasible
payoff set and disagreement point are considered to be the same bargaining problem in Nash’s (1950)
model and thus, they have the same solution, independent of which bargaining rule is being used
and how distinct the two negotiations are physically. This is sometimes referred to as the welfarism

3As will be formally introduced later, an agreement is Pareto optimal if there is no alternative agreement that
makes an agent better-off without hurting any other agent.
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axiom and it has been a point of criticism of cooperative game theory (e.g., see Roemer, 1998). It
should be noted that all the bargaining rules that we review in this chapter satisfy this property.

The chapter is organized as follows. In Section 2, we present the bargaining model of Nash
(1950). We present in Section 3, the main bargaining rules and axioms in the literature. In
Section 4, we discuss strategic issues related to cooperative bargaining, such as the Nash program,
implementation, and games of manipulating bargaining rules (for more on strategic issues, see
Chapter 8 of this handbook). Finally, we present the recent literature on ordinal bargaining in
Section 5.

For earlier surveys of cooperative bargaining theory, please see Roth (1979), Thomson and Lens-
berg (1989), Peters (1992), and Thomson (1994 and 1996). They contain more detailed accounts of
the earlier literature which we summarize in Section 3. In Sections 4 and 5, however, we present a
selection of the more recent contributions to cooperative bargaining theory, not covered by earlier
surveys. Due to space limitations, we left out some important branches of the recent literature. For
nonconvex bargaining problems, see Herrero (1989) or Zhou (1997) and the related literature. For
bargaining problems with incomplete information, see Myerson (1984) or De Clippel and Minelli
(2004) and the related literature. For rationalizability of bargaining rules, see Peters and Wakker
(1991) and the following literature. For extensions of the Nash model that focus on the implications
of disagreement, see Kıbrıs and Tapkı(2007a,b) and the literature cited therein.

Bargaining problems are cooperative games (called nontransferable utility games) where it is
assumed that only the grand coalition or individual agents can affect the final agreement. This is
without loss of generality for two-agent negotiations which are the most common type. However,
for negotiations among three or more agents, the effect of coalitions on the final outcome might also
be important. Binmore (1985) and the following literature analyze bargaining models that take
coalitions into account. For more on this literature, please see Bennett (1997), Kıbrıs (2004b), and
the literature cited therein.

2 The Bargaining Model

Consider a group of negotiators N = {1, ..., n}. (While most real-life negotiations are bilateral,
that is N = {1, 2} , we do not restrict ourselves to this case.) A cooperative bargaining problem
for the group N consists of a set, S, of payoff profiles (i.e. payoff vectors) resulting from every
possible agreement and a payoff profile, d, resulting from the disagreement outcome. It is therefore
defined on the space of all payoff profiles, namely the n-dimensional Euclidian space RN . Formally,
the feasible payoff set S is a subset of RN and the disagreement point d is a vector in RN . In
what follows, we will refer to each x ∈ S as an alternative (agreement).

There is an important asymmetry between an alternative x ∈ S and the disagreement point d.
For the negotiations to end at x, unanimous agreement of the bargainers is required. On the other
hand, each agent can unilaterally induce d by simply disagreeing with the others.

The pair (S, d) is called a (cooperative bargaining) problem (Figure 1, left) and is typically
assumed to satisfy the following properties:4

(i) S is convex, closed, bounded,
(ii) d ∈ S and there is x ∈ S such that x > d,

4We use the following vector inequalities: x = y if for each i ∈ N, xi = yi; x ≥ y if x = y and x 6= y; and x > y if
for each i ∈ N, xi > yi.
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Figure 1: The horizontal (respectively, vertical) axis represents the payoffs of Agent 1 (Agent 2). On
the left: a strictly d-comprehensive bargaining problem. On the right: a weakly d-comprehensive
bargaining problem, the individually rational set, the Pareto set (part of the north-east boundary
between p2 and p3) and the weak Pareto set (part of the north-east boundary between p1 and p3).

(iii) S is d-comprehensive (i.e. d 5 y 5 x and x ∈ S imply y ∈ S).
Let B be the set of all cooperative bargaining problems.

Convexity of S means that (i) the agents are able to reach agreements that are lotteries on other
agreements and (ii) each agent’s preferences on lotteries satisfy the von Neumann-Morgenstern
axioms and thus, can be represented by an expected utility function. For example, consider a
couple negotiating on whether to go to the park or to the movies on Sunday. The convexity
assumption means that they could choose to agree to take a coin toss on the issue (or agree to
condition their action on the Sunday weather) and that each agent’s payoff from the coin toss is
the average of his payoffs from the park and the movies. Boundedness of S means that the agents’
payoff functions are bounded (i.e. no agreement can give them an infinite payoff). Closedness of S
means that the set of physical agreements is closed and the agents’payoff functions are continuous.

In Section 5, we will extend the basic model to allow situations where the bargainers do not
have access to lotteries and they do not necessarily have von Neumann-Morgenstern preferences.

The assumption d ∈ S means that the agents are able to agree to disagree and induce the
disagreement outcome. Existence of an x ∈ S such that x > d rules out degenerate problems
where no agreement can make all agents better-off than the disagreement outcome. Finally, d-
comprehensiveness of S means that utility is freely disposable above d.5

Two concepts play an important role in the analysis of a bargaining problem (S, d). The
first is the Pareto optimality of an agreement: it means that the bargainers can not all bene-
fit from switching to an alternative agreement. Formally, the Pareto set of (S, d) is defined as
P (S, d) = {x ∈ S | y ≥ x⇒ y 6∈ S} and theWeak Pareto set of (S, d) is defined as WP (S, d) =
{x ∈ S | y > x⇒ y 6∈ S} . The second concept, individual rationality, is based on the fact that each
agent can unilaterally induce disagreement. Thus, it requires that each bargainer prefer an agree-
ment to disagreement. Formally, the individually rational set is I (S, d) = {x ∈ S | x = d} . Like
Pareto optimality, individual rationality is desirable as both a positive and a normative property.
On Figure 1, right, we present the sets of Pareto optimal and individually rational alternatives.

We will occasionally consider a subclass Bsc of bargaining problems B that satisfy a stronger
5A stronger assumption called full comprehensiveness additionally requires utility to be freely disposable below d.
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Figure 2: The Accession Game: Scenario 1 (top left), Scenario 2 (top right), Scenario 3 (bottom
left), and Scenario 4 (bottom right).

property than d-comprehensiveness: the problem (S, d) is strictly d-comprehensive if d 5 y 5 x
and x ∈ S imply y ∈ S and y 6∈ WP (S, d) (please see Figure 1; the left problem is strictly
d-comprehensive while the right one is not).

We will next present examples of modeling the accession negotiation of Example 1.

Example 2 (Modeling the Accession Negotiation) The set of bargainers is N = {E,C} . Let
T = [0, 1] be the set of all tariff rates. As noted in Section 1, the bargainers’ payoffs from al-
ternative agreements (as well as disagreement) need to be determined by an empirical study which
(not surprisingly) we will not carry out here. However, we will next present four alternative sce-
narios for these payoff functions, UC and UE. In each scenario, we assume for simplicity that each
bargainer (i) receives a zero payoff in case of disagreement and (ii) prefers accession with any tariff
rate to disagreement. Due to (ii) , the individually rational set coincides with the feasible payoff set
of the resulting bargaining problem in each scenario.

In the first scenario, both bargainers’ payoffs are linear in the tax rate. (Thus, both are risk-
neutral.6)
Scenario 1. Let UE (t) = 1− t and UC (t) = t

In the second scenario, we change the candidate’s payoff to be a strictly concave function. (Com-
pared to Scenario 1, C is now more risk-averse than E.)

6A decision-maker is risk-neutral if he is indifferent between each lottery and the lottery’s expected (sure) return.
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Scenario 2. Let UE (t) = 1− t and UC (t) = t
1
2

In the third scenario, E’s payoff is also changed to be a strictly concave function. (Now, both bar-
gainers have the same level of risk-aversion.)

Scenario 3. Let UE (t) = (1− t)
1
2 and UC (t) = t

1
2

In the fourth scenario, both bargainers have linear payoff functions. That is, they are both risk-
neutral. But, differently from Scenario 1, now E’s marginal gain from a change in the tariff rate
is twice that of C.
Scenario 4. Let UE (t) = 2 (1− t) and UC (t) = t

The resulting feasible payoff set and the disagreement point for each scenario is constructed in Fig-
ure 2.
Since both bargainers prefer accession of C to its rejection from the European Union, the Pareto
set under all scenarios corresponds to those payoff profiles that result from accession with probabil-
ity 1. The feasible payoff set is constructed by taking convex combinations of the Pareto optimal
alternatives with the disagreement point. Thus, they represent payoff profiles of lotteries, including
those between an accession agreement and disagreement.

3 Bargaining Rules and Axioms

A (bargaining) rule F : B → Rn assigns each bargaining problem (S, d) ∈ B to a feasible payoff
profile F (S, d) ∈ S. As discussed in Section 1, F can be interpreted as either (i) a description of
the negotiation process the agents in consideration are involved in (the positive interpretation) or
(ii) a prescription to the negotiators as a “good”compromise (the normative interpretation).

In this section, we present examples of bargaining rules and discuss the main axioms that they
satisfy. We also discuss these rules’choices for the four scenarios of Example 2.

3.1 The Nash Rule

The first and the best-known example of a bargaining rule is by Nash (1950). The Nash rule
chooses, for each bargaining problem (S, d) ∈ B the individually rational alternative that maximizes
the product of the agents’gains from disagreement (please see Figure 3, left):

N (S, d) = arg max
x∈I(S,d)

n∏
i=1

(xi − di) .

Let us first check the Nash solutions to the accession negotiations of Example 2.

Example 3 (Nash solution to the accession negotiations) For each of the four scenarios discussed
in Example 2, the Nash rule proposes the following payoff profiles (the first payoff number is for E
and the second is for C). For Scenario 1, N

(
S1, d1

)
=
(
1
2 ,
1
2

)
. This payoff profile is obtained when

the bargainers agree on accession at a tariff rate t1 = 1
2 . For Scenario 2, N

(
S2, d2

)
=
(
2
3 ,

1√
3

)
,

obtained at accession and the tariff rate t2 = 1
3 . For Scenario 3, N

(
S3, d3

)
=
(
1√
2
, 1√

2

)
, obtained
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Figure 3: The Nash (left) and the Kalai-Smorodinsky (right) solutions to a typical problem.

at accession and the tariff rate t3 = 1
2 . For Scenario 4, N

(
S4, d4

)
=
(
1, 12
)
, obtained at accession

and the tariff rate t4 = 1
2 .

In Example 3, as C becomes more risk averse from Scenario 1 to Scenario 2, the Nash solution
changes in a way to benefit E (since the tariff rate decreases from 1

2 to
1
3). This is a general feature

of the Nash bargaining rule: the Nash bargaining payoff of an agent increases as his opponent
becomes more risk-averse (Kihlstrom, Roth, and Schmeidler (1981)).

Nash (1950) proposes four axioms and shows that his rule satisfies them. These axioms later
play a central role in the literature. We will introduce them next.

The first axiom requires that the rule always choose a Pareto optimal alternative. Formally,
a rule F is Pareto optimal if for each problem (S, d) ∈ B, F (S, d) ∈ P (S, d) . As discussed
in Section 1, it is commonly agreed in the literature that negotiations result in a Pareto optimal
alternative. (For a criticism of this claim, see Osborne and Rubinstein, 1990). Thus, most axiomatic
analyses focus on Pareto optimal rules. In Example 3, Pareto optimality is satisfied since all four
negotiations result in the accession of the candidate to the European Union.7

The second axiom, called anonymity, guarantees that the identity of the bargainers do not
affect the outcome of negotiation. It requires that permuting the agents’payoff information in a
bargaining problem should result in the same permutation of the original agreement. To formally
introduce this axiom, let Π be the set of all permutations on N , π : N → N . For x ∈ RN , let
π (x) =

(
xπ(i)

)
i∈N and for S ⊆ RN , let π (S) = {π (x) | x ∈ S}. Then, a rule F is anonymous if

for each π ∈ Π, F (π (S) , π (d)) = π (F (S, d)) . Note that anonymity applies to cases where the
bargainers have “equal bargaining power”.

It is common practice in the literature to replace anonymity with a weaker axiom which requires
that if a problem is symmetric (in the sense that all of its permutations result in the original
problem), then its solution should be symmetric as well. Formally, a rule F is symmetric if
for each π ∈ Π, π (S) = S and π (d) = d implies F1 (S, d) = ... = Fn (S, d) . Note that the
bargaining problems under Scenarios 1 and 3 are symmetric. Therefore, their Nash solutions are
also symmetric.

The third axiom is based on the fact that a von Neumann-Morgenstern type preference relation
can be represented with infinitely many payoff functions (that are positive affi ne transformations

7This is Pareto optimal since both bargainers prefer accession to rejection. What they disagree on is the tariff
rate.
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of each other) and the particular functions chosen to represent the problem should not affect the
bargaining outcome. Formally, let Λ be the set of all λ = (λ1, ..., λn) where each λi : R→ R is
a positive affi ne function.8 Let λ (S) = {λ (x) | x ∈ S} . Then, a rule F is scale invariant if for
each (S, d) ∈ B and λ ∈ Λ, F (λ (S) , λ (d)) = λ (F (S, d)) . Note that in the accession negotiations,
Scenario 4 is obtained from Scenario 1 by multiplying UE by 2, which is a positive affi ne transfor-
mation. Thus, the Nash solutions to the two scenarios are related the same way (and the resulting
tariff rates are identical).

The final axiom of Nash (1950) concerns the following case. Suppose the bargainers facing
a bargaining problem (S, d) agree on an alternative x. However, they later realize that the actual
feasible set T is smaller than S. Nash requires that if the original agreement is feasible in the smaller
feasible set, x ∈ T, then the bargainers should stick with it. Formally, a rule F is contraction
independent if for each (S, d) , (T, d) ∈ B such that T ⊆ S, F (S, d) ∈ T implies F (T, d) = F (S, d) .
Nash (1950) and some of the following literature alternatively calls this axiom independence of
irrelevant alternatives (IIA). However, the presumed irrelevance of alternatives in the choice
of an agreement (as suggested by this name) is a topic of controversy in the literature. In fact, it
is this controversy that motivates the bargaining rule of Kalai and Smorodinsky (1975) as will be
discussed in the next subsection.

Nash (1950) shows that his bargaining rule uniquely satisfies these four axioms. We will next
prove this result for two-agent problems.

Theorem 4 (Nash, 1950) A bargaining rule satisfies Pareto optimality, symmetry, scale invari-
ance, and contraction independence if and only if it is the Nash rule.

Proof. It is left to the reader to check that the Nash rule satisfies the given axioms. Conversely,
let F be a rule that satisfies them. Let (S, d) ∈ B and N (S, d) = x. We would like to show that
F (S, d) = x.

By scale invariance of both rules, it is without loss of generality to assume that d = (0, 0) and
x = (1, 1) .9 Then, by definition of N, the set P (S, d) has slope −1 at x. Also, by boundedness of S,
there is z ∈ RN such that for each x ∈ S, x = z.Now let T =

{
y ∈ RN |

∑
N yi 5

∑
N xi and y = z

}
.

Then, S ⊆ T and (T, d) ∈ B is a symmetric problem. Thus, by symmetry and Pareto optimal-
ity of F, F (T, d) = x. This, by contraction independence of F, implies F (S, d) = x, the desired
conclusion.

It is useful to note that the following class of weighted Nash rules uniquely satisfy all of Nash’s
axioms except symmetry. These rules extend the Nash bargaining rule to cases where agents differ
in their “bargaining power”. Formally, let p = (p1, ..., pn) ∈ [0, 1]N satisfy

∑
N pi = 1. Each pi is

interpreted as the bargaining power of Agent i. Then the p-weighted Nash bargaining rule is
defined as

Np (S, d) = arg max
x∈I(S,d)

n∏
i=1

(xi − di)pi .

The symmetric Nash bargaining rule assigns equal weights to all agents, that is, p =
(
1
n , ...,

1
n

)
.

The literature contains several other characterizations of the Nash bargaining rule. For example,
see Chun (1988), Lensberg (1988), Peters (1986), Peters and Van Damme (1986 and 1991), and
Dagan, Volij, and Winter (2002).

8A function λi : R→ R is positive affi ne if there is a, b ∈ R with a > 0 such that for each x ∈ R, λi (x) = ax+ b.
9Any (S, d) can be “normalized” into such a problem by choosing λi (xi) = xi−di

Ni(S,d)−di
for each i ∈ N.
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3.2 The Kalai-Smorodinsky Rule

The Kalai-Smorodinsky rule (Raiffa, 1953; Kalai and Smorodinsky, 1975) makes use of each
agent’s aspiration payoff, that is, the maximum payoff an agent can get at an individually ra-
tional agreement. Formally, given a problem (S, d) ∈ B, the aspiration payoff of Agent i is
ai (S, d) = arg maxx∈I(S,d) xi. The vector a (S, d) = (ai (S, d))ni=1 is called the aspiration point.

The Kalai-Smorodinsky rule, K, chooses the maximum individually rational payoff profile
at which each agent’s payoff gain from disagreement has the same proportion to his aspiration
payoff’s gain from disagreement (please see Figure 3, right). Formally,

K (S, d) = arg max
x∈I(S,d)

(
min

i∈{1,...,n}

xi − di
ai (S, d)− di

)
.

Geometrically,K (S, d) is the intersection of the line segment [d, a (S, d)] and the northeast boundary
of S.10

Example 5 (Kalai-Smorodinsky solution to the accession negotiations) For each of the four sce-
narios discussed in Example 2, the Kalai-Smorodinsky rule proposes the following payoff profiles
(the first payoff number is for E and the second is for C). For Scenario 1, K

(
S1, d1

)
=
(
1
2 ,
1
2

)
.

This payoff profile is obtained when the bargainers agree on accession at a tariff rate t1 = 1
2 . For

Scenario 2, K
(
S2, d2

)
= (0.62, 0.62) , obtained at accession and the tariff rate t2 = 0.38. For Sce-

nario 3, K
(
S3, d3

)
=
(
1√
2
, 1√

2

)
, obtained at accession and the tariff rate t3 = 1

2 . For Scenario 4,

K
(
S4, d4

)
=
(
1, 12
)
, obtained at accession and the tariff rate t4 = 1

2 .

In Example 5, as C becomes more risk averse from Scenario 1 to Scenario 2, the Kalai-
Smorodinsky solution changes in a way to benefit E (since the tariff rate decreases from 1

2 to
0.38). This is a general feature of the Kalai-Smorodinsky bargaining rule: the Kalai-Smorodinsky
bargaining payoff of an agent increases as his opponent becomes more risk-averse (Kihlstrom, Roth,
and Schmeidler (1981)).

As can be observed in Example 5, the Kalai-Smorodinsky rule is Pareto optimal for all two-agent
problems. With more agents, however, it satisfies a weaker property: a rule F is weakly Pareto
optimal if for each problem (S, d) ∈ B, F (S, d) ∈ WP (S, d) . Example 5 also demonstrates that
the Kalai-Smorodinsky rule is symmetric and scale invariant. Due to weak Pareto optimality and
symmetry, the Kalai-Smorodinsky solutions to

(
S1, d1

)
and

(
S3, d3

)
are equal to the Nash solutions.

Due to scale invariance, the two rules also coincide on
(
S4, d4

)
. For the problem

(
S2, d2

)
, however,

the two rules behave differently: the Kalai-Smorodinsky rule chooses equal payoffs for the agents
while the Nash rule favors E.

The Kalai-Smorodinsky rule violates Nash’s contraction independence axiom. Kalai and Smorodin-
sky (1975) criticize this axiom and propose to replace it with a monotonicity notion which requires
that an expansion of the feasible payoff set (and thus an increase in the cooperative opportuni-
ties) should benefit an agent if it does not affect his opponents’aspiration payoffs. Formally, a
rule F satisfies individual monotonicity if for each (S, d) , (T, d) ∈ B and i ∈ N, if S ⊆ T and
aj (S, d) = aj (T, d) for each j 6= i, then Fi (S, d) 5 Fi (T, d) . The Nash rule violates this axiom.

10Kalai and Rosenthal (1978) discuss a variant of this rule where the aspiration payoffs are defined alternatively as
a∗i (S, d) = argmaxx∈S xi.
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Kalai and Smorodinsky (1975) present the following characterization of the Kalai-Smorodinsky
rule. We will next prove this result for two-agent problems.

Theorem 6 (Kalai and Smorodinsky, 1975) A bargaining rule satisfies Pareto optimality, sym-
metry, scale invariance, and individual monotonicity if and only if it is the Kalai-Smorodinsky
rule.

Proof. It is left to the reader to check that the Kalai-Smorodinsky rule satisfies the given axioms.
Conversely, let F be a rule that satisfies them. Let (S, d) ∈ B and K (S, d) = x. We would like to
show that F (S, d) = x.

By scale invariance of both rules, it is without loss of generality to assume that d = (0, 0) and
a (S, d) = (1, 1) .11 Then, by definition of K, x1 = x2. Now let T = conv {x, d, (1, 0) , (0, 1)} . Then,
T ⊆ S and (T, d) ∈ B is a symmetric problem. Thus, by symmetry and Pareto optimality of F,
F (T, d) = x. Since T ⊆ S, x ∈ P (S, d) , and a (S, d) = a (T, d) , individual monotonicity implies
that F (S, d) = x, the desired conclusion.

Roth (1979) notes that the above characterization continues to hold under a weaker monotonic-
ity axiom which only considers expansions of the feasible set at which the problem’s aspiration
point remains unchanged. Formally, a rule F satisfies restricted monotonicity if for each
(S, d) , (T, d) ∈ B and i ∈ N, if S ⊆ T and a (S, d) = a (T, d) , then F (S, d) 5 F (T, d) . The
Nash rule violates this weaker monotonicity axiom as well.

The literature contains several other characterizations of the Kalai-Smorodinsky bargaining
rule. For example, see Thomson (1980 and 1983) and Chun and Thomson (1989). Also, Dubra
(2001) presents a class of asymmetric generalizations.

3.3 The Egalitarian Rule

The Egalitarian rule, E, (Kalai, 1977) chooses for each problem (S, d) ∈ B, the maximum
individually rational payoff profile that gives each agent an equal gain from his disagreement payoff
(please see Figure 4, left). Formally, for each (S, d) ∈ B,

E (S, d) = arg max
x∈I(S,d)

(
min

i∈{1,...,n}
(xi − di)

)
.

Geometrically, E (S, d) is the intersection of the boundary of S and the half line that starts at d
and passes through d+ (1, ..., 1).

Example 7 (Egalitarian solution to the accession negotiations) For each of the four scenarios
discussed in Example 2, the Egalitarian rule proposes the following payoff profiles (the first payoff
number is for E and the second is for C). For Scenario 1, E

(
S1, d1

)
=
(
1
2 ,
1
2

)
. This payoff profile is

obtained when the bargainers agree on accession at a tariff rate t1 = 1
2 . For Scenario 2, E

(
S2, d2

)
=

(0.62, 0.62) , obtained at accession and the tariff rate t2 = 0.38. For Scenario 3, E
(
S3, d3

)
=(

1√
2
, 1√

2

)
, obtained at accession and the tariff rate t3 = 1

2 . For Scenario 4, E
(
S4, d4

)
=
(
2
3 ,
2
3

)
,

obtained at accession and the tariff rate t4 = 2
3 .

11Any (S, d) can be “normalized” into such a problem by choosing λi (xi) = xi−di
ai(S,d)−di

for each i ∈ N.
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Figure 4: The Egalitarian (left) and the Utilitarian (right) solutions to a typical problem.

The Egalitarian rule satisfies Pareto optimality only on the class of strictly d-comprehensive
problems Bsc. On B, it only satisfies weak Pareto optimality.12

As observed in Example 7, the Egalitarian rule is weakly Pareto optimal and symmetric. Due
to these two axioms, the Egalitarian solutions to

(
S1, d1

)
and

(
S3, d3

)
are equal to the Nash and

Kalai-Smorodinsky solutions. Also, since the aspiration point of problem
(
S2, d2

)
is symmetric,

a (S, d) = (1, 1) , the Egalitarian and the Kalai-Smorodinsky rules pick the same solution.
Unlike the Nash and the Kalai-Smorodinsky rules, the Egalitarian rule violates scale invariance.

This can be observed in Example 7 by comparing the Egalitarian solutions to
(
S1, d1

)
and

(
S4, d4

)
.13

The Egalitarian rule however satisfies the following weaker axiom: a rule F satisfies translation
invariant if for each (S, d) ∈ B and z ∈ RN , F (S + {z} , d+ z) = F (S, d) + z.14

On the other hand, the Egalitarian rule satisfies a very strong monotonicity axiom which requires
that an agent never loose in result of an expansion of the feasible payoff set. Formally, a rule F
satisfies strong monotonicity if for each (S, d) , (T, d) ∈ B, if S ⊆ T then F (S, d) 5 F (T, d) .
This property is violated by the Kalai-Smorodinsky rule since this rule is sensitive to changes in
the problem’s aspiration point. The Nash rule violates this property since it violates the weaker
individual monotonicity property.

The following characterization of the Egalitarian rule follows from Kalai (1977). We present it
for two agent problems.

Theorem 8 (Kalai, 1977) A bargaining rule satisfies weak Pareto optimality, symmetry, trans-
lation invariance, and strong monotonicity if and only if it is the Egalitarian rule.

Proof. It is left to the reader to check that the Egalitarian rule satisfies the given axioms. Con-
versely, let F be a rule that satisfies them. Let (S, d) ∈ B and E (S, d) = x. We would like to show
that F (S, d) = x.

12On problems that are not d-comprehensive, the Egalitarian rule can also violate weak Pareto optimality.
13For a scale invariant rule,

(
S1, d1

)
and

(
S4, d4

)
are alternative representations of the same physical problem.

(Specifically, E’s payoff function has been multiplied by 2 and thus, still represents the same preferences.) For the
Egalitarian rule, however, these two problems (and player E’s) are distinct. Since it seeks to equate absolute payoff
gains from disagreement, the Egalitarian rule treats agents’payoffs to be comparable to each other. As a result, it
treats payoff functions as more than mere representations of preferences.
14This property is weaker than scale invariance because, for an agent i, every translation xi+ zi is a positive affi ne

transformation λi (xi) = 1xi + zi.
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By translation invariance of both rules, it is without loss of generality to assume that d =
(0, 0) .15 Then, by definition of E, x1 = x2. Now let T = conv {x, d, (x1, 0) , (0, x2)} . Then, T ⊆ S
and (T, d) ∈ B is a symmetric problem. Thus, by symmetry and weak Pareto optimality of F,
F (T, d) = x. Since T ⊆ S, strong monotonicity then implies F (S, d) = x.
Case 1: x ∈ P (S, d) . Then F (S, d) ≥ x implies F (S, d) 6∈ S. Thus, F (S, d) = x, the desired
conclusion.
Case 2: x ∈ WP (S, d) . Suppose Fi (S, d) > xi for some i ∈ N. Let δ > 0 be such that xi + δ <
Fi (S, d), let x′ = x+(δ, δ) , x′′ =

(
di, x

′
−i
)
and S′ = conv {x′, x′′, S} . Then E (S′, d) = x′ ∈ P (S′, d)

and by Case 1, F (S′, d) = x′. Since S ⊆ S′, by strong monotonicity, F (S′, d) = x′ = F (S, d) .
Particularly, xi + δ = Fi (S, d) , a contradiction. Thus, F (S, d) = x.

The literature contains several other characterizations of the Egalitarian bargaining rule. For
example, see Chun and Thomson (1989, 1990a,b), Myerson (1981), Peters (1986), Salonen (1998),
and Thomson (1984).

3.4 Other Rules

In this section, we will present some of the other well-known rules in the literature.
The first is the Utilitarian rule which chooses for each bargaining problem (S, d) ∈ B the

alternatives that maximize the sum of the agents’payoffs (please see Figure 4, right):

U (S, d) = arg max
x∈S

n∑
i=1

xi.

The Utilitarian rule is not necessarily single-valued, except when the feasible set is strictly convex.
However, it is possible to define single-valued refinements (such as choosing the midpoint of the set
of maximizers). Also, the Utilitarian solution to (S, d) is independent of d. Thus, the Utilitarian
rule violates individual rationality. Restricting the choice to be from the individually rational set
remedies this problem. Finally, the Utilitarian rule violates scale invariance. However, a variation
which maximizes a weighted sum of utilities satisfies the property (e.g. see Dhillon and Mertens,
1999).

The Utilitarian rule is Pareto optimal, anonymous contraction independent, and translation
invariant even though it violates restricted monotonicity. For more on this rule, see Myerson
(1981), Thomson and Myerson (1980), and Thomson (1981). Blackorby, Bossert, and Donaldson
(1994) introduce a class of Generalized Gini rules that are mixtures of the Utilitarian and the
Egalitarian rules. Ok and Zhou (2000) further extend this class to a class of Choquet rules.

The second rule represents extreme cases where one agent has all the “bargaining power”. The
Dictatorial rule for Agent i chooses the alternative that maximizes Agent i’s payoff among
those at which the remaining agents receive their disagreement payoffs (please see Figure 5, right):

Di (S, d) = arg max
x∈I(S,d)

s.t. x−i=d−i

xi.

This rule is only weakly Pareto optimal, though on strictly d-comprehensive problems it is Pareto
optimal. The following rule does not suffer from this problem: the Serial Dictatorial rule is defined

15Any (S, d) can be “normalized” into such a problem by choosing λi (xi) = xi − di for each i ∈ N.
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Figure 5: The Equal Area solution to a typical problem equates the two shaded areas (left); the
Perles-Maschler solution to a polygonal problem is the limit of the sequences

{
xk
}
and

{
yk
}
which

are constructed in such a way that (i) x0 = D2 (S, d), y0 = D1 (S, d) are the two Dictatorial
solutions and (ii) the areas A, B, C, and D are maximal and they satisfy A = D and B = C.

with respect to a fixed order of agents and it first maximizes the payoff of the first ordered agent,
then among the maximizers, maximizes the payoff of the second and so on.

Both the dictatorial and serial dictatorial rule violate symmetry (and thus anonymity). Oth-
erwise, they are very well-behaved. Both rules are scale invariant. In fact, they satisfy an even
stronger property, ordinal invariance, that we introduce and discuss in Section 5. These rules
also satisfy contraction independence and strong monotonicity (and thus, all weaker monotonicity
properties).

The next class of rules, introduced by Yu (1973), are based on minimizing a measure of the
distance between the agreement and the problem’s aspiration point (defined in Subsection 3.2).
Formally, for p ∈ (1,∞) , the Yu rule associated with p is

Y p (S, d) = arg min
x∈S

(
n∑
i=1

|ai (S, d)− xi|p
) 1

p

.

The Yu rules are Pareto optimal, anonymous, and individually monotonic. However, they violate
contraction independence, strong monotonicity, and scale invariance.

The final two rules are defined for two-agent problems. They both are based on the idea of
equalizing some measure of the agents’sacrifices with respect to their aspiration payoffs. The first,
Equal Area rule, EA, chooses the Pareto optimal alternative at which the area of the set of
better individually rational alternatives for Agent 1 is equal to that of Agent 2 (please see Figure
5, left). This rule violates contraction independence but satisfies anonymity, scale invariance, and
an “area monotonicity”axiom (e.g. see Anbarcıand Bigelow (1994) and Calvo and Peters (2000)).
The second rule is by Perles and Maschler (1981). For problems (S, d) whose Pareto set P (S, d)
is polygonal, the Perles-Maschler rule, PM, chooses the limit of the following sequence. (The
Perles-Maschler solution to any other problem (S, d) is obtained as the limit of Perles-Maschler
solutions to a sequence of polygonal problems that converge to (S, d)). Let x0 = D2 (S, d) and
y0 = D1 (S, d) . For each k ∈ N, let xk, yk ∈ P (S, d) be such that (i) xk1 5 yk1 , (ii) [xk−1, xk] ⊂
P (S, d) , (iii) [yk−1, yk] ⊂ P (S, d) , (iv)

∣∣∣(xk−11 − xk1
)(

xk−12 − xk2
)∣∣∣ =

∣∣∣(yk−11 − yk1
)(

yk−12 − yk2
)∣∣∣ ,
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and
∣∣∣(xk−11 − xk1

)(
xk−12 − xk2

)∣∣∣ is maximized (please see Figure 5, right). The Perles-Maschler rule
is Pareto optimal, anonymous, and scale invariant. It, however, is not contraction independent or
restricted monotonic. For extending this rule to more than two agents, see Perles (1982) and Calvo
and Gutiérrez (1994).

4 Strategic Considerations

As noted in Section 1, Nash (1950) interprets a bargaining rule as a description of a (noncooperative)
negotiation process between rational agents. Nash (1953) furthers this interpretation and proposes
what is later known as the Nash program: to relate choices made by cooperative bargaining
rules to equilibrium outcomes of underlying noncooperative games. Nash argues that “the two
approaches to the (bargaining) problem, via the (noncooperative) negotiation model or via the
axioms, are complementary; each helps to justify and clarify the other”.

Nash (1953) presents the first example of the Nash program. Given a bargaining problem (S, d) ,
he proposes a two-agent noncooperative Demand Game in which each player i simultaneously
declares a payoff number si. If the declared payoff profile is feasible (i.e., s ∈ S), players receive
their demands. Otherwise, the players receive their disagreement payoffs with a probability p and
their demands with the remaining probability. Nash shows that, as p converges 1, the equilibrium
of the Demand Game converges to the Nash solution to (S, d) .

Van Damme (1986) considers a related noncooperative game where, given a bargaining problem
(S, d) , each agent simultaneously declares a bargaining rule.16 If the solutions proposed by the two
rules conflict, the feasible payoff set is contracted in a way that an agent can’t receive more than
the payoff he asks for himself. The two rules are now applied to this contracted problem and if
they conflict again, the feasible set is once more contracted. Van Damme (1986) shows that for a
large class of rules, the limit of this process is well-defined and the unique Nash equilibrium of this
noncooperative game is both agents declaring the Nash bargaining rule.

Another well-known contribution to the Nash program is by Binmore, Rubinstein, and Wolinsky
(1986) who relate the Nash bargaining rule to equilibrium outcomes of the following game. The
Alternating Offers Game (Rubinstein, 1982) is an infinite horizon sequential move game to
allocate one unit of a perfectly divisible good between two agents. The players alternate in each
period to act as “proposer” and “responder”. Each period contains two sequential moves: the
proposer proposes an allocation and the responder either accepts or rejects it. The game ends
when a proposal is accepted. Rubinstein (1982) shows that the Alternating Offers Game has a
unique subgame perfect equilibrium in which the first proposal, determined as a function of the
players’discount factors, is accepted. Binmore, Rubinstein, and Wolinsky (1986) show that, as the
players’discount factors converge to 1 (i.e. as they become more patient), the equilibrium payoff
profile converges to the Nash bargaining solution to the associated cooperative bargaining game.

The Nash program is closely related to the implementation problem.17 Since the latter is
discussed in detail elsewhere in this book, we find it suffi cient to mention Moulin (1984) who

16Thus, as in Nash (1953), each agent demands a payoff. But now, they have to rationalize it as part of a solution
proposed by an “acceptable”bargaining rule.
17To implement a cooperative bargaining rule in an equilibrium notion (such as the Nash equilibrium), one con-

structs a noncooperative game whose equilibria coincides with the rule’s choices on every problem.
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implements the Kalai-Smorodinsky rule and Miyagawa (2002) who designs a class of games that
implement any bargaining rule that maximizes a monotonic and quasiconcave objective function.

Another strategic issue arises from that fact that each negotiator, by misrepresenting his private
information (e.g. about his preferences, degree of risk aversion, etc.), might be able to change the
bargaining outcome in his favor. Understanding the “real” outcome of a bargaining rule then
requires taking this kind of strategic behavior into account. A standard technique for this is to
embed the original problem into a noncooperative game (in which agents strategically “distort”
their private information) and to analyze its equilibrium outcomes. This is demonstrated in the
following example.

Example 9 (A noncooperative game of manipulating the Nash rule) Suppose that agents C and
E in Example 2 have private information about their true payoff functions and that they play a
noncooperative game where they strategically declare this information to an arbitrator who uses the

Nash rule. Using the four scenarios of Example 2, fix the strategy set of C as
{
t , t

1
2

}
and the

strategy set of E as
{

1− t , (1− t)
1
2 , 2 (1− t)

}
. The resulting tariff rate is determined by the

Nash bargaining rule calculated in Example 3 except for the profile
(
t, (1− t)

1
2

)
. The following

table summarizes, for each strategy profile, the resulting tariff rate.

C\E 1− t (1− t)
1
2 2 (1− t)

t 0.5 0.66 0.5

t
1
2 0.33 0.5 0.33

Note that this is a competitive game: C is better-off and E is worse-off in response to an increase
in the tariff rate t. Also note that, for C, declaring t strictly dominates declaring t

1
2 (that is, he

gains from acting less risk-averse). Similarly, for E, declaring (1− t) strictly dominates declaring
(1− t)

1
2 and, since the Nash bargaining rule is scale invariant, declaring (1− t) and 2 (1− t) are

equivalent. The game has two equivalent dominant strategy equilibria: (t, 1− t) and (t, 2 (1− t))
where both players act to be risk-neutral.

In some cases, such as Example 9, it is natural to assume that the agents’ordinal preferences
are publicly known. (In the example, it is common knowledge that C prefers higher tariff rates and
E prefers lower tariff rates.) Then, manipulation can only take place through misrepresentation of
cardinal utility information (such as the degree of risk-aversion). In two-agent bargaining with the
Nash or the Kalai-Smorodinsky rules, an agent’s utility increases if his opponent is replaced with
another that has the same preferences but a more concave utility function (Kihlstrom et al, 1981).
On allocation problems, this result implies that an agent can increase his payoff by declaring a
less concave utility function (i.e. acting to be less risk-averse). For the Nash bargaining rule, it is
a dominant strategy for each agent to declare the least concave representation of his preferences
(Crawford and Varian, 1979). For a single good, the equilibrium outcome is equal division.

If ordinal preferences are not publicly known, however, their misrepresentation can also be used
for manipulation. The resulting game does not have dominant strategy equilibria. Nevertheless,
for a large class of two-agent bargaining rules applied to allocation problems, the set of allocations
obtained at Nash equilibria in which agents declare linear utilities is equal to the set of “constrained”
Walrasian allocations from equal division with respect to the agents’ true utilities (Sobel, 1981
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and 2001; Gómez, 2006). Under a mild restriction on preferences, a similar result holds for pure
exchange and public good economies with an arbitrary number of agents and for all Pareto optimal
and individually rational bargaining rules (Kıbrıs, 2002).

5 Ordinal Bargaining

Nash (1950) and most of the following literature restricts the analysis to bargaining processes that
take place on lotteries and assumes that the bargainers’preferences on lotteries satisfy the von
Neumann-Morgenstern assumptions (thus, they are representable by expected utility functions).
This assumption has two important consequences. First, in a bargaining problem (S, d) , the feasible
payoff set S is then convex. Second, the scale invariance axiom of Nash (1950) is suffi cient to
ensure the invariance of the physical bargaining outcome with respect to the particular utility
representation chosen.

In this section, we drop these assumptions and analyze bargaining in ordinal environments,
where the agents’ complete, transitive, and continuous preferences do not have to be of von
Neumann-Morgenstern type. For ordinal environments, (i) the payoff set S is allowed to be noncon-
vex and (ii) scale invariance needs to be replaced with the following stronger axiom.18 Formally,
let Φ be the set of all φ = (φ1, ..., φn) where each φi : R→ R is an increasing function. Let
φ (S) = {φ (x) | x ∈ S} . Then, a rule F is ordinal invariant if for each (S, d) ∈ B and φ ∈ Φ,
F (φ (S) , φ (d)) = φ (F (S, d)) . Note that every ordinal invariant rule is also scale invariant but
not vice versa.

If there are a finite number of alternatives, many ordinal invariant rules exist (e.g. see Kıbrıs
and Sertel, 2007). With an infinite number of alternatives, however, ordinal invariance is a very
demanding property. Shapley (1969) shows that for two-agent problems, only dictatorial bargaining
rules and the rule that always chooses disagreement satisfy this property. This result is due to the
fact that the Pareto optimal set of every two-agent problem can be mapped to itself via a nontrivial
increasing transformation φ = (φ1, φ2) . In the following example, we demonstrate the argument
for a particular bargaining problem.

Example 10 Consider the problem
(
S1, d1

)
in Scenario 1 of Example 2 (represented in Figure

2, upper left). Note that the Pareto set of
(
S1, d1

)
satisfies uC + uE = 1. Let φC (uC) = u

1
2
C

and φE (uE) = 1 − (1− uE)
1
2 and note that φC (uC) + φE (uE) = 1. Thus, the Pareto set of

the transformed problem
(
φ
(
S1
)
, φ
(
d1
))
is the same as

(
S1, d1

)
. In fact, S1 = φ

(
S1
)
and

d1 = φ
(
d1
)
. To summarize, φ maps

(
S1, d1

)
to itself via a nontrivial transformation of the

agents’utilities. Now let F be some ordinally invariant bargaining rule. Since the two problems are
identical, F

(
φ
(
S1
)
, φ
(
d1
))

= F
(
S1, d1

)
. Since F is ordinally invariant, however, we also have

F
(
φ
(
S1
)
, φ
(
d1
))

= φ
(
F
(
S1, d1

))
. For both requirements to be satisfied, we need φ

(
F
(
S1, d1

))
=

F
(
S1, d1

)
. Only three payoff profiles in

(
S1, d1

)
satisfy this property: (0, 0) , (1, 0) , and (0, 1) . Note

that they are the disagreement point and the two dictatorial solutions, respectively. So, F should
coincide with either one of these rules on

(
S1, d1

)
.

18This is due to the following fact. Two utility functions represent the same complete and transitive preference
relation if and only if one is an increasing transformation of the other.
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Figure 6: The Shapley-Shubik solution to (S, d) is the limit of the sequence
{
pk
}
.

The construction of Example 10 is not possible for more than two agents (Sprumont, 2000).
For three agents, Shubik (1982) presents an ordinally invariant and strongly individually rational
bargaining rule which we will refer to as the Shapley-Shubik rule.19 The Shapley-Shubik solution
to a problem (S, d) is defined as the limit of the following sequence. Let p0 = d and for each
k ∈ {1, ...} , let pk ∈ R3 be the unique point that satisfies

(pk−11 , pk2, p
k
3) ∈ P (S, d), (pk1, p

k−1
2 , pk3) ∈ P (S, d), and (pk1, p

k
2, p

k−1
3 ) ∈ P (S, d).

The Shapley-Shubik solution is then Sh (S, d) = limk→∞ p
k. The construction of the sequence

{
pk
}

is demonstrated in Figure 6.
Kıbrıs (2004a) shows that the Shapley-Shubik rule uniquely satisfies Pareto optimality, symme-

try, ordinal invariance, and a weak monotonicity property. Kıbrıs (2008) shows that it is possible
to replace monotonicity in this characterization with a weak contraction independence property.
Safra and Samet (2004, 2005) propose generalizations of the Shapley-Shubik rule to an arbitrary
number of agents.

The literature following Shapley (1969) also analyze the implications of weakening the ordinal
invariance requirement on two-agent bargaining rules. Myerson (1977) and Roth (1979) show that
such weakenings and some basic properties characterize Egalitarian type rules. Calvo and Peters
(2005) analyze problems where there are both ordinal and cardinal players. There is also a body
of literature which demonstrates that in alternative approaches to modeling bargaining problems,
ordinality can be recovered (e.g. see Rubinstein et al (1992), O’Neill et al (2001), Kıbrıs (2004b),
Conley and Wilkie (2007)). Finally, there is a body of literature that allows nonconvex bargaining
problems but does not explicitly focus on ordinality (e.g. see Herrero (1989), Zhou (1997) and the
following literature).

19There is no reference on the origin of this rule in Shubik (1982). However, Thomson attributes it to Shapley.
Furthermore, Roth (1979) (pp. 72-73) mentions a three-agent ordinal bargaining rule proposed by Shapley and Shubik
(1974, Rand Corporation, R-904/4) which, considering the scarcity of ordinal rules in the literature, is most probably
the same bargaining rule.
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6 Conclusion

In the last sixty years, a very large literature on cooperative bargaining formed around the seminal
work of Nash (1950). In this chapter, we tried to summarize it, first focusing on some of the early
results that helped shape the literature, and then presenting a selection of more recent studies that
extend Nash’s original analysis. An overview of these results suggests an abundance of both axioms
and rules. We would like to emphasize that this richness comes out of the fact that bargaining theory
is relevant for and applicable to a large number and wide variety of real life situations including,
but not limited to, international treaties, corporate deals, labor disputes, pre-trial negotiations in
lawsuits, decision-making as a committee, or the everyday bargaining that we go through when
buying a car or a house. Each one of these applications bring out new ideas on what the properties
of a good solution should be and thus, lead to the creation of new axioms. It is our opinion that
there are many more of these ideas to be explored in the future.
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