On the Investment Implications of Bankruptcy Laws

Özgür KIBRIS and Arzu KIBRIS

Sabancı University

Introduction: Bankruptcy Problem

• A firm goes banktrupt

– Liquidated assets worth E\$

• The bankrupt firm owes money to agents in *N*

– Each agent has a verifiable claim of c_i \$

• There isn't enough to honour all claims

How to allocate E among agents in N?

The Axiomatic Approach

- Analyzes (c,E) as a "normative problem"
- Proposes solution rules:

$$F: (c_1, \dots, c_n, E) \rightarrow (x_1, \dots, x_n)$$

s.t. $x_1 + \dots + x_n = E$

Looks for rules with desirable properties
 E.g. Pareto optimality
 Claims monotonicity

Three Central Principles

- Proportionality
 - Proportional Rule, Weighted Proportional Rules
- Equal Awards
 - Constrained Equal Awards Rule, Talmudic rule, Equal Gains Rule, Piniles' Rule, Random Arrival rule, Minimal Overlap Rule
- Equal Losses
 - Constrained Equal Losses Rule , Talmudic rule, Random Arrival Rule, Minimal Overlap Rule

Axiomatic Literature

- In support of CEA:
 - Dagan (1996), Schummer and and Villar (2002), Yeh (2001)
 All three principles
 Proportionality
- In support of CEL:
 - Yeh (2001), Herrero and Villar
- In support of TAL:
 - O'Neill (1982), Aumann and M
- In support of PRO:
 - de Frutos (1999), Ching and Kakkar (2000), Chambers and Thomson (2002), Ju, Miyagawa, and Sakai (2007)

NOTE:

- Proportionality
- Equal Awards
- Equal Losees
- More or less equally predominant

Bankruptcy in real life

- Between 1999 2009 in US
 - 551000 + firms filed for Chapter 7 bankruptcy
 - 22 + billion \$ allocated
 - Chapter 7 bankruptcy:
 - liquidate the remaining assets
 - as a whole or piecewise
 - allocate among claimants
 - similar to the axiomatic literature
 - Chapter 11 bankruptcy:
 - reorganize the firm

The Empirical / Finance Literature

- Describe alternative practices
 - Atiyas (1995)
 - Hotchkiss, John, Mooradian, Thorburn (2008)
- Literature mostly on Chapter 11
- Comparisons of Chapter 7 vs Chapter 11
 - Hart (1999)
 - Stiglitz (2001)
 - Bris, Welch, and Zhu (2006)

Chapter 7 bankruptcy

- Everywhere around the world
- the common way to allocate liquidated assets among claimants:
- Proportional Rule

(combined with a priority rule)

This Paper: asks the following question

Why is proportionality preferred

over alternative principles in real-

life bankruptcy problems?

The finance literature remains silent on this issue

Possible explanations

- Historical reasons
 - Counter-argument: Talmudic rule (Aumann and Maschler, 1985)
 - although Rabbi Abraham Ibn Ezra (1140) also mentions PRO
- Axiomatic reasons: maybe governments prefer the axioms that characterize PRO
- Incentive reasons: maybe the investment incentives created by

the PRO are superior to that of others We check this third explanation.

We study noncooperative investment games with possible bankruptcy

- Araujo and Pascua (2002)
 - 2 period general equilibrium model with bankruptcy
 - Conditions under which equilibrium exists and is efficient
 - No comparison of bankruptcy rules
- Karagözoğlu (2010)
 - Noncooperative investment game
 - Two types of agents: high/low income
 - Invest zero or everything
 - Linear utilities (risk neutrality)

The Investment Game under F

•

:

- (t=1) n investors
 - Simultaneously choose their investments on a firm: $s_1, ..., s_n \ge 0$
 - Value of the firm: $s_1 + \dots + s_n$
- (t=2) Firm
 - Succeeds with probability p
 - Fails with probability 1-p
- Bankruptcy
 - The value of the firm becomes
 - Allocated among the investors according to

a prespecified bankruptcy rule F

return of r

Parameters of the Game

- The bankruptcy rule used F
- Probability of success: p
- Return in case of success: r
- Fraction that survives bankruptcy: β
- Agents' risk aversion levels: a_i

- CARA utilities
 - Risk aversion level independent of income
 - Agents possibly heterogenous in risk aversion

Represents heterogeneity in income

How does a rule treat big vs small investors?

- No income constraints
 - Initially all agents have zero income
 - •Agents borrow at the market rate (norm. to 0)
 - •Simplifies the agents' optimization problems by eliminating the boundary conditions

The agents' CARA utilities

We do

Compare the Nash equilibria of the investment games under

- 1. proportionality
- 2. equal awards

mixtures of prop. and equal awards constrained equal awards

3. equal losses

mixtures of prop. and equal losses constrained equal losses

We do

Compare them interms of

- 1. total equilibrium investment
- 2. equilibrium social welfare

egalitarian

utilitarian

3. the effect of possibly heterogenous risk attitudes

RESULTS I

CALCULATING EQUILIBRIUM INVESTMENT LEVELS UNDER ALTERNATIVE BANKRUPTCY RULES

Proportionality (PRO)

 $x_i = q s_i$

EQUILIBRIUM UNDER PRO
$$F_i^P(s) = \beta s_i$$
Proportional shares in
case of bankruptcy

$$U_i^P(s) = -pe^{-a_i r s_i} - (1-p)e^{a_i s_i(1-\beta)}$$

- Independent of agent j's strategy
- Well-behaved => unique best response

$$s_i^* = \frac{1}{a_i \left(r+1-\beta\right)} \ln\left(\frac{pr}{(1-p)(1-\beta)}\right)$$

Common term for nonnegative investment

EQUILIBRIUM UNDER PRO

The investment game under PRO unique dominant strategy equilibrium

Equilibrium investment level is

increasing in p and β

decreasing in own risk aversion

independent of other's risk aversion

Equal Awards (EA)

 $x_i = E / 2$

EQUILIBRIUM UNDER EA

 Agents are awarded equal shares in case of bankruptcy

$$EA_i(s) = \frac{\beta}{n} \sum_N s_i$$

- Well-behaved payoff functions
- Unique best response
- Unique NE always exists

MIXTURES OF PRO and EA Agents receive a convex combination of PRO and EA in case of bankruptcy

$$AP[\alpha]_{i}(s) = \alpha PRO_{i}(s) + (1 - \alpha) EA_{i}(s)$$

 $\alpha = 1$ is PRO $\alpha = 0$ is EA

• Unique NE:

$$s_{i}^{*} = \frac{n\left(1+r-\beta\right)+\beta\left(1-\alpha\right)+\beta\left(1-\alpha\right)a_{i}\sum_{N-i}\frac{1}{a_{j}}}{a_{i}n\left(1+r-\beta\right)\left(1+r-\alpha\beta\right)}\ln\left(\frac{npr}{\left(1-p\right)\left(n-\beta-\left(n-1\right)\alpha\beta\right)}\right)$$
Common term for nonnegative investment

Numerical example: Equilibrium investment levels under EA 1.4 1.2 1.00.8 0.6 s1 0.4s2 0.2p = 0.810 12 18 20 2 16 8 14 0 4 6 r = 0.6 a_2 $\beta = 0.7$ $a_1 = 3$

Problematic Parameter Values

- Want to rule out cases where
 equilibrium investment < share in case of bankruptcy
- This implies:

• Alternatively: use CEA instead of EA

Equal Losses (EL)

EQUILIBRIUM UNDER EL

 Agents forego equal shares in case of bankruptcy

$$EL_i(s) = s_i - \frac{1-\beta}{n} \sum_N s_j$$

- Well-behaved payoff functions
- Unique best response
- Unique NE always exists

MIXTURES OF PRO and EL

 Agents receive a convex combination of PRO and EL in case of bankruptcy

 $LP[\alpha]_{i}(s) = \alpha PRO_{i}(s) + (1 - \alpha) EL_{i}(s)$ $\alpha = 1 \text{ is PRO and } \alpha = 0 \text{ is EL}$

• Unique NE:

$$s_i^* = \left(\frac{1}{a_i} - \frac{(1-\alpha)(1-\beta)}{n(1+r-\beta)}\sum_N \frac{1}{a_j}\right) \frac{\ln\left(\frac{npr}{(1-\beta)(1-p)(1+(n-1)\alpha)}\right)}{r+\alpha(1-\beta)}$$
Common term for nonnegative investment

Numerical example: Equilibrium investment levels under EL

Problematic Parameter Values

Want to rule out cases where

equilibrium share in case of bankruptcy < 0

• This implies:

$$\frac{\frac{1}{a_n}}{\sum_N \frac{1}{a_j}} \ge \frac{(r+1)\left(1-\alpha\right)\left(1-\beta\right)}{n\left(1-\beta+r\right)\left(1-\alpha+\alpha\beta\right)}$$

• Alternatively: use CEL instead of EL

Summary of Part I

RESULTS II

COMPARING TOTAL INVESTMENT LEVELS

UNDER ALTERNATIVE BANKRUPTCY RULES

PRO vs. EA

- An agent's equilibrium investment level
 - Decreasing in risk aversion
 - Cutoff risk aversion level
 - Below cutoff: invests more under PRO
 - Above cutoff: invests more under EA

Investment Under PRO vs. EA

- Small investors: invest more under EA
- Big investors: invest more under PRO
- How about total investment?

- Independent of the parameters,

the following is always true:

PRO vs. EA

THM: In terms of total investment, PRO > EA

GENERALIZE IT FURTHER?

Mixtures of PRO and EA

Total investment is an increasing function of α

THM:

 $\label{eq:implies} \mbox{Total Investment under } AP[\alpha] > \mbox{Total Investment under } AP[\alpha']$

 $\alpha > \alpha'$

PRO and EA are the two extremes

PRO vs. EL

- An agent's equilibrium investment level
 - Decreasing in risk aversion
 - Cutoff risk aversion level
 - Below cutoff: invests more under EL
 - Above cutoff: invests more under PRO

0

2

3

Agent i's NE investment as a function of his risk aversion is the solid curve under EL and the dotted curve under PRO $(a_{i} = 1)$

10

Q

Risk aversion

Investment Under PRO vs. EL

- Small investors: invest more under PRO
- Big investors: invest more under EL
- How about total investment?
 - Independent of the parameters, the following is always true:

PRO vs. EL

THM: In terms of total investment, EL > PRO

GENERALIZE IT FURTHER?

Mixtures of PRO and EL

Total investment is a decreasing function of α

THM:

 $\begin{array}{l} \alpha > \alpha'\\ \text{implies}\\ \text{Total Investment under } LP[\alpha] < \text{Total Investment under } LP[\alpha'] \end{array}$

PRO and EL are the two extremes

In terms of total investment

Mixtures of EL and PRO

Mixtures of EA and PRO

RESULTS: III

COMPARING SOCIAL WELFARE UNDER

THE THREE MAIN RULES

Welfare Calculation

- Messy expressions
- Restrict analysis to
 - Three main rules:
 - PRO
 - EA
 - EL
 - Two agents

Example: Agent 1's welfare levels

Example: Agent 2's welfare levels

Egalitarian social welfare for our example

THEOREM

Assume parameter values are such that there is an interior equilibrium under all three rules

Then in terms of egalitarian social welfare

PRO > EL and PRO > EA

Egalitarian Social Welfare EA vs EL

Numerical comparison of interior equilibria

1.3 million parameter combinations

EA > EL on 73% of the parameter space

EL > EA on 27% of the parameter space

Never equal

Utilitarian social welfare for our example

THEOREM

Assume parameter values are such that there is an interior equilibrium under all three rules

Then in terms of utilitarian social welfare

Utilitarian Social Welfare PRO vs EA

Proposition:

Assume agents equally risk averse

Then

in terms of utilitarian social welfare

PRO > EA

Utilitarian Social Welfare PRO vs EA

Numerical comparison of interior equilibria

2.7 million parameter combinations

PRO > EA on 61% of the parameter space

EA > PRO on 39% of the parameter space

Never equal

Utilitarian Social Welfare EA vs EL

Numerical comparison of interior equilibria

1.3 million parameter combinations

EA > EL on 66% of the parameter space

EL > EA on 34% of the parameter space

Never equal

SUMMARY

In terms of total investment EL > PRO > EA

In terms of egalitarian social welfare PRO > EL and EA

In terms of utilitarian social welfare PRO > EL

SUMMARY

- Switching from PRO to EL increases total investment but decreases social welfare
- Switching from PRO to EA decreases total investment decreases egalitarian social welfare might increase utilitarian social welfare

THANK YOU!