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Abstract

We propose and axiomatically analyze a class of rational solutions to simple al-

location problems where a policy maker allocates an endowment E among n agents

described by a characteristic vector c. We propose a class of recursive rules which

mimic a decision process where the policy maker initially starts with a reference allo-

cation of E in mind and then uses the data of the problem to recursively adjust his

previous allocation decisions. We show that recursive rules uniquely satisfy rationality,

c-continuity, and other-c monotonicity. We also show that a well-known member of

this class, the Equal Gains rule, uniquely satisfies rationality, c-continuity and equal

treatment of equals.
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1 Introduction

Revealed preference theory studies conditions under which by observing the choice behavior

of an agent, one can discover the underlying preferences that govern it. Choice rules for which

this is possible are called rational. Most of the earlier work on rationality analyzes consumers’

demand choices from budget sets (e.g. see Samuelson (1938, 1948)). The underlying premise

that choices reveal information about preferences, however, is applicable to a wide range of

choice situations. For example, applications of the theory to bargaining games (Nash (1950))

characterize bargaining rules which can be “rationalized” as maximizing the underlying

preferences of an impartial arbitrator (Peters and Wakker, 1991; Bossert, 1994; Ok and

Zhou, 2000; Sánchez, 2000).

In this paper, we propose and axiomatically analyze a class of rational solutions to simple

allocation problems. A simple allocation problem for a society N is an |N | + 1 dimensional
nonnegative real vector

(
c1, ..., c|N |, E

)
satisfying

∑
N ci = E where E, the endowment has

to be allocated among agents in N who are characterized by c, the characteristic vector.

Simple allocation problems have a wide range of applications some of which are discussed at

the end of this section.

We interpret an allocation rule on simple allocation problems as data on the choices of

a policy-maker. As is standard in revealed preference theory, we say that a policy maker’s

choices are (i) rational (ii) transitive-rational, and (iii) representable if they coincide with

maximization of a (i) binary relation, (ii) transitive binary relation, and (iii) numerical

function on the allocation space.

We propose a class of recursive rules. This is a large class of rules which mimic a

recursive decision process where the policy maker initially starts with a reference allocation

of E in mind and then uses the data of the problem and his previous allocation decisions to

recursively adjust his allocation choice.

Our main result, Theorem 1, is a characterization of recursive rules. It can be divided

into the following two statements. First, recursive rules all satisfy three axioms: rational-

ity, other-c monotonicity, and c-continuity. As noted above, rationality means that

a recursive rule’s choices are consistent with the maximization of a binary relation. Given
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that the definition of a recursive rule makes no reference to such a binary relation, this is

a surprising observation. The second axiom, other-c monotonicity, is a standard property

which is satisfied by most allocation rules in the literature (Barberà, Jackson, and Neme,

1997; Kıbrıs 2011; Thomson, 2003, 2007). It means that in a recursive rule, a change in an

agent i’s characteristic value ci affects the rest of the society in the same way, that is, no

two other agents’shares are affected in opposite directions. The third axiom, c-continuity,

means that a recursive rule is continuous with respect to changes in the characteristic vector.

The second, and more surprising statement of Theorem 1 is that recursive rules are the

only rules to satisfy rationality, other-c monotonicity, and c-continuity.

This paper is related to Kıbrıs (2011) which, for simple allocation problems, analyzes the

logical relationships among the three central notions of revealed preference theory (rational-

ity, transitive-rationality, representability) and other well-known axioms in the literature. A

combination of Kıbrıs (2011) and Theorem 1 leads to two interesting observations. First,

every recursive rule is transitive-rational. That is, recursive rules never exhibit cyclic choice

behavior. Second, every recursive rule which is continuous with respect to E is additionally

representable by a numerical function. For more on this discussion, please see Section 3.

Our second result, Theorem 2, is a characterization of an Equal Gains rule. This

rule is an important member of the family of recursive rules. It is called the Uniform

rule in the single-peaked allocation literature, the Constrained Equal Awards rule in the

bankruptcy literature, and the Leveling Tax in the taxation literature. The Equal Gains

rule allocates the endowment in each problem equally, subject to no agent receiving more

than his characteristic value.

Being a recursive rule, the Equal Gains rule satisfies rationality, other-c monotonicity,

and c-continuity. Theorem 2 shows that it additionally satisfies a well-known anonymity

axiom called equal treatment of equals. This means that the Equal Gains rule always

assigns identical shares to two agents with identical characteristics.

Theorem 2 also shows that the Equal Gains rule is the only rule to satisfy rationality,

c-continuity, and equal treatment of equals. Note that this statement does not include other-c

monotonicity. The addition of equal treatment of equals makes it redundant.

We conclude this section with some applications of simple allocation problems: (i) Tax-
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ation: A public authority is to collect an amount E of tax from a society N. Each agent i

has income ci. (E.g., Edgeworth, 1898; Young, 1987) (ii) Bankruptcy: A bankruptcy judge

is to allocate the remaining assets E of a bankrupt firm among its creditors, N. Each agent

i has credited ci to the bankrupt firm.1 (E.g., O’Neill, 1982; Aumann and Maschler, 1985;

Thomson, 2003 and 2007) (iii) Permit Allocation: The Environmental Protection Agency

is to allocate an amount E of pollution permits among firms in N . Each firm i, depending on

its location, is imposed by the local authority an emission constraint ci on its pollution level.

(E.g., Kıbrıs, 2003) (iv) Single-peaked or Saturated Preferences: A social planner is

to allocate E units of a perfectly divisible commodity among members of N. Each agent i

is known to have preferences with peak (saturation point) ci.2 (E.g., Sprumont, 1991) (v)

Demand Rationing: A supplier is to allocate its production E among demanders in N .

Each i ∈ N demands ci units. (E.g. Cachon and Lariviere, 1999) (vi) Bargaining with

Quasilinear Preferences and Claims: An arbitrator is to allocate E units of a numeriare

good among agents who have quasilinear preferences with respect to it. Each agent holds a

claim ci on what he should receive. (E.g. Chun and Thomson, 1992; Moulin, 1985) (vii)

Consumer Choice under fixed prices and rationing: A consumer has to allocate his

income E among a set N of commodities. The prices are fixed and the consumer faces a

“rationing constraint” ci on his consumption of each commodity i. (E.g. Bénassy, 1993;

Kıbrıs and Küçükşenel, 2008)

2 Model

Let N = {1, ..., n} be the set of agents (or commodities as in the consumer choice application
mentioned above). For i ∈ N, let ei be the ith unit vector in RN+ . Let e =

∑
N ei. We use the

vector inequalities 5, ≤, < .3 For c ∈ RN+ , α ∈ R+, and S ⊆ N, with an abuse of notation,

we write
(
cS, αN\S

)
to denote the vector which coincides with c on S and which chooses α

1The dual of this problem, called surplus sharing, constitutes another application (e.g. Moulin, 1987).
2The rest of the preference information is disregarded as typical in several well-known solutions to this

problem, such as the Uniform rule or the Proportional rule.
3That is, x 5 y if and only if xi 5 yi for each i ∈ N ; x ≤ y if and only if x 5 y and x 6= y; x < y if and

only if xi < yi for each i ∈ N .
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Figure 1: A typical simple allocation problem.

for every coordinate in N \ S.
A simple allocation problem for N is a pair (c, E) ∈ RN+ × R+ such that

∑
N ci = E

(please see Figure 1). We call E the endowment and c the characteristic vector. As

discussed at the end of Section 1, depending on the application, E can be an asset or a

liability and c can be a vector of incomes, claims, demands, preference peaks, or consumption

constraints. Let C be the set of all simple allocation problems forN . Given a simple allocation
problem (c, E) ∈ C, let X (c, E) =

{
x ∈ RN+ | x 5 c and

∑
N xi 5 E

}
be the choice set of

(c, E) .

An allocation rule F : C → RN+ assigns each simple allocation problem (c, E) to an

allocation F (c, E) ∈ X (c, E) such that
∑

N Fi (c, E) = E. Each rule F satisfies F (c, E) 5 c

which, depending on the application, might be interpreted as a consumption constraint (as

in permit allocation) or an effi ciency requirement (as in single-peaked preferences). Also,∑
N Fi (c, E) = E can be interpreted as an effi ciency property (as in permit allocation) or a

feasibility requirement (as in taxation). In consumer choice, this condition is equivalent to

the Walras law.

A rule F is continuous in characteristics (c-continuous) if for each E ∈ R+, F (., E)
is a continuous function. This is a standard regularity property which eliminates rules

that can change the proposed allocation radically in response to very small changes in the

characteristic vector.

A rule F is monotonic in others’characteristics (other-c monotonic) if a change in

agent i’s characteristic value affects other agents in the same way: for each (c, E) ∈ C,
i ∈ N, and c′i ∈ R+ with (c′i, c−i, E) ∈ C, either F−i (c, E) = F−i (c

′
i, c−i, E) or F−i (c, E) 5

F−i (c
′
i, c−i, E) . Other-c monotonicity is a weak property; it does not specify how much
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the share of each agent will change or how these changes will be related to the agents’

characteristics (so for instance, among two agents with identical characteristics, one’s share

may remain the same while the other’s share increases). As a result, it is satisfied by almost

all of the well-known solutions to simple allocation problems.

A rule F is rational if its choices always coincide with the maximization of a binary

relation on the allocation space RN+ , that is, if there is a binary relation B ⊆ RN+ ×RN+ such
that for each (c, E) ∈ C, F (c, E) = {x ∈ X (c, E) | for each y ∈ X (c, E) , xBy} . Rationality
has been a central concept in economics since the seminal work of Samuelson (1938). It has

been used to analyze a wide variety of choice behavior, including consumption, arbitration,

and voting. For simple allocation problems, Kıbrıs (2011) discusses this axiom in detail and

additionally, shows that a rule F is rational if and only if it satisfies a well-known axiom:

F is contraction independent if for each (c, E) , (c′, E) ∈ C, F (c, E) 5 c′ 5 c implies

F (c′, E) = F (c, E) . Contraction independence states that a decrease in characteristic values

does not change the initially chosen allocation as long as it remains feasible. This axiom

is also known as independence of irrelevant alternatives in cooperative bargaining theory

(Nash, 1950) and Sen’s property α in revealed preference theory (Sen, 1971).

Remark 1 (Kıbrıs, 2011) A rule F is rational if and only if it is contraction independent.

3 Recursive Rules

In this section, we present and characterize a class of recursive rules. This is a large class

of rules which mimic a recursive decision process where the policy maker initially starts with

a reference allocation of E in mind and then uses the data of the problem and his previous

allocation decisions to recursively adjust his allocation choice.

The well-known Equal Gains rule is a member of this class.4 This rule allocates the en-

dowment in each problem equally, subject to no agent receiving more than his characteristic

value: for each i ∈ N, EGi (c, E) = min {ci, λ} where λ ∈ R+ satisfies
∑

N min {ci, λ} = E.

4In the single-peaked allocation literature, the Equal Gains rule is called the Uniform rule, in the bank-

ruptcy literature it is called the Constrained Equal Awards rule, and in the taxation literature, it is called

the Leveling Tax.
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The Equal Gains rule can equally be defined as choosing the outcome of the following re-

cursive decision algorithm: let (c, E) ∈ C,

Step 1. Determine the set of agents whose characteristic value, ci, is less than his share from

equal division, E
|N | . If no such agent exists, pick equal division and terminate the algorithm.

Otherwise, assign each such agent his characteristic value and move to the next step.

Step 2. Determine the remaining agents (say N ′) to be allotted and the remaining endow-

ment to be allotted (say E ′). Repeat Step 1 by replacing N with N ′ and E with E ′.

The class of recursive rules generalize this “Equal Gains algorithm” in several ways.5

First, the starting allocation of the algorithm does not have to be equal division. Instead,

it is given by a reference function r : R+ → RN+ that maps each endowment level E to

an initial allocation r (E) ∈ RN+ such that
∑

N ri (E) = E. Second, the proposed allocation

can be updated in a variety of ways. At each step of the algorithm, this updating will

be done by a general function g according to the previous allocation x and the problem’s

parameters c and E. That is, g assigns each problem (c, E) ∈ C and previous allocation

x ∈ RN+ (with
∑

N xi = E) to an adjusted allocation g (x, c, E) = x′ ∈ RN+ with
∑

N x
′
i = E.

For each t ∈ {1, ..., n} , let gt (x, c, E) = g (gt−1 (x, c, E) , c, E) with the convention that

g0 (x, c, E) = x. (That is, gt represents g composed itself with t times.) The function g is

a recursive adjustment function with respect to r if gn is continuous in c and the

following are true for any t ∈ {1, ..., n} and xt = g (xt−1, c, E) = gt (r (E) , c, E) :6

1. xt−1i = ci implies xti = ci.

2. xt−1i < ci implies xti = xt−1i .

3. Let xt−1 = gt−1 (r (E) , ci, c−i, E) = gt−1 (r (E) , c̃i, c−i, E) . Then, xt−1i < c̃i < ci implies

g (xt−1, ci, c−i, E) = g (xt−1, c̃i, c−i, E) .

4. Let x = gn (r (E) , ci, c−i, E) and x̃ = gn (r (E) , c̃i, c−i, E) . Then, ci < c̃i implies xj = x̃j

5Recursive rules are closely related to a family of rules introduced and analyzed by Barberà, Jackson and

Neme (1997) on the domain of allocation problems with single-peaked preferences.
6Similar to Barberà, Jackson and Neme (1997), we only require these four properties to be satisfied at

an allocation obtained at some step of the recursive adjustment process. (And this is why g is defined in

reference to r.) The function g could be arbitrary on other parts of the domain and induce a perfectly

well-behaved allocation rule.
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Figure 2: The reference function r completely defines a two-agent algorithmic rule. In the

figure, since r2 (E) > c2, F
r
2 (c, E) = c2 and F r1 (c, E) = E − c2.

for each j 6= i.

Property 1 requires that if at any stage, an agent’s proposed share is greater than or equal

to his characteristic value, it is adjusted in the next step to be equal to his characteristic value.

This property is intimately linked to c-continuity (see Lemma 1). It also guarantees that

once an agent is served his characteristic value, his share is fixed in the rest of the algorithm.

Property 2 requires that, if the proposed share of an agent is smaller than his characteristic

value, the adjustment can not be to decrease it further. This property guarantees that, as

some additional endowment is freed up in a step (due to some agents receiving their ci and

leaving the algorithm), none of the remaining agents are worse off. Property 3 requires that

a change in ci that does not affect the feasibility of agent i’s proposed share does not affect

the adjustment made to it by the recursive algorithm. This property is intimately linked

to rationality (which, by contraction independence makes a similar requirement). Property

4 requires that a decrease in ci does not decrease the final share of any other agent. This

property is intimately linked to other-c monotonicity. To see this, note that by rationality,

decreasing ci does not increase xi. So the remaining agents consume at least as much in total.

Therefore, if some agent j’s share decreased in response to a decrease in ci, there would be

another agent k whose share increased. This would violate other-c monotonicity.

Given a reference function r and a recursive adjustment function g with respect to r, a

recursive rule with respect to g and r, F g,r, is defined for each (c, E) ∈ C as F g,r (c, E) =
gn (r (E) , c, E) . That is F g,r (c, E) is the allocation obtained at the end of n steps of the

recursive adjustment algorithm.7

7The recursive adjustment algorithm in fact obtains the final allocation in at most (n− 1) steps. Thus
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Two-agent recursive rules can be completely defined via the reference function r (please

see Figure 2). If r (E) is feasible at a problem (c, E) , it is chosen as the final allocation.

Otherwise, there is at most one agent i such that ci < ri (E) . The adjusted (and final)

allocation is then xi = ci and xj = E − ci.

Recursive rules all satisfy c-continuity and other-c monotonicity. The main result of

this section, presented next, states that they are also the only rational rules to satisfy these

properties.

Theorem 1 A rule F is rational, c-continuous and other-c monotonic if and only if F is a

recursive rule, that is, there is a reference function r and a recursive adjustment function g

with respect to r such that F = F g,r.

Theorem 1 has interesting implications regarding transitive-rationality and representabil-

ity of recursive rules. For this discussion, we need to mention two findings by Kıbrıs (2011):

(i) every rational and other-c monotonic rule is transitive-rational and (ii) every rational,

other-c monotonic, and continuous rule is representable by a numerical function.8 A combi-

nation of Theorem 1 and finding (i) implies that every recursive rule is transitive-rational,

that is, recursive rules can be rationalized by transitive binary relations. This means that

recursive rules never exhibit cyclic choice behavior (unlike the rule we present at the end

of this section). Secondly, Theorem 1 and finding (ii) of Kıbrıs (2011) together imply that

every E-continuous recursive rule is additionally representable by a numerical function. This

is a large subclass of recursive rules F g,r for which the functions g and r are continuous with

respect to E.

The above characterization is tight. Without rationality, Proportional rule becomes

admissible. The following example presents a rule that violates other-c monotonicity but

satisfies the other properties. Finally, Example 2, at the end of the next section, presents a

rule that violates c-continuity but satisfies the other properties.

gn = gn−1. We use gn since it slightly simplifies the notation as well as the argument in Step 3 of the proof

of Theorem 1.
8Kıbrıs (2011) uses the term continuity as a combination of c-continuity, defined in Section 2, and E-

continuity (i.e. the rule being continuous with respect to E).
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Example 1 Let N = {1, 2, 3} . Let

F (c, E) =



(
E
3
, E
3
, E
3

)
if

(
E
3
, E
3
, E
3

)
5 c

(c1, c1, E − 2c1) else if c1 <
E
3
and (c1, c1, E − 2c1) 5 c

(E − 2c2, c2, c2) else if c2 <
E
3
and (E − 2c2, c2, c2) 5 c

(c3, E − 2c3, c3) else if c3 <
E
3
and (c3, E − 2c3, c3) 5 c

(c1, c2, E − c1 − c2) else if E − c1 − c2 > c2 and c1 > c2

(c1, E − c1 − c3, c3) else if E − c1 − c3 > c1 and c3 > c1

(E − c2 − c3, c2, c3) else if E − c2 − c3 > c3 and c2 > c3.

Using Remark 1, it is straightforward to check that this rule is rational. It is also c-

continuous. It is not other-c monotonic since, for x = (c1, c1, E − 2c1) , x2 is increasing
in c1 while x3 is decreasing. We will next demonstrate that this rule is not recursive. Sup-

pose otherwise. Let E = 9, c = (9, 2, 1) . The initial reference allocation should then be

r (E) = F (EN , E) = (3, 3, 3) . Since agents 2 and 3 have smaller characteristic values than

3, they must receive their characteristic values: x2 = 2 and x3 = 1. Thus x1 = 6. However,

F (c, E) = (7, 1, 1), a contradiction.

4 Equal Gains Rule

Being a recursive rule, the Equal Gains rule satisfies rationality, other-c monotonicity, and

c-continuity. Given the very symmetric structure of its algorithm, it is not surprising that

it additionally satisfies a well-known anonymity axiom called equal treatment of equals. A

rule F satisfies equal treatment of equals if two agents with identical characteristics are

awarded equal shares: for each (c, E) ∈ C and i, j ∈ N, ci = cj implies Fi (c, E) = Fj (c, E) .

A large class of rules also satisfy this rather weak axiom (e.g. see Young, 1987; Thomson,

2003, 2007). But, as demonstrated in the following theorem, the Equal Gains rule is the

only rational and c-continuous rule to satisfy it.

Theorem 2 A rule F satisfies rationality, c-continuity, and equal treatment of equals if and

only if it is the Equal Gains rule.
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Theorem 2 implies that the Equal Gains rule is the only recursive rule to satisfy equal

treatment of equals. This theorem, however, does not make use of the c-monotonicity prop-

erty of recursive rules (as Theorem 1 did). This is because the three axioms in Theorem 2

imply c-monotonicity.

The above characterization is tight. Without rationality, Proportional rule becomes

admissible. Without equal treatment of equals, other recursive rules become admissible.

Finally, the following example presents a rule that violates c-continuity but satisfies the

other properties.

Example 2 Let N = {1, 2} . Let F be defined as

F (c, E) =



(
E
2
, E
2

)
if c1 = E

2
and c2 = E

2
,

(E, 0) if c1 = E and c2 < E
2
,

(c1, E − c1) if E − c2 < c1 < E and c2 < E
2
,

(0, E) if c1 <
E
2
and c2 = E,

(E − c2, c2) if c1 <
E
2
and E − c1 < c2 < E.

Note that F satisfies rationality and equal treatment of equals. It is not c-continuous since

for each ε ∈ (0, E
2
], F

(
E1,
(
E
2
− ε
)
2
, E
)
= (E, 0) but F

(
E1,
(
E
2

)
2
, E
)
=
(
E
2
, E
2

)
.

5 Concluding Comments

Theorem 1 is related to Barberà, Jackson, and Neme (1997) who, for allocation problems

with single peaked preferences, analyze the implications of strategy proofness. These authors

show that a similar class of recursive rules uniquely satisfy strategy proofness, effi ciency, and

a monotonicity property similar to ours. Given this similarity as well as the fact that both

strategy proofness and rationality demands a certain insensitivity of the allocation to changes

in the c vector (e.g. see Lemma 2 in Ching 1994), analyzing the logical relationship between

strategy proofness and rationality remains an interesting open question.

Theorem 2 is related to the literature on the Equal Gains rule (EG) as follows. Dagan

(1996) shows that EG uniquely satisfies equal treatment of equals, truncation invariance,
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and composition up.9 Schummer and Thomson (1997) show that EG minimizes (i) the dif-

ference between the largest and the smallest share and (ii) the variance of the shares. In

a related result, Bosmans and Lauwers (2007) show that EG Lorenz dominates every other

“order-preserving”rule. Herrero and Villar (2002) and Yeh (2004) show that EG uniquely

satisfies conditional full compensation and composition down.10 Finally, Yeh (2006) shows

that EG uniquely satisfies conditional full compensation and “own-claim monotonicity”. Our

characterization is logically independent from these previous results. Furthermore, the main

principles employed in these characterizations (such as “composition”, full compensation, or

Lorenz domination) are quite different than rationality. Also, with the exception of Schum-

mer and Thomson (1997) and Bosmans and Lauwers (2007), the above characterizations use

properties that relate the rule’s behavior at different social endowment levels. This is not

the case for Theorem 2.

6 Appendix

The following lemmata are useful in the proof of Theorem 1. The first lemma shows under

rationality and c-continuity that, if ci decreases below agent i’s current share, agent i’s

updated share should be his new characteristic value.

Lemma 1 Assume that F is rational and c-continuous. Let (c, E) , (c′, E) ∈ C, and i ∈ N
be such that c−i = c′−i, ci > c′i, and Fi (c, E) > c′i. Then Fi (c

′, E) = c′i.

Proof. Suppose Fi (c′, E) < c′i. By c-continuity, there is c
′′
i ∈ R+ such that c′i < c′′i < ci

and Fi (c′′i , c−i, E) = Fi
(
c′′i , c

′
−i, E

)
= c′i. Then, F

(
c′′i , c

′
−i, E

)
5 c′ 5

(
c′′i , c

′
−i
)
, by contraction

9Composition up requires that dividing the social endowment in two, first allocating one part, revising the

characteristic vector accordingly, and then allocating the rest produces the same final allocation as allocating

all the social endowment at once. Truncation invariance says that the excess of ci over E does not affect

the allocation choice.
10Conditional full compensation roughly requires agents with suffi ciently small characteristic values to

receive their characteristic values. Composition down deals with the following scenario: after the social

endowment is allocated, we discover that the actual social endowment is smaller; then, it requires that using

the original characteristic vector or the initially chosen allocation should produce the same final outcome.
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independence, implies F (c′, E) = F
(
c′′i , c

′
−i, E

)
, a contradiction.

The following lemma states that if ci decreases, the share of agent i can not increase and

the shares of other agents can not decrease in response.

Lemma 2 Assume that F is rational, c-continuous, and other-c monotonic. Let (c, E) , (c′, E) ∈
C, and i ∈ N be such that c−i = c′−i and ci > c′i. Then Fi (c, E) = Fi (c

′, E) and for each

j ∈ N \ {i} , Fj (c′, E) = Fj (c, E) .

Proof. If Fi (c, E) 5 c′i, by contraction independence, we have F (c
′, E) = F (c, E) . Thus

the result trivially holds. Alternatively assume Fi (c, E) > c′i. Then by Lemma 1, Fi (c
′, E) =

c′i < Fi (c, E) . Thus,
∑

N\{i} Fj (c, E) <
∑

N\{i} Fj (c
′, E). Therefore, there is k ∈ N \ {i}

such that Fk (c, E) < Fk (c
′, E) . By other-c monotonicity, this implies for each j ∈ N \ {i} ,

Fj (c, E) 5 Fj (c
′, E) .

We next present the proofs of theorems 1 and 2.

Proof. (Theorem 1)

(⇐) Let F g,r be a recursive rule. Since gn is continuous in c, F g,r is c-continuous. Let

(c, E) , (c′, E) ∈ C and i ∈ N be such that c−i = c′−i.

Claim 1: If F g,ri (c, E) 5 c′i 5 ci or F
g,r
i (c, E) < ci 5 c′i, we have F

g,r (c, E) = F g,r (c′, E) .

If ci = c′i, the claim trivially holds. If F g,ri (c, E) < c′i < ci or F
g,r
i (c, E) < ci < c′i, the claim

follows from Property 3 of g. Finally if F g,ri (c, E) = c′i < ci, the claim follows from the

previous case and c-continuity of F g,r.

Claim 2: F g,r is rational. Applying Claim 1 to each i ∈ N shows that it is contraction

independent . Then, by Remark 1, F is rational.

Claim 3: F g,r is other-c monotonic. Assume ci 6= c′i. Then by Property 4, either [for each

j ∈ N \ {i} , F g,rj (c, E) = F g,rj (c′, E)] or [for each j ∈ N \ {i} , F g,rj (c, E) 5 F g,rj (c′, E)].

(⇒) Let F satisfy the given properties.

Step 1: defining g and r. For each E ∈ R+, let r (E) = F (EN , E) . For each (c, E) ∈ C and
x ∈ RN+ such that

∑
N xi = E, let g (x, c, E) = F

(
cM(x,c), EN\M(x,c), E

)
where M (x, c) =

{i ∈ N | ci 5 xi}.
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For the following steps, we will introduce some notation. Let x0 = r (E) and for

t ∈ {1, ..., n} , let xt = g (xt−1, c, E) = gt (r (E) , c, E) . Let M−1 = ∅ and for each t ∈
{0, ..., n} , let M t =M (xt, c) .

Step 2: if t ∈ {0, ..., n} and i ∈M t−1, then i ∈M t and xti = ci. The proof is by induction.

For t = 0, M−1 = ∅ implies the desired conclusion. Now assume M−1 ⊆ ... ⊆ M t−1. Let

i ∈ M t−1. Then xt−1i = ci. Let K = M t−2 ∪ {i} and note that K ⊆ M t−1. If xt−1i =

ci, by contraction independence, xt−1 = F
(
cK , EN\K , E

)
. Thus, Fi

(
cK , EN\K , E

)
= ci.

Alternatively, if xt−1i > ci, by Lemma 1, Fi
(
cK , EN\K , E

)
= ci. If K =M t−1, by construction

of g in Step 1, we have i ∈ M t and xti = ci. Otherwise, Fi
(
cK , EN\K , E

)
= ci and Lemma 2

imply xti = ci. Thus i ∈M t. Since i ∈M t−1, by definition, xti 5 ci. Thus overall, xti = ci.

Step 3: xn 5 c. First assume M t−1 = M t for some t ∈ {0, ..., n− 1} . Then by definition,
xt = xt+1 and thus,M t =M t+1. Iterating, xt = xn. Also, by Step 2, for each i ∈M t, xti = ci.

Thus, xt = xn 5 c. Alternatively, assume M t−1 6=M t for each t ∈ {0, ..., n− 1} . By Step 2,
Mn−1 = N. Thus xn = F (c, E) 5 c.

Step 4: F = F g,r. Let (c, E) ∈ C. By Remark 1, assume c 5 EN .11 Note that F g,r (c, E) =

xn = F
(
cMn−1 , EN\Mn−1 , E

)
. By Step 3, xn 5 c 5

(
cMn−1 , EN\Mn−1

)
. Then, by contraction

independence, xn = F (c, E) .

Step 5: g is a recursive adjustment function. Since F is c-continuous, gn is continuous in

c. Also, Step 2 above proves Property 1. Now let i ∈ N and t ∈ {1, ..., n} .
For Property 2, assume xt−1i < ci. Then i 6∈M t−1 implies i 6∈M t−2. If M t−2 =M t−1, by

definition, xt = xt−1 and thus, xti = xt−1i . Otherwise, by Lemma 2, xti = xt−1i .

For Property 3, assume xt−1i < c̃i < ci. Let c̃ = (c̃i, c−i) . Then i 6∈ M (xt−1, c) =

M (xt−1, c̃) . Thus, by definition of g, we have g (xt−1, c, E) = g (xt−1, c̃, E).

For Property 4, assume ci < c̃i. Let c̃ = (c̃i, c−i) , x = gn (r (E) , c, E) and x̃ = gn (r (E) , c̃, E) .

Then, x = F (c, E) and x̃ = F (c̃, E) . By Lemma 2, xi 5 x̃i and for each j ∈ N \{i} , xj = x̃j.

Proof. (Theorem 2)

11If ci > E, min {ci, E} = E, and by Remark 1, both F (c, E) = F
(
cN\i, Ei, E

)
and F g,r (c, E) =

F g,r
(
cN\i, Ei, E

)
. Then F g,r

(
cN\i, Ei, E

)
= F

(
cN\i, Ei, E

)
implies F g,r (c, E) = F (c, E) .
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It is straightforward to show that EG satisfies the given properties. Conversely, let F be

a rule that satisfies them. We next show F = EG. Let (c, E) ∈ C. By Remark 1, assume
c 5 EN (see Footnote 12 ). Without loss of generality, assume c1 5 ... 5 cn. Let c0 = EN ,

cn = c, and for each k ∈ {1, ..., n− 1} , let ck =
(
c{1,...,k}, E{k+1,...,n}

)
.

We inductively show that for each k ∈ {0, ..., n} , we have F
(
ck, E

)
= EG

(
ck, E

)
. For

k = n, this will imply the desired conclusion. Initially, let k = 0. By equal treatment of

equals, F (c0, E) = EG (c0, E) . Now let k ∈ {1, ..., n} and assume that the statement holds
for each l < k.

Case 1: There is l < k such that F
(
ck, E

)
= F

(
cl, E

)
. Then, by our assumption,

F
(
cl, E

)
= EG

(
cl, E

)
. Thus, EG

(
cl, E

)
5 ck 5 cl. This, by contraction independence,

implies EG
(
cl, E

)
= EG

(
ck, E

)
. Combining the equalities, we then have F

(
ck, E

)
=

EG
(
ck, E

)
.

Case 2: For each l < k, F
(
ck, E

)
6= F

(
cl, E

)
. Thus, F

(
ck, E

)
is first obtained at ck.

We first show that Fk
(
ck, E

)
= ck. For this, note that F

(
ck, E

)
6= F

(
ck−1, E

)
implies,

by contraction independence, Fk
(
ck−1, E

)
> ck. Thus, by Lemma 1, Fk

(
ck, E

)
= ck.

We next show that for each l < k, Fl
(
ck, E

)
= cl. Let c = ck + (ck − cl) el and note that

c = ck. First assume F (c, E) 6= F
(
ck, E

)
. Then cl < ck. Thus, by contraction independence,

Fl (c, E) > cl. This, by Lemma 1, implies Fl
(
ck, E

)
= cl. Next, assume F (c, E) = F

(
ck, E

)
.

By equal treatment of equals, Fl (c, E) = Fk (c, E) . Then, Fl
(
ck, E

)
= Fk

(
ck, E

)
. This

implies Fl
(
ck, E

)
= ck = cl. Thus, Fl

(
ck, E

)
= cl

Overall, for each l ∈ {1, ..., k} , Fl
(
ck, E

)
= cl. This, by equal treatment of equals, implies

for each i ∈ {k + 1, ..., n} , Fi
(
ck, E

)
=

E−
∑k
j=1 cj

n−k . Applying the same arguments to EG

shows that it picks the same allocation. Thus, F
(
ck, E

)
= EG

(
ck, E

)
.
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