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Abstract

In problems of choosing ‘aspirations’ for TU-games, we study two axioms, ‘MW-consistency’
and ‘converse MW-consistency.” In particular, we study which subsolutions of the aspiration
correspondence satisfy MW-consistency and/or converse MW-consistency. We also provide
axiomatic characterizations of the aspiration kernel and the aspiration nucleolus.
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1. Introduction

A transferable utility coalitional game (TU-game, for short) associates with each
coalition of agents a real number representing what the coalition can achieve on its own,
its ‘worth’. Given a class of TU-games, a ‘solution’ associates with each game in the
class a non-empty set of payoff vectors. The analysis of TU-games proposes solutions
that answer two basic questions:

(i) Which coalitions form?
(i) What is the payoff of each member of a coalition that forms?

Most studies on TU-games, however, assume that the grand coalition eventually
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forms. Then, the analysis reduces to answering question (ii), that is, determining the
payoff distribution for the grand coalition.

In this paper, we do not presuppose the formation of the grand coalition and study
those solutions that, in a sense, simultaneously answer both questions (i) and (ii). An
‘aspiration’ for a given game is a payoff vector that summarizes predictions about which
coalitions are likely to form and what the resulting payoffs of their members will be. For
each agent, let x, be a payoff that she demands in return for her cooperation. Then, it is
natural to assume that a coaliti®forms only if the demands of its members are jointly
compatible, namely (), is feasible forS A payoff vectorx is an aspiration if no
coalition can improve upon its componentygfand for each agernt there exists at least
one coalition for which agenits demandy; is jointly compatible with those of other
members.

Studies of coalitional games have revealed that the set of aspirations is closely related
to the outcomes obtained from two alternative approaches: the ‘multi-coalitional
bargaining approach’ and the ‘noncooperative approach’.

In the multi-coalitional bargaining approach, each coalition is assigned a set of
attainable payoffs and a ‘bargaining solution’, which is interpreted as summarizing the
bargaining process among the members of that coalition. The disagreement point in each
coalition’s bargaining problem is determined endogenously as the expectation of each
member on what she can obtain from alternative coalitions. A payoff vectisr a
‘multi-coalitional bargaining outcome’ if, for each coalitid® (x;);5 iS chosen by the
assigned bargaining solution for the bargaining problem with the disagreement point
associated with. It so happens that every multi-coalitional bargaining outcome is an
aspiration. Conversely, each aspiration can be obtained as a multi-coalitional bargaining
outcome for some initial specification of bargaining solutions.

In the non-cooperative approach, versions of the following coalition formation game
are analyzed: a randomly chosen agent proposes a coalition to be formed and a feasible
payoff distribution for its members. The proposal is accepted if every member of the
coalition agrees upon it. Otherwise, in the next period the first agent who rejected the
proposal makes a new proposal. The game ends when a proposal is accepted. It turns out
that the set of aspirations of the original coalitional game is equal to the set of stationary
subgame perfect equilibrium proposals of this non-cooperative game.

Its relation to the bargaining and non-cooperative approaches strongly suggests that
the set of aspirations is an appropriate object to focus on if one wants to analyze
coalitional games without imposing the assumption that the grand coalition eventually
forms. Let us refer to the solution that assigns to each game its set of aspirations as the
‘aspiration correspondence’. In the literature, several subsolutions of the aspiration
correspondence have been studied. We are interested in their properties. In particular, we
focus on two properties: ‘consistency’ and ‘converse consisténcy’.

'See Bennett (1983) for more detail.

*The particular non-cooperative game described here is due to Selten (1981). The literature following the
original paper includes Chatterjee et al. (1993), Perry and Reny (1994), and Moldovanu and Winter (1994b,
1995).

®See Thomson (1996) for an extensive survey of studies on these properties applied to various models of game
theory and economics.
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Consistency deduces from the desirability of a payoff vector in a game the desirability
of its restrictions to all subgroups of agents in the associated ‘reduced games’. Suppose
that a set of agentll is facing a game and a payoff vectoiis agreed upon. Suppose
then that some agents leave. Then let us reevaluate the situation from the viewpoint of
the remaining agent’. Namely, for each coalitio®s C N’, let us identify whatS can
obtain without any help from other membersif. In this context, since any agentn
N\N’ has agreed upox it seems natural to assume that she will be willing to cooperate
with Sif offered x,. Additionally, suppose thé& can choose such ‘partners’ froNiN'.

Then the revised worth & would be the maximal (total) payoff th&can obtain in this
manner. This operation defines a game in which the set of ageNts We refer to this
game as an ‘MW-reduced game’ since it was introduced by Moldovanu and Winter
(1994a) and Winter (1989). ‘MW-consistency’ states that, in this reduced game, the
original agreement should be confirmed, nameky), {,,, should be agreed upon.

Converse consistency deduces the desirability of a payoff vector in a game from the
desirability of its restrictions to all pairs of agents in the associated two-agent reduced
games. Consider a game fdrand a payoff vectok under evaluation. Suppose that for
each pair of agent§,j} in N, (x,x;) is chosen for the MW-reduced game associated with
x and{i,j}. ‘Converse MW-consistency’ states that, in such a situatioshould be
chosen for the original game.

On the domain of all TU-games, the aspiration correspondence and the partnered
aspiration solution satisfy botMW-consistency and converse MW-consistency (Mol-
dovanu and Winter, 1994a; Winter, 1989). In this paper, we analyze which other
subsolutions of the aspiration correspondence salBfy-consistency and/or converse
MWAconsistency. Moreover, we obtain axiomatic characterizations of two solutions: the
aspiration kernel and the aspiration nucleolus.

The paper is organized as follows. In Section 2, we introduce basic concepts and
notations used later on. In Section 3, we study which subsolutions of the aspiration
correspondence satis\W-consistency and/orconverse MW-consistency. In Section 4,
we provide axiomatic characterizations of the aspiration kernel and the aspiration
nucleolus. In Section 5, we give some remarks on the non-transferable utility case.

2. Preliminary

There is an infinite set of ‘potential’ agents, indexed by the members of the sét
natural numbers. LeN denote the set of non-empty and finite subset&NoiGiven a
countable se#, let R® denote the Cartesian product & copies of the seR of real
numbers, indexed by the members AfWe use C for strict set inclusion andZ for
weak set inclusion. To simplify the notation, givehe ./, x € R", andSC N, we often
write Xg = (X;)ies andx(S) =2, 5 X

GivenN € ¥, atransferable utility coalitional game for N (TU-game forN, for short)

*In the standard approach, the way of reevaluating the situation of the remaining agents we described above
was first introduced by Davis and Maschler (1965). For the coalition of all remaining agents, its revised worth
in the standard approach is defined to be the worth of the original grand coalition minus the sum of payoffs
assigned for those agents who left.
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is a functionv : 2" - R with v(p) = 0. For eactSC N, the numbew(S) represents what
coalition S can obtain on its own, its ‘worth’. Le?", denote the class of all TU-games
for N, and 7, = Uy Vi

GivenN € 4 andv € 77, a payoff vectox € R" is individually feasible in v if for
eachi € N, there exist$SC N such thai € Sandx(S) =v(S). It is coalitionally rational
in v if for each SCN, x(S)=v(S). An aspiration for v is a payoff vector inR"
satisfying individual feasibility and coalitional rationality.

Given NE W, v € 77, andx € R", the set of generating coalitions for v and x,

denoted¥%%(v,X), contains those coalitions whose members’ promised payoffsare
jointly compatible:

GE@wx) ={SCN|xXS)=v(S)}.

Thus, if each agent demands her component of the payoff vector, the generating
coalitions are the only coalitions that are likely to form. In an aspiration for the game,
each agent is a member of at least one generating coalition and each generating coalition
distributes payoffs efficiently among its members.

A solution on ¥, is a correspondence frof,, to U ., R" that associates with
eachN € /" and eactv € ¥, a non-empty set of payoff vectors satisfying individual
feasibility. We usep to denote a generic solution.

all

3. Consistency and conver se consistency

GivenN e N, v € 7Y, xER", andN’ C N, the MW-reduced game of v relative to x

all

and N’, denotedry,. (v), is defined by setting for eacRC N’

max p(SUT)—x(T)], if S#@,
My @)(S) E{TCN‘N' :
0, if S= 0.
‘MW-consistency’ (Moldovanu and Winter, 1994a; Winter, 1989) states that if a
payoff vector is chosen for a game, then the restriction of it to any subgroup should be
chosen for the associated MW-reduced game (see Fig. 1).

N
all»

MW-consistency. For eachN € A, eachv € ¥
havex,. € o(ry (v)).

eachx € ¢(v), and eactN’ C N, we

‘Converse MW-consistency’ (Moldovanu and Winter, 1994a; Winter, 1989) states that
if a payoff vector for a game is such that its restriction to any pair of agents is chosen for
the associated two-agent MW-reduced game, then it should be chosen for the original
game.

N and eachx € R", if for
eachN’ C N with |[N’| =2, we havex,. € ¢(ry (v)), thenx € ¢(v).

Converse MW-consistency. For eachN € ¥, eachv € ¥

On ¥, the ‘aspiration correspondence’ (Albers, 1979; Bennett, 1983; Cross, 1967)

all
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x3 (a) z3 (b)

Fig. 1. Aspirations in three-agent TU-games. Wet={1,2,3, v({1}) =v({2}) = v({3}) =0, v({1,2) =6,
v({1,3}) =5,v({2,3}) = 7, v(N) = 0. The set of aspirations feris the union of the three thick line segments in
(b).

and the ‘partnered aspiration solution’ (Albers, 1979; Bennett, 1983M&veconsistent
andconversely MW consistent (Moldovanu and Winter, 1994a; Winter, 1989). It follows
from this result that each of these two solutions is the uniyiconsistent and
conversely MW consistent extension of its two-agent version to theagent case.

In the following subsections, we introduce other subsolutions of the aspiration
correspondence that have been studied in the literature, and check which of them
satisfiesMWconsistency and/or converse MW-consistency.

3.1. Balanced aspiration solution

Given N € ./, a collection 8 C 2" of coalitions isweakly balanced on N if there
exists a list of non-negative weight&;Js, such that for eache N

> 6s=1.

SERB
Sai
It is strictly balanced on N if, in addition, all weights are positive.

Cross (1967) and Bennett (1983) argue that the competition among the coalitions for
‘scarce’ agents leads to a balanced structure of the generating coalitions, by driving up
the payoff demands of these agents and driving down the payoff demands of others. The
following solution is based on this idea:

Balanced aspiration solution, Bal Asp. For eachN € .4 and eachy € 7)), Bal Asp(v) is
the collection of aspirations for v such that¥6(v,x) is weakly balanced oi\.

Proposition 3.1. On 7,

ally

the balanced aspiration solution is MW-consistent.

Proof. Let NEW, vE CV:”, x € BalAsp(v), and B = 9%(v,X). Then there exists

(6.)sc, € R? such that for each€ N
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> 6s=1.

SERB
Sai

Let N'CN and 3B'= 9%(ry. (v),Xy ). Since the aspiration correspondence Ms\-
consistent, x,. is an aspiration fory,(v). For eachSe %', let

As= > syt
TCNWN/
sLSUTER

Then (\o)sc,r ER? and for each €N’

2 A= 2 X =2 =1
se®’ se®’’ TCNWN’ RE %
S3i S3i st.suUTE® R3i

Thus, %’ is weakly balanced oilN’ and, hencex,. € BalAsp(ry.(v)). O

The following example shows that the balanced aspiration solution viotatesrse
MWAconsistency.

Example 3.1. Let N={1,2,3. Consider the following TU-game: for ea@C N

(1 ifg=2,
U(S)Z{O, otherwise.

Let x=(1,1,0). Thenx is an aspiration fov and ¥€¢(v,x) = {{1,3}{2,3},{3}}. Note that

the aspiration correspondence and the balanced aspiration solution coincide in the
two-agent case (Fig. 2). Therefore, as the aspiration correspondeNB&-nsistent,

for eachN’ C N with [N’| = 2, we havex, € BalAsp(r . (v)). However, sinc&g4(v,x) is

not weakly balanced, we haveZ Bal Asp(v).

3.2. Aspiration kernel

Next, we turn to a solution that is similar to the prekernel (Maschler et al., 1972).
GivenNeE W, v e ¥, xER", andi,j €N with i #], let

all?

5,09 =max p(S) — X(S)]

S3j

The numbess;(v,X) represents the maximum ‘surplus’ that ageoan obtain without the
cooperation of agerjt supposing that other agents agree ugoRor each game, the
aspiration kernel (Bennett, 1981) chooses those aspirations that equalize these surpluses
for each pair of agents.

Aspiration kernel, AspKer. For eachNeEe A and eachv € 7/2”, AspKer(v) is the
collection of aspirations for v such that for eaclk € ¥%(v,x) and each pair,j € S we
haves;(v,x) =s;(v.X).
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T2 T2

v({1,2}) v({1,2})
v({2})

{45°

v({2})

Of v hqay ™ o]

(a) (b)

73 (d)

Fig. 2. The aspiration kernel and the aspiration nucleolus in two-agent and three-agent TU-games. In these
cases, the aspiration kernel coincides with the aspiration nucleolusv@l/2}) = v({1}) + v({2}), they select

the ‘standard solution’ payoff vector: each agent is given first her individual worth, and then what remains is
divided equally. (b) Otherwise, they select{l}),v({2})). In panels (c) and (dy({1,2,3) = 0 and the payoff

vector chosen by them is indicated s

The next lemma is due to Peleg (1986), and it essentially implies that the aspiration
kernel isMWconsistent and conversely MW consistent.

N
all?

Lemma 3.1. For each N € ¥, each v € 7)), each x ER", each N’ C N, and each pair

i,j EN’, we have s;(ry, (v).Xy.) = ;([v.X).

Proposition 3.2. On 7,

2, the aspiration kernel is MWconsistent and conversely
MW consistent.

Proof. (MW consistency) Let NE W, v € 7/2”, x € AspKer(v), and N’ CN. Since the
aspiration correspondence MW-consistent, X, is an aspiration forr§.(v). Let S&
GE(ry (v)%y) andi,j € S with i #j. Then, by the definition of §,(v)(S), there exists
T CN\N’, whereT may be the empty set, such thd8) =ry.(v)(S) =v(SUT) — x(T).
Sincex € AspKer(v), SUT € 9€(v,x), andi,j ESUT, we haves;(v,X) = s;(v.X). By
Lemma 3.1,8;(ry (v).Xy) = $;(ry. (@) Xy)-

(Converse MW consistency) Let NE A, v € ¥}, andx € R" be such that for each
N’'CN with |N'|=2, x,. € AspKer(ry (v)). Since the aspiration correspondence is
conversely MW consistent and the aspiration kernel is its subsolutians an aspiration
for v. Let SE 96(v,X) and i,j €S with i7#]j. Then x +x =v(S) —x(S\i,j}) =
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ru;;@)i.j}) and, hencefi,j} € 94(r} ;,©).x.%). Since k.x) € AspKer(ry; ,(v)), we
haves;(rj ;,©).x.%) = s;(rg ;,©).%.X). By Lemma 3.1s,(v,X) =s,@©x). O

3.3. Aspiration nucleolus

Next, we analyze a solution which is closely related to the prenucleolus (Schmeidler,
1969).

For eachx€R", let e(v,X) be the vector inR?™” defined by setting for each
Se 2M\{p}, esv,X) =v(S) — X(S). The numberey(v,X) represents the dissatisfaction f
in v at x. Also, let ﬁ(e(v,X))E[RZ‘NLl be obtained by rearranging the coordinates of
€(v,X) in non-increasing order.

GivenmeN andzz € R"™, zis lexicographically smaller than z' if either (i) z, <z}
or (i) there existsk >1 such thatz, <z, and for each? <Kk, z, = z,.

For each game, the aspiration nucleolus (Bennett, 1981) selects a payoff vector that
lexicographically minimizes the dissatisfactions of the coalitions over the set of
aspirations.

Aspiration nucleolus, AspNuc. For eachN € .4 and eachv € 7, AspNuc(v) is the
unique aspirationx for v such that for each other aspirationfor v, 6(e(v,x)) is
lexicographically smaller thaf(e(v,y)).

The aspiration nucleolus is a subsolution of both the aspiration kernel and the
balanced aspiration solution (Sharkey, 1993).
GivenNeE N, vE VY, xER", anda ER, let

all

LX) ={SCN|evXx) = al.
The following lemma is a characterization of the aspiration nucléolus.

Lemma 3.2. (Sharkey, 199Fpr each N € ¥, eachv € 7/2”, and each aspiration x for

v, x= AspNuc(v) if and only if for each a €R with %, (vx)#0, ¥, (v,X) is strictly
balanced on N.

We use Lemma 3.2 to prove the following result:

Proposition 3.3. On 7,

ally

the aspiration nucleolus is MWconsistent.
Proof. Let Ne W, v € 7,,, x= AspNuc(v), and N’ CN. Since the aspiration corre-
spondence isMW-consistent, X, is an aspiration fory.(v). Let « €R be such that
Z.(r )Xy ) # 0. By the definition ofr . (v), for eachSe ¥, (r . (v),Xy.), there exists
T CN\N’, whereT may be the empty set, such thdt ©)(S) =v(SUT) — x(T). Since
VSUT) —X(T)—XOS)=a, ¥, (v.X) 0. To simplify the notation, le¥8 = &, (v,x) and

®A similar characterization of the (pre)nucleolus is due to Kohlberg (1971).
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B'=,(ry @)Xy ) By Lemma 3.2 is strictly balanced oM. Thus, there exists a
list (65)scq Of positive weights such that for eacte N

> 6s=1.

SERB
Sai

For eachS€ %', let

A= E Oyt
TCN\N’
s.t.SUTER

As shown above, for eache %', there existd C N\N’ such thatSU T € 4. Thus, for
eachSe #’', A;>0. Note also that, for eache N’

2 )‘s:2 2 6SUT:E =1

SeR’ SeB’ TCNWN’ RE X

S3i S3i st.suUTE® R3i
Thus, %' is strictly balanced onN’. Since this is true for eachw €R with
F(r @)Xy ) # 0, by Lemma 3.2 we have,, = AspNuc(ry.(v)). O

As the following example shows, the aspiration nucleolus violatmserse MW
consistency.

Example 3.2. Let N={1,2,3,4. Consider the following TU-game fd\: for eachSC N

_[6, ifse{{1,2,3,{1,2,4},
U(S):{O, otherwise.

Let x=(3,3,0,0) andy=(2,2,2,2). It can be shown thate AspKer(v), y is an

aspiration for v, and e(v,y) is lexicographically smaller thare(v,x). Thus, x#

AspNuc(v). Since the aspiration kernel isIW-consistent and it coincides with the
aspiration nucleolus in the two-agent case, for each ipp& N

(%.%) € AspKer(ry; ;,(v)) = {AspNuc(ry; ;,(©))}-

Thus, x satisfies the hypothesis obnverse MW-consistency for the aspiration nucleolus.
However, we havex # AspNuc(v). O

3.4. Equal gains aspiration solution

The next subsolution of the aspiration correspondence is based on the premise that
agents when bargaining tend to share the gains equally. In our context, by forming a
coalition, the agents forego the payoffs that they could have attained by forming
alternative coalitions. Therefore, each agent’s largest payoff from alternative coalitions
serves as an ‘outside option’. Formally, givahe &, v € 7}, xER", SE Y€ (v ,X),

all

andi € S the outside option for i relative to v, X, and S is defined by
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d7(v.X) =max p(T) — x(T\{i})].

T#S

Equal gains aspiration solution, EqAsp. For eachN € /" and eachy € 7/2”, EqAsp(v)
is the collection of aspirations far such that for eacls € 4¥%6(v,x) and each pair,j €S
we havex, — di(v.x) = X, — d](v.X).

Note that the aspiration kernel is a subsolution of the equal gains aspiration solution.
As the following example shows the equal gains aspiration solution violsiids
consistency.

Example 3.3. Let N={1,2,3. Consider the following TU-game: for ea@C N

6, ifse{{1,2,3,{1,2},
v(S) E{O, otherwise.

Let x=(4,2,0). Thenx is an aspiration fow and
G6(v.x) = {{3h{1,2,{1,2,3}.
Note that
x, —dM X = — max [p(S) ~ X(S)] = — max0— 4,0-4,6— 6} =0,
S#{1,2}
X, —dPx) = — max [p(S) —x(S)] = —max0—2,0-26-6}=0,
=]
S#{1,2}
X, —di* X = — max p(S)—X(S)] = —max0-4,6-60-4=0,
S#{1,2,3
X, —di 3 = — max [p(S) —~ x(S)] = —max0—2,6-6,0-2} =0,
S#{1,2,3
X, —d8 X)) = — max [p(S) —x(S)] = —max0—0,0—4,0-3}=0.
=]
S#{1,2,3

Thus, x € EqAsp(v). Note that

a2 ©){1) = maxv({1}),v({1,3}) — x;} = max0,0— 0} = 0,

a2 )2} = maxv({2}),v({2,3}) — x;} = max0,0— 0} = 0,

a2 ©)({1,2) = maxv({1,2),v({1,2,3) — x;} = max6,6 — 0} = 6.
Since EGAsp(r ,(v) ={(3.3)}, we have X,x,) & EGASD(r’; {v)).

Proposition 3.4. On 7,

i the egqual gains aspiration solution is conversely MW
consistent.
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Proof. Let NE.W, v € ¥}, andx € R" be such that for eacN’ C N with |[N'| =2,
Xy € EQASP(r . (v)). Note that the aspiration kernel and the equal gains aspiration
solution coincide in the two-agent case. Since the aspiration kernebrigersely
MWconsistent, x& AspKer(v). Since AspKer(v) C EgAsp(v), we have xe&
EqAsp(v). O

4. Two axiomatic characterizations

In this section, we study the implications bf\W-consistency, converse MW-consis-
tency, and the following three basic axioms:

Equal treatment of equals. For eachN € ./, eachv € 7, and each pair,j € N, if for
eachSC NYi,j}, v(SU{i}) = v(SU{j}), then for eachx € ¢(v), X = X;.

N

Anonymity. For eachN,M € .4 with [N| =|M|, eachv € ¥, eachw € ¥}, and each

bijection b : N - M, if for eachSCN, w({b(i) | i € S}) = v(S), then
(W) = {xeR" | there exists/ € ¢(v) such that for each€ N, x, = Yoii))-

Zero-independence. For eachN € ., each paiv,w € 7Y, and eacty € R", if for each

SCN, W(S) =v(S) + 2.5 Vi, then for eaclx € ¢(v), X +y € o(W).

Table 1 summarizes which solutions satisfy which properties.

As mentioned in the Introduction, most studies on coalitional games assume that the
grand coalition eventually forms. In this ‘standard approach’, a notion of reduced games
was first introduced by Davis and Maschler (1965). Gide& .V, v € 72, x € R", and
N’ C N, the DM-reduced game of v relative to x and N’ is defined by setting for each
SCN’

Table 1
Properties of subsolutions of the aspiration correspondence on the domain of all TU-gameasd Par Asp
denote the aspiration correspondence and the partnered aspiration solution, respectively.

Domain: 7, Asp Par Asp BalAsp AspNuc AspKer EqAsp
Equal treatment of equals No No No Yes Yes Yes
Anonymity Yes Yes Yes Yes Yes Yes
Zero-independence Yes Yes Yes Yes Yes Yes
Single-valuedness No No No Yes No No
MW-consistency Yes Yes Yes Yes Yes No
(Proposition 3.1) (Proposition 3.3) (Proposition 3.2) (Example 3.3)
Converse Yes Yes No No Yes Yes

MW-consistenc Example 3.1 Example 3.2 Proposition 3.2 Proposition 3.4
Yy p p p p
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max PESUT)—xT)], if SE{N'@},
e
PR @)(S) =1 v(N) — x(N\N"), if S=N’,
0, if S=0.
Associated axioms of consistency and its converse are defined as follows.

N
all

DM-consistency. For eachN € ./, eachv € ¥
havex,. € o(f . (v)).

eachx € ¢(v), and eactN’' C N, we

Converse DM-consistency. For eachN €./, eachv € ¥, and eachx € R" with

X(N) = v(N), if for eachN’ C N with |[N’| = 2 we havex,. € ¢( \ (), thenx € ¢(v).

Given a gamev for N, a preimputation for v is a payoff vectorx€R" with
X(N) = v(N). For each game, the prekernel (Maschler et al., 1972) chooses those
preimputations that equalize the surpluses for each pair of agent¥_ Qthe prekernel
is the only subsolution of the preimputation correspondence satiségumg treatment of
equals, zero-independence, DM-consistency, and converse DM-consistency (Peleg,
1986). It so happens that a similar result holds for the aspiration kernel.

Theorem 4.1. On 7, the aspiration kernel is the only subsolution of the aspiration
correspondence satisfying equal treatment of equals, zero-independence, MW-consis-
tency, and converse MW-consistency.

Proof. Clearly, the aspiration kernel is a subsolution of the aspiration correspondence
satisfyingequal treatment of equals and zero-independence. By Proposition 3.2, it also
satisfiesMW-consistency and converse MWAconsistency.

Conversely, letp be a subsolution of the aspiration correspondence satisfying the four
axioms. Clearlygp coincides with the aspiration kernel in the two-agent caseNL&tV
with [N|=3, andv € ¥},. First, we show thatp(v) C AspKer(v). Let X € ¢(v). By
MWtconsistency of ¢, for each N’ CN with [N'|=2, we havex, € ¢(ry (v)) =
AspKer(ry. (v)). Since the aspiration kernel eenversely MW consistent, x € AspKer (v).

Next, we show thaAspKer(v) C ¢(v). Lety € AspKer(v). Since the aspiration kernel
is MW consistent, for eachN’ C N with |[N’| =2

Y- € AspKer(r . (v) = (1, (v)-

Since ¢ is conversely MW consistent, y € ¢(v).
Altogether, ¢(v) = AspKer(v). O

For each game, the prenucleolus (Schmeidler, 1969) selects a payoff vector that
lexicographically minimizes the dissatisfactions of the coalitions over the set of
preimputations. O/, the prenucleolus is the only subsolution of the preimputation
correspondence satisfyingingle-valuedness, anonymity, zero-independence, and DM-
consistency (Sobolev, 1975).

It turns out that, by using Lemma 3.2 and by following the argument in Sobolev
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(1975), one can obtain a similar axiomatic characterization of the aspiration nucleolus.
(Since the proof is very long, we provide it in Appendix A.)

Theorem 4.2. On 7, the aspiration nucleolus is the only subsolution of the aspiration
correspondence satisfying single-valuedness, anonymity, zero-independence, and MW
consistency.

5. Remarks on the NTU-case

The definitions of the aspiration correspondence, the partnered aspiration solution, the
balanced aspiration solution, and the equal gains aspiration solution have been
generalized to define corresponding solutions for non-transferable utility coalitional
games (NTU-games, for short).

Moldovanu and Winter (1994a) studyW-consistency and converse MW-consistency
on the domain of all NTU-games. They show that, on this domain, both the aspiration
correspondence and the partnered aspiration solution satisfy these two properties. Here,
we report, without proofs, two additional resulfts:

e On the domain of all NTU-games, the balanced aspiration solution satldfis
consistency.

e On the domain of all NTU-games, the equal gains aspiration solution violates
converse MW-consistency.
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Appendix A

In this appendix, we provide the proof of Theorem 4.2. As mentioned before, the
proof is similar to that of a theorem in Sobolev (1975), which is written in Russian. The
proof of Sobolev’s theorem (in English) can be found in Peleg (1988). Essential parts of
Peleg’s proof are reproduced in Snijders (1995).

Proof of Theorem 4.2. Clearly, the aspiration nucleolus is a subsolution of the

°The proofs are available from the authors on request.
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aspiration correspondence satisfyisiggle-valuedness, anonymity, and zero-indepen-
dence. By Proposition 3.3, it is als®1\W-consistent.
Conversely, letp be a subsolution of the aspiration correspondence satisfying the four
axioms. LetNe W, ve ‘Va”, and x= AspNuc(v). We show, in seven steps, that
o).
Let

A={a € R | there existS C N such thatr = e4(v,X)},

and @,a,, ... a,) ER™ be the enumeration oA with a,>a,> - - - >ay,. To
simplify the notation, for eack €{1,2,... |A}, we write %, = &, (v.X). Also for each
ke{1,2,... A} and eachi €N, let 9' ={Se ¥, |i €S}. Given kE{l 2,...|Al}, by
Lemma 3.2,%, is strictly balanced orN. Moreover, the associated Welghts can be
chosen to be rational. Thus, there exist a natural numpand a list of natural numbers
(1s)se, such that for eachE N, 2¢ 51 pus = . Let %, be the partition oN such that
for each pairi,j €N, there existsB & %’ with i,j €B if and only if 9 91 Let

Be=MaXge gy, Bl, %= =Zgey, Ms and

n=(2)

Sep 1. Givenk €{1,2,. .. |A}, we construcM, € & and 7, C 2"\{M, 0} that satisfy
the following conditions:

() NCM

(i) M| =B, - Ay

(iii)for each S€ 4, there existsT € 7, such thatSCT;

(iv) for eachSC N and eachT € 7, if SCT, thenT "N=SandSES; _

(v) for eachi € M,, we have|7,| =, and |{j EM, | T\ = T}/ = B, where T, =
{Teg, |lieTtand T, ={T€ T, |jET}

Let (B,B, ... B, be an enumeration of3,. For eachh €{1,2,... A}, we
construct a sebD,, of agents as follows:

. if h=|%] and|B,| = B,, then letD, =B,;
s if h= then letD,, be the union oB, and (3, — |B,|) agents chosen
from N\N;

agents chosen frof\N.

Since %, is a partition ofN and the set of potential agents is countably infinite, it is clear

that, in the above construction Bf's, we can make them mutually exclusive. Then, let
M,=D,UD,U - UD,.

Note tha{D,,D,, ... D, } is a partition ofM,. By constructionM, satisfies conditions

(i) and (ii).
Next, imagine that there arg, empty ‘rooms.” We will fill these rooms with
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(appropriately replicated) groups {®,,D., . .. ,DAk}, and each room will correspond to
an element of7,. For eachS€ ¥,, createug copies of the set

U o,
he{l, ... | By}
s.t.D,NS#0

Since the total number of these copiesyjs= 2., us, We can put them into different
rooms Recall that for each€EN, 2s 4 pus= . This implies that for eacthe
.1%.]}, group D, belongs to exactly,uk rooms. Next, for eachh€{|%,|+
.,Ak}, createy, copies ofD,. Since

(2

we can place these copiesDfy ., ... D, into the rooms so that aff rooms contain
the same number of groups and for edti {|%|+1,... A}, groupD, belongs to
exactly w, rooms. It is easy to see th&, thus constructed satisfies conditions (iii), (iv),
and (v). (The above construction bf, and 7, is illustrated in Fig. 3 for a simple case.)

1 1156|719 s 67| 69
21314 213(4|81(10] --- 68 |70
B, B; Bs D, Dy D3 Dy Ds --- Ds3yDss

gy =1 | ppy=2|ppg=1| ppy=1 | pu =2

115]7]9/(11 117191113 5671523 519 |17[27(29 6 [1119]23(27
2]1318(10[12 218 (10{12|14 3|4]8(16/24 3 [10]18{28(30 4 [12|20(24)28
13|15]17(19{21 33|35(37|39[41| | [25|33|41[43|45| | |35[41[47|49]53| | |31|37[43[47|51
14|16(18(20{22 34/36]38|40(42| | [26]|34[42[44|46| | |36[42|48(50(54| | [32|38|44[48/|52
23]25(27(29]31 43(45]47|49(51| | [53/55[57|65|67| | |59(61|65(67|69( | 55 59[63 65(69

24(26]28/30(32 44(46]48/50(52| | [54]56[58]66]68| | |60[62|66|68(70| | |56]60|64]66]|70
Tk
115|17|19(21 6 |13|21{25(29
2 |16]18(20)22 4 114]22{26(30
23(35|37|39(53 31{39]45(49(51
34(36/38]40(54 32]40[46(50]52
55|57(59|61(63 57|61(63(67|69
56(58|60]62[64 58162|64/68|70

Fig. 3. Step 1 of the proof of Theorem 4.2. In the above exampées={1,2,34, % =

{1,231, 2.83. 4,34}, m =3, muos = Hey = e =1 muy = me =2 Thus, G =max2, =2, y =
1+1+1+2+2=7, and

()0
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Sep 2. Givenk€{1,2,... [A}, let 2, ={D,,D,, ... D, }, M,, and 7, be constructed
as in Step 1. We show that, for each pajre M,, there exists a permutation, on M,
such thatm, (i) =] and for eachl € 7,, m, (T)€ 7.

Leti,j € M By condition (v) of T, |n Step 1|7, =17} = . Thus, there exists a
permutatlona-r]k on J, such thatwgk( = 7. Note that7, has a property that iy,
distinct coalitions inJ, are chosen, then there exists exactly one grougjrthat is
included in all of thesgy, coalitions. Thus;. induces a permutation of,. Formally,
this permutation, denotedl , is defined by settlng for eadh €

@)= 7, (T).
TeT,
TOD

Note that each coalition it¥, can be viewed as a coalition of groups. For ed@ca 7,,
its image underw@k is defined by

=, m=U = o
“k
DCT

Now, we show that for eaclh € 7,, m, (T) € ;. Let T € 7. Then, by the definition
of T for eachD € 9, with D C T, we haveq-r@k(D) - rrgk(T). Thus,

m M= =,©)cmm

Since

T =

we haven-@k(T) = wgk(l'). Thus, w@k(l') €.

By construction, each group i@, contains exactly8, agents. For each € &, with
i €D, choose a bijectionr, : D - W@k(D) such thatm, (i) =j. For eachD € Z, with
i €D, choose an arbitrary bijection, : D - m, (D). Given the list {7,)p e, Of such
bijections, define the permutatim’,l,,k on M, by setting for eaclb € &, and eacth € D,
ka(h) = 7, (h). Clearly, ka(i) =j. LetT € 9J,. Then

75, (T)| = |75, (T)| =<Z:(: i)

mM=U m0n=U U zrn=U = 0)==mea,
heT DCT heD DCT
Thus, m, is a desired permutation o,
Sep 3 ‘For eactk € {1,2,... A}, let M and J, be constructed as in Step 1. Here, we
construct a seM and a part|t|on of ?\{M 0}
Let

M=M, XM, X -+« XMy
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In order to stress the fact thkt is a Cartesian product of the sets of agents, we write
its subsets and its elements in bold face. Note that, since the set of potential agents is
countably infinite, in the presence afhonymity, M can be viewed as an element Jf

For eachk e {1,2,... |Al}, let

S|a+1 ={SCM |there existy € J, such that
S=M; X « -+ XMy XT XMy X -« XMk

Let

Al
Sias1= 2M\<{M 0} U( g Sk))'

Sep 4. We show that for each pairj € M, there exists a permutatios,, on M such
that (i) m,(>)=j and (ii) for eachke{1,2,... |Al+ 1} and eachSES,, we have
m,(S) ESy.

Leti=(ipis...da) EM andj=(j;,j, - -.jja) EM. By Step 2, for eactk {1,
2,...|A]}, there exists a permutatiom,, on M, such thatm, (i) =], and for each
TE I, ka(I')Eg”k. Define the permutationm,, on M by setting for eachh =
(hphy .. hp) EM

() = (73, (1), 7, (12), - - 7, (10)-

Clearly, m,(i) =j and for eactke{1,2,... |Al} and eacl5S € S,, we havem,(S) € S,.
Note that m, induces a permutation oruJ L’LSK. Thus, also for eaclBE€ S, .4,
m(S) €S a1

Sep 5 Letwe ‘VZ:I be defined as follows: (iWw(M)=uv(N) —x(N); (ii) for each
ke{1,2,... |Al} and eachSES,, wW(S)=«,; and (iii) for eachSES,,,, W(S)=
min{ay,,v(N) — X(N)}. We show that for eache M, @(w) =0.

Leti,j € M. By Step 4, there exists a permutatiefy on M such thatm, (i) =j, and
for eachk€{1,2,... |A| + 1} and eaclSE S,, we haven,,(S) E S,. Letw’ € ¥, be
defined by setting for eacB C M, w'(S) = w((m;,)~*(S)). By anonymity, ¢ (W) = gWw’).
Let SCM. Since UNT*S, = 2Y\{M,@}, there existske€ {1,2,...|A| + 1} such that
SeS,. Since QTM)’l(S) € S,, by the definitions ofw andw’, w'(S) = w(S). Clearly,
w'(M) =w(M). Thus,w’ =w. Therefore,g(Ww) = g(W’) = g(W).

The above argument can be applied toiglie M. Sincex is an aspiration fop, X is
individually feasible and coalitionally rational. By coalitional rationality, for each
ke{1,2,... A}, & =0. Together with individual feasibility, we have either = 0 or
v(N) = x(N). Thus, we have (i) for eacB C M, w(S) =0, and (ii) there exist§ C M
such thafT # @ andw(T) = 0. Leti € T. Then, sincep(w) is coalitionally rational inw,

0=wT)=2 ¢ =[T|- ¢,

so thatg(w) = 0. By individual feasibility of ¢(w), ¢ (w) = 0.
Thus, for each €M, ¢(w) = 0.
Sep 6. Let
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M’ ={(i,i,...i))EM]|i ENL

Clearly, [M'| =|N|. Letb: N - M’ be the bijection defined by setting for eack N,
b(i)=(i,i,...i). We show that for eacBC N, r{”w)(b(S)) = v(S) — X(S).

Let SCN. Then there existske{1,2,...|Al} such thatv(S) —x(S) = «,. By
properties (iii) and (iv) ofg, in Step 1, there exist$ € J, such thatT "N =S Let

REMlX c ot XMk—lXTXMk+lX A .M‘A\‘
Thenb(S) C R. Moreover, sinceT NN =S we haveR\b(S) C M\M'. Thus,
ri (w)(b(S)) = max w(b(S) U Q) =W(b(S) U (R(S)) = w(R).

SinceRe S,, W(R) = &,. Thus,
ri” W(O(ES) = WR) = a = v(S) = X(S).

Now, we claim that the opposite (weak) inequality also holds. Qe M\M'. If
b(S) UQ ES|541, then W(b(S) U Q) = qn = . = v(S) — X(5). If there exists¢ = |A|
such thatb(S) U Q € S,, then there existy’ € 7, such that

bE)UQ=M; X -+ XM,_; XT"' XM, 3 X+ XM)py.

SinceQCM\M’" andSC T', we haveT’ NN =S Thus, by property (iv) of7, in Step
1, we haveSe ¥, so thatw(b(S) U Q) = a, = v(S) — X(S).
Thus, for eachQ C M\M’, we havew(b(S) U Q) =v(S) — X(S). This implies that

re (w)(o(S) = max W(b(S) U Q) =v(S) ~X(S).

By the definition of w, w(M) =uv(N) —x(N). For eachke{1,2,... |Al}, by the
definition of &, we haveN & %,. Thus, for eactkk €{1,2,. .. |Al}, by property (iv) of
. in Step 1, there exists nb &€ J, such thaflf D N. This implies that, for eacBD M’,
we haveSES , ., ,, so that

W(S) = min{e,,v(N) — x(N)} = v(N) — x(N).
Thus,

WG = rWM') = max wiM' U Q) = u(N) — x(N).
Therefore, for eacl8C N

r5 W)(O(S) = w(S) — X(S).

Sep 7. By max consistency, for eache M’, ¢ (r £ (w)) = 0.
Finally, by anonymity and zero-independence of ¢, we deduce that, for eadhe N,

@)= %(i)(r&(w)(w)) X% =0+x=X.

Thus, ¢(v) = AspNuc(v). O
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