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Abstract

In problems of choosing ‘aspirations’ for TU-games, we study two axioms, ‘MW-consistency’
and ‘converse MW-consistency.’ In particular, we study which subsolutions of the aspiration
correspondence satisfy MW-consistency and/or converse MW-consistency. We also provide
axiomatic characterizations of the aspiration kernel and the aspiration nucleolus.
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1 . Introduction

A transferable utility coalitional game (TU-game, for short) associates with each
coalition of agents a real number representing what the coalition can achieve on its own,
its ‘worth’. Given a class of TU-games, a ‘solution’ associates with each game in the
class a non-empty set of payoff vectors. The analysis of TU-games proposes solutions
that answer two basic questions:

(i) Which coalitions form?
(ii) What is the payoff of each member of a coalition that forms?

Most studies on TU-games, however, assume that the grand coalition eventually
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forms. Then, the analysis reduces to answering question (ii), that is, determining the
payoff distribution for the grand coalition.

In this paper, we do not presuppose the formation of the grand coalition and study
those solutions that, in a sense, simultaneously answer both questions (i) and (ii). An
‘aspiration’ for a given game is a payoff vector that summarizes predictions about which
coalitions are likely to form and what the resulting payoffs of their members will be. For
each agenti, let x be a payoff that she demands in return for her cooperation. Then, it isi

natural to assume that a coalitionS forms only if the demands of its members are jointly
compatible, namely, (x ) is feasible forS. A payoff vectorx is an aspiration if noi i[S

coalition can improve upon its component ofx, and for each agenti, there exists at least
one coalition for which agenti’s demandx is jointly compatible with those of otheri

members.
Studies of coalitional games have revealed that the set of aspirations is closely related

to the outcomes obtained from two alternative approaches: the ‘multi-coalitional
1bargaining approach’ and the ‘noncooperative approach’.

In the multi-coalitional bargaining approach, each coalition is assigned a set of
attainable payoffs and a ‘bargaining solution’, which is interpreted as summarizing the
bargaining process among the members of that coalition. The disagreement point in each
coalition’s bargaining problem is determined endogenously as the expectation of each
member on what she can obtain from alternative coalitions. A payoff vectorx is a
‘multi-coalitional bargaining outcome’ if, for each coalitionS, (x ) is chosen by thei i[S

assigned bargaining solution for the bargaining problem with the disagreement point
associated withx. It so happens that every multi-coalitional bargaining outcome is an
aspiration. Conversely, each aspiration can be obtained as a multi-coalitional bargaining
outcome for some initial specification of bargaining solutions.

In the non-cooperative approach, versions of the following coalition formation game
are analyzed: a randomly chosen agent proposes a coalition to be formed and a feasible
payoff distribution for its members. The proposal is accepted if every member of the
coalition agrees upon it. Otherwise, in the next period the first agent who rejected the
proposal makes a new proposal. The game ends when a proposal is accepted. It turns out
that the set of aspirations of the original coalitional game is equal to the set of stationary

2subgame perfect equilibrium proposals of this non-cooperative game.
Its relation to the bargaining and non-cooperative approaches strongly suggests that

the set of aspirations is an appropriate object to focus on if one wants to analyze
coalitional games without imposing the assumption that the grand coalition eventually
forms. Let us refer to the solution that assigns to each game its set of aspirations as the
‘aspiration correspondence’. In the literature, several subsolutions of the aspiration
correspondence have been studied. We are interested in their properties. In particular, we

3focus on two properties: ‘consistency’ and ‘converse consistency’.

1See Bennett (1983) for more detail.
2The particular non-cooperative game described here is due to Selten (1981). The literature following the
original paper includes Chatterjee et al. (1993), Perry and Reny (1994), and Moldovanu and Winter (1994b,
1995).

3See Thomson (1996) for an extensive survey of studies on these properties applied to various models of game
theory and economics.
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Consistency deduces from the desirability of a payoff vector in a game the desirability
of its restrictions to all subgroups of agents in the associated ‘reduced games’. Suppose
that a set of agentsN is facing a game and a payoff vectorx is agreed upon. Suppose
then that some agents leave. Then let us reevaluate the situation from the viewpoint of
the remaining agentsN9. Namely, for each coalitionS #N9, let us identify whatS can
obtain without any help from other members ofN9. In this context, since any agenti in
N\N9 has agreed uponx, it seems natural to assume that she will be willing to cooperate
with S if offered x . Additionally, suppose thatS can choose such ‘partners’ fromN\N9.i

Then the revised worth ofS would be the maximal (total) payoff thatS can obtain in this
manner. This operation defines a game in which the set of agents isN9. We refer to this
game as an ‘MW-reduced game’ since it was introduced by Moldovanu and Winter

4(1994a) and Winter (1989). ‘MW-consistency’ states that, in this reduced game, the
original agreement should be confirmed, namely, (x ) should be agreed upon.i i[N 9

Converse consistency deduces the desirability of a payoff vector in a game from the
desirability of its restrictions to all pairs of agents in the associated two-agent reduced
games. Consider a game forN and a payoff vectorx under evaluation. Suppose that for
each pair of agentshi, jj in N, (x ,x ) is chosen for the MW-reduced game associated withi j

x and hi, jj. ‘Converse MW-consistency’ states that, in such a situation,x should be
chosen for the original game.

On the domain of all TU-games, the aspiration correspondence and the partnered
aspiration solution satisfy bothMW-consistency and converse MW-consistency (Mol-
dovanu and Winter, 1994a; Winter, 1989). In this paper, we analyze which other
subsolutions of the aspiration correspondence satisfyMW-consistency and/orconverse
MW-consistency. Moreover, we obtain axiomatic characterizations of two solutions: the
aspiration kernel and the aspiration nucleolus.

The paper is organized as follows. In Section 2, we introduce basic concepts and
notations used later on. In Section 3, we study which subsolutions of the aspiration
correspondence satisfyMW-consistency and/orconverse MW-consistency. In Section 4,
we provide axiomatic characterizations of the aspiration kernel and the aspiration
nucleolus. In Section 5, we give some remarks on the non-transferable utility case.

2 . Preliminary

There is an infinite set of ‘potential’ agents, indexed by the members of the setN of
natural numbers. Let1 denote the set of non-empty and finite subsets ofN. Given a

Acountable setA, let R denote the Cartesian product ofuAu copies of the setR of real
numbers, indexed by the members ofA. We use, for strict set inclusion and# for

Nweak set inclusion. To simplify the notation, givenN [1, x [R , andS #N, we often
write x ; (x ) and x(S);o x .S i i[S i[S i

GivenN [1, a transferable utility coalitional game for N (TU-game forN, for short)

4In the standard approach, the way of reevaluating the situation of the remaining agents we described above
was first introduced by Davis and Maschler (1965). For the coalition of all remaining agents, its revised worth
in the standard approach is defined to be the worth of the original grand coalition minus the sum of payoffs
assigned for those agents who left.
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Nis a functionv : 2 →R with v(5)50. For eachS #N, the numberv(S) represents what
Ncoalition S can obtain on its own, its ‘worth’. Let9 denote the class of all TU-gamesall

Mfor N, and9 ; < 9 .all M[1 all
N NGiven N [1 andv [9 , a payoff vectorx [R is individually feasible in v if forall

eachi [N, there existsS #N such thati [ S andx(S)# v(S). It is coalitionally rational
Nin v if for each S #N, x(S)$ v(S). An aspiration for v is a payoff vector inR

satisfying individual feasibility and coalitional rationality.
N NGiven N [1, v [9 , and x [R , the set of generating coalitions for v and x,all

denoted&#(v,x), contains those coalitions whose members’ promised payoffs inx are
jointly compatible:

&#(v,x);hS #N u x(S)# v(S)j.

Thus, if each agent demands her component of the payoff vector, the generating
coalitions are the only coalitions that are likely to form. In an aspiration for the game,
each agent is a member of at least one generating coalition and each generating coalition
distributes payoffs efficiently among its members.

NA solution on 9 is a correspondence from9 to < R that associates withall all N[1
NeachN [1 and eachv [9 a non-empty set of payoff vectors satisfying individualall

feasibility. We usew to denote a generic solution.

3 . Consistency and converse consistency

N NGiven N [1, v [9 , x [R , andN9,N, theMW-reduced game of v relative to xall
xand N9, denotedr (v), is defined by setting for eachS #N9N 9

max [v(S <T )2 x(T )], if S ± 5,
x T#N \N 9r (v)(S);HN 9

0, if S 5 5.

‘MW-consistency’ (Moldovanu and Winter, 1994a; Winter, 1989) states that if a
payoff vector is chosen for a game, then the restriction of it to any subgroup should be
chosen for the associated MW-reduced game (see Fig. 1).

NMW-consistency. For eachN [1, eachv [9 , eachx [w(v), and eachN9,N, weall
xhavex [w(r (v)).N 9 N 9

‘Converse MW-consistency’ (Moldovanu and Winter, 1994a; Winter, 1989) states that
if a payoff vector for a game is such that its restriction to any pair of agents is chosen for
the associated two-agent MW-reduced game, then it should be chosen for the original
game.

N NConverse MW-consistency. For eachN [1, eachv [9 , and eachx [R , if forall
xeachN9,N with uN9u52, we havex [w(r (v)), then x [w(v).N 9 N 9

On 9 , the ‘aspiration correspondence’ (Albers, 1979; Bennett, 1983; Cross, 1967)all
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Fig. 1. Aspirations in three-agent TU-games. LetN 5 h1,2,3j, v(h1j)5 v(h2j)5 v(h3j)5 0, v(h1,2j)5 6,
v(h1,3j)5 5, v(h2,3j)57, v(N)50. The set of aspirations forv is the union of the three thick line segments in
(b).

and the ‘partnered aspiration solution’ (Albers, 1979; Bennett, 1983) areMW-consistent
andconversely MW-consistent (Moldovanu and Winter, 1994a; Winter, 1989). It follows
from this result that each of these two solutions is the uniqueMW-consistent and
conversely MW-consistent extension of its two-agent version to then-agent case.

In the following subsections, we introduce other subsolutions of the aspiration
correspondence that have been studied in the literature, and check which of them
satisfiesMW-consistency and/orconverse MW-consistency.

3 .1. Balanced aspiration solution

NGiven N [1, a collection@ #2 of coalitions isweakly balanced on N if there
exists a list of non-negative weights (d ) such that for eachi [NS S[@

O d 5 1.S
S[@
S]i

It is strictly balanced on N if, in addition, all weights are positive.
Cross (1967) and Bennett (1983) argue that the competition among the coalitions for

‘scarce’ agents leads to a balanced structure of the generating coalitions, by driving up
the payoff demands of these agents and driving down the payoff demands of others. The
following solution is based on this idea:

NBalanced aspiration solution, BalAsp. For eachN [1 and eachv [9 , BalAsp(v) isall

the collection of aspirationsx for v such that&#(v,x) is weakly balanced onN.

Proposition 3.1. On 9 , the balanced aspiration solution is MW-consistent.all

NProof. Let N [1, v [9 , x [BalAsp(v), and @ ;&#(v,x). Then there existsall
@(d ) [R such that for eachi [NS S[@ 1
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O d 5 1.S
S[@
S]i

xLet N9,N and @ 9;&#(r (v),x ). Since the aspiration correspondence isMW-N 9 N 9
xconsistent, x is an aspiration forr (v). For eachS [@ 9, letN 9 N 9

l ; O d .S S<T
T#N \N 9

s.t. S<T[@

@ 9Then (l ) [R and for eachi [N9S S[@ 9 1

O l 5 O O d 5O d 51.S S<T R
S[@ 9 S[@ 9 T#N \N 9 R[@

S]i S]i R]is.t. S<T[@

xThus,@9 is weakly balanced onN9 and, hence,x [BalAsp(r (v)). hN 9 N 9

The following example shows that the balanced aspiration solution violatesconverse
MW-consistency.

Example 3.1. Let N ;h1,2,3j. Consider the following TU-game: for eachS #N

1, if uSu52,
v(S);H0, otherwise.

Let x ; (1,1,0). Thenx is an aspiration forv and&#(v,x)5 hh1,3j,h2,3j,h3jj. Note that
the aspiration correspondence and the balanced aspiration solution coincide in the
two-agent case (Fig. 2). Therefore, as the aspiration correspondence isMW-consistent,

xfor eachN9,N with uN9u52, we havex [BalAsp(r (v)). However, since&#(v,x) isN 9 N 9

not weakly balanced, we havex [⁄ BalAsp(v).

3 .2. Aspiration kernel

Next, we turn to a solution that is similar to the prekernel (Maschler et al., 1972).
N NGiven N [1, v [9 , x [R , and i, j [N with i ± j, letall

s (v,x);max [v(S)2 x(S)].ij
S]i
S]⁄ j

The numbers (v,x) represents the maximum ‘surplus’ that agenti can obtain without theij

cooperation of agentj, supposing that other agents agree uponx. For each gamev, the
aspiration kernel (Bennett, 1981) chooses those aspirations that equalize these surpluses
for each pair of agents.

NAspiration kernel, AspKer. For eachN [1 and eachv [9 , AspKer(v) is theall

collection of aspirationsx for v such that for eachS [&#(v,x) and each pairi, j [ S, we
haves (v,x)5 s (v,x).ij ji



¨T. Hokari, O. Kıbrıs / Mathematical Social Sciences 45 (2003) 313–331 319

Fig. 2. The aspiration kernel and the aspiration nucleolus in two-agent and three-agent TU-games. In these
cases, the aspiration kernel coincides with the aspiration nucleolus. (a) Ifv(h1,2j)$ v(h1j)1 v(h2j), they select
the ‘standard solution’ payoff vector: each agent is given first her individual worth, and then what remains is
divided equally. (b) Otherwise, they select (v(h1j),v(h2j)). In panels (c) and (d),v(h1,2,3j)5 0 and the payoff
vector chosen by them is indicated asx*.

The next lemma is due to Peleg (1986), and it essentially implies that the aspiration
kernel isMW-consistent and conversely MW-consistent.

N NLemma 3.1. For each N [1, each v [9 , each x [R , each N9,N, and each pairall 1
xi, j [N9, we have s (r (v),x )5 s (v,x).ij N 9 N 9 ij

Proposition 3.2. On 9 , the aspiration kernel is MW-consistent and converselyall

MW-consistent.

NProof. (MW-consistency) Let N [1, v [9 , x [ AspKer(v), and N9,N. Since theall
xaspiration correspondence isMW-consistent, x is an aspiration forr (v). Let S [N 9 N 9

x x&#(r (v),x ) and i, j [ S with i ± j. Then, by the definition ofr (v)(S), there existsN 9 N 9 N 9
xT #N\N9, whereT may be the empty set, such thatx(S)# r (v)(S)5 v(S < T )2 x(T ).N 9

Since x [ AspKer(v), S < T [&#(v,x), and i, j [ S < T, we haves (v,x)5 s (v,x). Byij ji
x xLemma 3.1,s (r (v),x )5 s (r (v),x ).ij N 9 N 9 ji N 9 N 9

N N(Converse MW-consistency) Let N [1, v [9 , and x [R be such that for eachall
xN9,N with uN9u5 2, x [ AspKer(r (v)). Since the aspiration correspondence isN 9 N 9

conversely MW-consistent and the aspiration kernel is its subsolution,x is an aspiration
for v. Let S [&#(v,x) and i, j [ S with i ± j. Then x 1 x # v(S)2 x(S\hi, jj)#i j
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x x xr (v)(hi, jj) and, hence,hi, jj[&#(r (v),x ,x ). Since (x ,x )[ AspKer(r (v)), wehi, j j hi, j j i j i j hi, j j
x xhaves (r (v),x ,x )5 s (r (v),x ,x ). By Lemma 3.1,s (v,x)5 s (v,x). hij hi, j j i j ji hi, j j i j ij ji

3 .3. Aspiration nucleolus

Next, we analyze a solution which is closely related to the prenucleolus (Schmeidler,
1969).

NN 2 \h5jFor eachx [R , let e(v,x) be the vector inR defined by setting for each
NS [2 \h5j, e (v,x); v(S)2 x(S). The numbere (v,x) represents the dissatisfaction ofSS SuN u2 21in v at x. Also, let u(e(v,x))[R be obtained by rearranging the coordinates of

e(v,x) in non-increasing order.
m 9Given m [N andz,z9[R , z is lexicographically smaller than z9 if either (i) z , z1 1

9 9or (ii) there existsk . 1 such thatz , z and for each, , k, z 5 z .k k , ,

For each game, the aspiration nucleolus (Bennett, 1981) selects a payoff vector that
lexicographically minimizes the dissatisfactions of the coalitions over the set of
aspirations.

NAspiration nucleolus, AspNuc. For eachN [1 and eachv [9 , AspNuc(v) is theall

unique aspirationx for v such that for each other aspirationy for v, u(e(v,x)) is
lexicographically smaller thanu(e(v,y)).

The aspiration nucleolus is a subsolution of both the aspiration kernel and the
balanced aspiration solution (Sharkey, 1993).

N NGiven N [1, v [9 , x [R , anda [R, letall

6 (v,x);hS ,N u e (v,x)$aj.a S

5The following lemma is a characterization of the aspiration nucleolus.

NLemma 3.2. (Sharkey, 1993)For each N [1, each v [9 , and each aspiration x forall

v, x 5 AspNuc(v) if and only if for each a [R with 6 (v,x)± 5, 6 (v,x) is strictlya a

balanced on N.

We use Lemma 3.2 to prove the following result:

Proposition 3.3. On 9 , the aspiration nucleolus is MW-consistent.all

Proof. Let N [1, v [9 , x ; AspNuc(v), and N9,N. Since the aspiration corre-all
xspondence isMW-consistent, x is an aspiration forr (v). Let a [R be such thatN 9 N 9

x x x6 (r (v),x )± 5. By the definition ofr (v), for eachS [6 (r (v),x ), there existsa N 9 N 9 N 9 a N 9 N 9
xT #N\N9, whereT may be the empty set, such thatr (v)(S)5 v(S <T )2 x(T ). SinceN 9

v(S <T )2 x(T )2 x(S)$a, 6 (v,x)± 5. To simplify the notation, let@ ;6 (v,x) anda a

5A similar characterization of the (pre)nucleolus is due to Kohlberg (1971).
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x@ 9;6 (r (v),x ). By Lemma 3.2,@ is strictly balanced onN. Thus, there exists aa N 9 N 9

list (d ) of positive weights such that for eachi [NS S[@

O d 5 1.S
S[@
S]i

For eachS [@ 9, let

l ; O d .S S<T
T#N \N 9

s.t. S<T[@

As shown above, for eachS [@ 9, there existsT #N\N9 such thatS <T [@. Thus, for
eachS [@ 9, l . 0. Note also that, for eachi [N9S

O l 5 O O d 5O d 51.S S<T R
S[@ 9 S[@ 9 T#N \N 9 R[@

S]i S]i R]is.t. S<T[@

Thus, @9 is strictly balanced onN9. Since this is true for eacha [R with
x x6 (r (v),x )± 5, by Lemma 3.2 we havex 5 AspNuc(r (v)). ha N 9 N 9 N 9 N 9

As the following example shows, the aspiration nucleolus violatesconverse MW-
consistency.

Example 3.2. Let N ;h1,2,3,4j. Consider the following TU-game forN: for eachS #N

6, if S [ hh1,2,3j,h1,2,4jj,
v(S);H0, otherwise.

Let x ; (3,3,0,0) andy ; (2,2,2,2). It can be shown thatx [ AspKer(v), y is an
aspiration for v, and e(v,y) is lexicographically smaller thane(v,x). Thus, x ±
AspNuc(v). Since the aspiration kernel isMW-consistent and it coincides with the
aspiration nucleolus in the two-agent case, for each pairi, j [N

x x(x ,x )[ AspKer(r (v))5 hAspNuc(r (v))j.i j hi, j j hi, j j

Thus,x satisfies the hypothesis ofconverse MW-consistency for the aspiration nucleolus.
However, we havex ± AspNuc(v). h

3 .4. Equal gains aspiration solution

The next subsolution of the aspiration correspondence is based on the premise that
agents when bargaining tend to share the gains equally. In our context, by forming a
coalition, the agents forego the payoffs that they could have attained by forming
alternative coalitions. Therefore, each agent’s largest payoff from alternative coalitions

N Nserves as an ‘outside option’. Formally, givenN [1, v [9 , x [R , S [&#(v,x),all

and i [ S, the outside option for i relative to v, x, and S is defined by
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Sd (v,x);max [v(T )2 x(T \hij)].i
T]i
T±S

NEqual gains aspiration solution, EqAsp. For eachN [1 and eachv [9 , EqAsp(v)all

is the collection of aspirations forv such that for eachS [&#(v,x) and each pairi, j [ S,
S Swe havex 2 d (v,x)5 x 2 d (v,x).i i j j

Note that the aspiration kernel is a subsolution of the equal gains aspiration solution.
As the following example shows the equal gains aspiration solution violatesMW-
consistency.

Example 3.3. Let N ;h1,2,3j. Consider the following TU-game: for eachS #N

6, if S [ hh1,2,3j,h1,2jj,
v(S);H0, otherwise.

Let x ; (4,2,0). Thenx is an aspiration forv and

&#(v,x)5 hh3j,h1,2j,h1,2,3jj.

Note that

h1,2jx 2 d (v,x)5 2 max [v(S)2 x(S)] 5 2maxh02 4,02 4,626j5 0,1 1
S]1

S±h1,2j

h1,2jx 2 d (v,x)5 2 max [v(S)2 x(S)] 5 2maxh02 2,02 2,626j5 0,2 2
S]2

S±h1,2j

h1,2,3jx 2 d (v,x)5 2 max [v(S)2 x(S)] 5 2maxh024,626,02 4j5 0,1 1
S]1

S±h1,2,3j

h1,2,3jx 2 d (v,x)5 2 max [v(S)2 x(S)] 5 2maxh022,626,02 2j5 0,2 2
S]2

S±h1,2,3j

h1,2,3jx 2 d (v,x)5 2 max [v(S)2 x(S)] 5 2maxh020,024,02 3j5 0.3 3
S]3

S±h1,2,3j

Thus, x [EqAsp(v). Note that

xr (v)(h1j)5maxhv(h1j),v(h1,3j)2 x j5maxh0,02 0j5 0,h1,2j 3

xr (v)(h2j)5maxhv(h2j),v(h2,3j)2 x j5maxh0,02 0j5 0,h1,2j 3

xr (v)(h1,2j)5maxhv(h1,2j),v(h1,2,3j)2 x j5maxh6,62 0j5 6.h1,2j 3

x xSinceEqAsp(r (v))5 h(3,3)j, we have (x ,x )[⁄ EqAsp(r (v)).1,2 1 2 1,2

Proposition 3.4. On 9 , the equal gains aspiration solution is conversely MW-all

consistent.
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N NProof. Let N [1, v [9 , and x [R be such that for eachN9,N with uN9u5 2,all
xx [EqAsp(r (v)). Note that the aspiration kernel and the equal gains aspirationN 9 N 9

solution coincide in the two-agent case. Since the aspiration kernel isconversely
MW-consistent, x [ AspKer(v). Since AspKer(v)#EqAsp(v), we have x [
EqAsp(v). h

4 . Two axiomatic characterizations

In this section, we study the implications ofMW-consistency, converse MW-consis-
tency, and the following three basic axioms:

Equal treatment of equals. For eachN [1, eachv [9 , and each pairi, j [N, if forall

eachS #N\hi, jj, v(S < hij)5 v(S < h jj), then for eachx [w(v), x 5 x .i j

N MAnonymity. For eachN,M [1 with uNu5 uMu, eachv [9 , eachw [9 , and eachall all

bijection b : N → M, if for eachS #N, w(hb(i) u i [ Sj)5 v(S), then

M
w(w)5 hx [R u there existsy [w(v) such that for eachi [N, x 5 y j.i b(i )

N NZero-independence. For eachN [1, each pairv,w [9 , and eachy [R , if for eachall

S #N, w(S)5 v(S)1o y , then for eachx [w(v), x 1 y [w(w).i[S i

Table 1 summarizes which solutions satisfy which properties.
As mentioned in the Introduction, most studies on coalitional games assume that the

grand coalition eventually forms. In this ‘standard approach’, a notion of reduced games
N Nwas first introduced by Davis and Maschler (1965). GivenN [1, v [9 , x [R , andall

N9,N, the DM-reduced game of v relative to x and N9 is defined by setting for each
S #N9

Table 1
Properties of subsolutions of the aspiration correspondence on the domain of all TU-games.Asp andParAsp
denote the aspiration correspondence and the partnered aspiration solution, respectively.

Domain:9 Asp ParAsp BalAsp AspNuc AspKer EqAspall

Equal treatment of equals No No No Yes Yes Yes

Anonymity Yes Yes Yes Yes Yes Yes

Zero-independence Yes Yes Yes Yes Yes Yes

Single-valuedness No No No Yes No No

MW-consistency Yes Yes Yes Yes Yes No

(Proposition 3.1) (Proposition 3.3) (Proposition 3.2) (Example 3.3)

Converse Yes Yes No No Yes Yes

MW-consistency (Example 3.1) (Example 3.2) (Proposition 3.2) (Proposition 3.4)
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max [v(S < T )2 x(T )], if S [⁄ hN9,5j,
T#N \N 9

xr̂ (v)(S); v(N)2 x(N\N9), if S 5N9,N 9 5
0, if S 5 5.

Associated axioms of consistency and its converse are defined as follows.

NDM-consistency. For eachN [1, eachv [9 , eachx [w(v), and eachN9,N, weall
xˆhavex [w(r (v)).N 9 N 9

N NConverse DM-consistency. For eachN [1, each v [9 , and eachx [R withall
xˆx(N)5 v(N), if for eachN9,N with uN9u5 2 we havex [w(r (v)), then x [w(v).N 9 N 9

NGiven a gamev for N, a preimputation for v is a payoff vectorx [R with
x(N)5 v(N). For each gamev, the prekernel (Maschler et al., 1972) chooses those
preimputations that equalize the surpluses for each pair of agents. On9 , the prekernelall

is the only subsolution of the preimputation correspondence satisfyingequal treatment of
equals, zero-independence, DM-consistency, and converse DM-consistency (Peleg,
1986). It so happens that a similar result holds for the aspiration kernel.

Theorem 4.1. On 9 , the aspiration kernel is the only subsolution of the aspirationall

correspondence satisfying equal treatment of equals, zero-independence, MW-consis-
tency, and converse MW-consistency.

Proof. Clearly, the aspiration kernel is a subsolution of the aspiration correspondence
satisfyingequal treatment of equals and zero-independence. By Proposition 3.2, it also
satisfiesMW-consistency and converse MW-consistency.

Conversely, letw be a subsolution of the aspiration correspondence satisfying the four
axioms. Clearly,w coincides with the aspiration kernel in the two-agent case. LetN [1

Nwith uNu$ 3, and v [9 . First, we show thatw(v)# AspKer(v). Let x [w(v). Byall
xMW-consistency of w, for each N9,N with uN9u5 2, we have x [w(r (v))5N 9 N 9

xAspKer(r (v)). Since the aspiration kernel isconversely MW-consistent, x [ AspKer(v).N 9

Next, we show thatAspKer(v)#w(v). Let y [ AspKer(v). Since the aspiration kernel
is MW-consistent, for eachN9,N with uN9u5 2

y yy [ AspKer(r (v))5w(r (v)).N 9 N 9 N 9

Sincew is conversely MW-consistent, y [w(v).
Altogether,w(v)5 AspKer(v). h

For each game, the prenucleolus (Schmeidler, 1969) selects a payoff vector that
lexicographically minimizes the dissatisfactions of the coalitions over the set of
preimputations. On9 , the prenucleolus is the only subsolution of the preimputationall

correspondence satisfyingsingle-valuedness, anonymity, zero-independence, and DM-
consistency (Sobolev, 1975).

It turns out that, by using Lemma 3.2 and by following the argument in Sobolev
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(1975), one can obtain a similar axiomatic characterization of the aspiration nucleolus.
(Since the proof is very long, we provide it in Appendix A.)

Theorem 4.2. On 9 , the aspiration nucleolus is the only subsolution of the aspirationall

correspondence satisfying single-valuedness, anonymity, zero-independence, and MW-
consistency.

5 . Remarks on the NTU-case

The definitions of the aspiration correspondence, the partnered aspiration solution, the
balanced aspiration solution, and the equal gains aspiration solution have been
generalized to define corresponding solutions for non-transferable utility coalitional
games (NTU-games, for short).

Moldovanu and Winter (1994a) studyMW-consistency andconverse MW-consistency
on the domain of all NTU-games. They show that, on this domain, both the aspiration
correspondence and the partnered aspiration solution satisfy these two properties. Here,

6we report, without proofs, two additional results:

• On the domain of all NTU-games, the balanced aspiration solution satisfiesMW-
consistency.

• On the domain of all NTU-games, the equal gains aspiration solution violates
converse MW-consistency.
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A ppendix A

In this appendix, we provide the proof of Theorem 4.2. As mentioned before, the
proof is similar to that of a theorem in Sobolev (1975), which is written in Russian. The
proof of Sobolev’s theorem (in English) can be found in Peleg (1988). Essential parts of
Peleg’s proof are reproduced in Snijders (1995).

Proof of Theorem 4.2. Clearly, the aspiration nucleolus is a subsolution of the

6The proofs are available from the authors on request.
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aspiration correspondence satisfyingsingle-valuedness, anonymity, and zero-indepen-
dence. By Proposition 3.3, it is alsoMW-consistent.

Conversely, letw be a subsolution of the aspiration correspondence satisfying the four
Naxioms. Let N [1, v [9 , and x ; AspNuc(v). We show, in seven steps, thatall

x 5w(v).
Let

A;ha [R u there existsS ,N such thata 5 e (v,x)j,S

uAuand (a ,a , . . . ,a )[R be the enumeration ofA with a .a . ? ? ? .a . To1 2 uAu 1 2 uAu

simplify the notation, for eachk [ h1,2,. . . ,uAuj, we write6 ;6 (v,x). Also, for eachk akik [ h1,2,. . . ,uAuj and eachi [N, let 6 ;hS [6 u i [ Sj. Given k [ h1,2,. . . ,uAuj, byk k

Lemma 3.2,6 is strictly balanced onN. Moreover, the associated weights can bek

chosen to be rational. Thus, there exist a natural numberm and a list of natural numbersk

(m ) such that for eachi [N, o m 5m . Let @ be the partition ofN such thatiS S[6 S[6 S k kk k i jfor each pairi, j [N, there existsB [@ with i, j [B if and only if 6 56 . Letk k k

b ;max uBu, g ;o m , andk B[@ k S[6 Sk k

gk
l ; .S Dk mk

MkStep 1. Givenk [ h1,2,. . . ,uAuj, we constructM [1 and7 #2 \hM ,5j that satisfyk k k

the following conditions:

(i) N #M ;k

(ii) uM u5b ? l ;k k k

(iii) for each S [6 , there existsT [7 such thatS # T;k k

(iv) for eachS #N and eachT [7 , if S # T, then T >N 5 S and S [ S ;k k
i j i i(v) for each i [M , we haveu7 u5m and uh j [M u 7 57 ju5b , where7 ;k k k k k k k k

jhT [7 u i [ T j and7 ;hT [7 u j [ T j.k k k

Let (B ,B , . . . ,B ) be an enumeration of@ . For each h [ h1,2,. . . ,l j, we1 2 u@ u k kk

construct a setD of agents as follows:h

• if h # u@ u and uB u5b , then letD ;B ;k h k h h

• if h # u@ u anduB u,b , then letD be the union ofB and (b 2 uB u) agents chosenk h k h h k h

from N\N;
• if h . u@ u, then letD be a set ofb agents chosen fromN\N.k h k

Since@ is a partition ofN and the set of potential agents is countably infinite, it is cleark

that, in the above construction ofD ’s, we can make them mutually exclusive. Then, leth

M ;D <D < ? ? ? <D .k 1 2 lk

Note thathD ,D , . . . ,D j is a partition ofM . By construction,M satisfies conditions1 2 l k kk

(i) and (ii).
Next, imagine that there areg empty ‘rooms.’ We will fill these rooms withk



¨T. Hokari, O. Kıbrıs / Mathematical Social Sciences 45 (2003) 313–331 327

(appropriately replicated) groups inhD ,D , . . . ,D j, and each room will correspond to1 2 lk

an element of7 . For eachS [6 , createm copies of the setk k S

< D .h
h[h1, . . . ,u@ ujk

s.t. D >S±5h

Since the total number of these copies isg 5o m , we can put them into differentk S[6 Sk

rooms. Recall that for eachi [N, o m 5m . This implies that for eachh [iS[6 S kk

h1, . . . ,u@ uj, group D belongs to exactlym rooms. Next, for eachh [ hu@ u1k h k k

1, . . . ,l j, createm copies ofD . Sincek k h

gk
l 5 ,S Dk mk

we can place these copies ofD , . . . ,D into the rooms so that allg rooms containu@ u11 l kk k

the same number of groups and for eachh [ hu@ u1 1, . . . ,l j, group D belongs tok k h

exactlym rooms. It is easy to see that7 thus constructed satisfies conditions (iii), (iv),k k

and (v). (The above construction ofM and7 is illustrated in Fig. 3 for a simple case.)k k

Fig. 3. Step 1 of the proof of Theorem 4.2. In the above example,N 5 h1,2,3,4j, 6 5k

hh1,2,3j,h1,2j,h3,4j,h3j,h4jj, m 5 3, m 5m 5m 5 1, m 5m 5 2. Thus,b 5maxh2,1j5 2, g 5k h1,2,3j h3,4j h3j h12j h4j k k

11 11 11 21 25 7, and

g 7k
l 5 5 535.S D S Dk m 3k
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Step 2. Givenk [ h1,2,. . . ,uAuj, let $ ;hD ,D , . . . ,D j, M , and7 be constructedk 1 2 l k kk

as in Step 1. We show that, for each pairi, j [M , there exists a permutationp on Mk M kk

such thatp (i)5 j and for eachT [7 , p (T )[7 .M k M kk k i jLet i, j [M . By condition (v) ofT in Step 1,u7 u5 u7 u5m . Thus, there exists ak k k k k
i jpermutationp on 7 such thatp (7 )57 . Note that7 has a property that ifm7 k 7 k k k kk k

distinct coalitions in7 are chosen, then there exists exactly one group in$ that isk k

included in all of thesem coalitions. Thus,p induces a permutation on$ . Formally,k 7 kk

this permutation, denotedp , is defined by setting for eachD [$$ kk

p (D);> p (T ).$ 7k kT[7k

T$D

Note that each coalition in7 can be viewed as a coalition of groups. For eachT [7 ,k k

its image underp is defined by$k

p (T );< p (D).$ $k kD[$k

D#T

Now, we show that for eachT [7 , p (T )[7 . Let T [7 . Then, by the definitionk $ k kk

of p , for eachD [$ with D #T, we havep (D)#p (T ). Thus,$ k $ 7k k k

p (T )5< p (D)#p (T ).$ $ 7k k kD[$k

D#T

Since

g 2 1kuT u5 up (T )u5 up (T )u5 ,S D$ 7k k m 2 1k

we havep (T )5p (T ). Thus,p (T )[7 .$ 7 $ kk k k

By construction, each group in$ contains exactlyb agents. For eachD [$ withk k k

i [D, choose a bijectionp : D →p (D) such thatp (i)5 j. For eachD [$ withD $ D kk

i [⁄ D, choose an arbitrary bijectionp : D →p (D). Given the list (p ) of suchD $ D D[$k k

bijections, define the permutationp on M by setting for eachD [$ and eachh [D,M k kk

p (h);p (h). Clearly,p (i)5 j. Let T [7 . ThenM D M kk k

p (T )5< p (h)5< < p (h)5< p (D)5p (T )[7 .M M D $ $ kk k k kh[T D#T h[D D#T

Thus,p is a desired permutation onM .M kk

Step 3. For eachk [ h1,2,. . . ,uAuj, let M and7 be constructed as in Step 1. Here, wek k
Mconstruct a setM and a partition of 2 \hM,5j.

Let

M ;M 3M 3 ? ? ? 3M .1 2 uAu
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In order to stress the fact thatM is a Cartesian product of the sets of agents, we write
its subsets and its elements in bold face. Note that, since the set of potential agents is
countably infinite, in the presence ofanonymity, M can be viewed as an element of1.

For eachk [ h1,2,. . . ,uAuj, let

S ;hS ,M u there existsT [7 such thatuAu11 k

S 5M 3 ? ? ? 3M 3 T 3M 3 ? ? ? 3M j.1 k21 k11 uAu

Let

uAu

M S S DDS ; 2 \ hM,5j< < S .uAu11 k
k51

Step 4. We show that for each pairi, j [M, there exists a permutationp on M suchM

that (i) p (i)5 j and (ii) for eachk [ h1,2,. . . ,uAu1 1j and eachS [S , we haveM k

p (S)[S .M k

Let i 5 (i ,i , . . . ,i )[M and j 5 ( j , j , . . . ,j )[M. By Step 2, for eachk [ h1,1 2 uAu 1 2 uAu

2, . . . ,uAuj, there exists a permutationp on M such thatp (i )5 j and for eachM k M k kk k

T [7 , p (T )[7 . Define the permutationp on M by setting for eachh 5k M k Mk

(h ,h , . . . ,h )[M1 2 uAu

p (h); (p (h ),p (h ), . . . ,p (h )).M M 1 M 2 M uAu1 2 uAu

Clearly,p (i)5 j and for eachk [ h1,2,. . . ,uAuj and eachS [S , we havep (S)[S .M k M k
uAuNote thatp induces a permutation on< S . Thus, also for eachS [S ,M k51 k uAu11

p (S)[S .M uAu11
MStep 5. Let w [9 be defined as follows: (i)w(M); v(N)2 x(N); (ii) for eachall

k [ h1,2,. . . ,uAuj and eachS [S , w(S);a ; and (iii) for eachS [S , w(S);k k uAu11

minha ,v(N)2 x(N)j. We show that for eachi [M, w (w)50.uAu i

Let i, j [M. By Step 4, there exists a permutationp on M such thatp (i)5 j, andM M
Mfor eachk [ h1,2,. . . ,uAu1 1j and eachS [S , we havep (S)[S . Let w9[9 bek M k all

21defined by setting for eachS #M, w9(S);w((p ) (S)). By anonymity, w (w)5w (w9).M i j
uAu11 MLet S ,M. Since < S 5 2 \hM,5j, there existsk [ h1,2,. . . ,uAu1 1j such thatk51 k

21S [S . Since (p ) (S)[S , by the definitions ofw and w9, w9(S)5w(S). Clearly,k M k

w9(M)5w(M). Thus,w95w. Therefore,w (w)5w (w9)5w (w).i j j

The above argument can be applied to alli, j [M. Sincex is an aspiration forv, x is
individually feasible and coalitionally rational. By coalitional rationality, for each
k [ h1,2,. . . ,uAuj, a # 0. Together with individual feasibility, we have eithera 5 0 ork 1

v(N)5 x(N). Thus, we have (i) for eachS #M, w(S)# 0, and (ii) there existsT #M
such thatT ± 5 andw(T )5 0. Let i [T. Then, sincew(w) is coalitionally rational inw,

05w(T )#O w (w)5 uT u ? w (w),j i
j[T

so thatw (w)$ 0. By individual feasibility ofw(w), w (w)5 0.i i

Thus, for eachi [M, w (w)5 0.i

Step 6. Let
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M9;h(i,i, . . . ,i)[M u i [Nj.

Clearly, uM9u5 uNu. Let b : N → M9 be the bijection defined by setting for eachi [N,
w (w)b(i); (i,i, . . . ,i). We show that for eachS #N, r (w)(b(S))5 v(S)2 x(S).M 9

Let S ,N. Then there existsk [ h1,2,. . . ,uAuj such that v(S)2 x(S)5a . Byk

properties (iii) and (iv) of7 in Step 1, there existsT [7 such thatT >N 5 S. Letk k

R;M 3 ? ? ? 3M 3T 3M 3 ? ? ?M .1 k21 k11 uAu

Then b(S)#R. Moreover, sinceT >N 5 S, we haveR\b(S)#M\M9. Thus,

w (w)r (w)(b(S))5 max w(b(S)<Q)$w(b(S)< (R\b(S)))5w(R).M 9
Q#M\M 9

SinceR[S , w(R)5a . Thus,k k

w (w)r (w)(b(S))$w(R)5a 5 v(S)2 x(S).M 9 k

Now, we claim that the opposite (weak) inequality also holds. LetQ #M\M9. If
b(S)<Q [S , then w(b(S)<Q)5a #a 5 v(S)2 x(S). If there exists, # uAuuAu11 uAu k

such thatb(S)<Q [S , then there existsT 9[7 such that, ,

b(S)<Q 5M 3 ? ? ? 3M 3T 93M 3 ? ? ? 3M .1 ,21 ,11 uAu

SinceQ #M\M9 andS #T 9, we haveT 9>N 5 S. Thus, by property (iv) of7 in Step,

1, we haveS [6 , so thatw(b(S)<Q)5a 5 v(S)2 x(S)., ,

Thus, for eachQ #M\M9, we havew(b(S)<Q)# v(S)2 x(S). This implies that

w (w)r (w)(b(S)5 max w(b(S)<Q)# v(S)2 x(S).M 9
Q#M\M 9

By the definition of w, w(M)5 v(N)2 x(N). For eachk [ h1,2,. . . ,uAuj, by the
definition of 6 , we haveN [⁄ 6 . Thus, for eachk [ h1,2,. . . ,uAuj, by property (iv) ofk k

7 in Step 1, there exists noT [7 such thatT $N. This implies that, for eachS $M9,k k

we haveS [S , so thatuAu11

w(S)5minha ,v(N)2 x(N)j# v(N)2 x(N).uAu

Thus,
w (w) w (w)r (w)(b(N))5 r (w)(M9)5 max w(M9<Q)5 v(N)2 x(N).M 9 M 9

Q#M\M 9

Therefore, for eachS #N

w (w)r (w)(b(S))5w(S)2 x(S).M 9

w (w)Step 7. By max consistency, for eachi [M9, w (r (w))50.i M 9

Finally, by anonymity and zero-independence of w, we deduce that, for eachi [N,

w (w)
w (v)5w (r (w))1 x 501 x 5 x .i b(i ) M 9 i i i

Thus,w(v)5 AspNuc(v). h
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