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Abstract We analyze bilateral bargaining over a finite set of alternatives. We
look for “good” ordinal solutions to such problems and show that Unanimity
Compromise and Rational Compromise are the only bargaining rules that sat-
isfy a basic set of properties. We then extend our analysis to admit problems
with countably infinite alternatives. We show that, on this class, no bargain-
ing rule choosing finite subsets of alternatives can be neutral. When rephrased
in the utility framework of Nash (1950), this implies that there is no ordinal
bargaining rule that is finite-valued.

1 Introduction

Consider two agents negotiating over a set of alternatives. The outcome is
any alternative on which they unanimously agree and, in case of no unani-
mous agreement, a predetermined “disagreement” alternative is realized. Nash
(1950) analyzes this “bargaining problem” under the assumptions that (1)

negotiations take place, not only over physical alternatives, but also over
their lotteries as well, and (2) the agents’ preferences over lotteries satisfy
the von Neumann–Morgenstern axioms. Most real-life negotiations violate
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these simplifying assumptions, however. In particular, they take place over
a countable (and often finite) number of alternatives.1

We study bargaining between two agents who have complete, transitive, and
antisymmetric preferences over a finite set of physical alternatives. We focus on
the bargaining rules that are ordinal, that is, independent from the functional
forms chosen to represent the agents’ preferences. With uncountably many
alternatives, the only such rules on the Nash (1950) domain are the dictatorial
rules and the “always-disagreement” rule (Shapley 1969).2 With a finite number
of alternatives, however, many ordinal rules exist. Among them, we look for
ones that satisfy other desirable criteria. We also extend our analysis to cases
where the alternatives are infinite but countable in cardinality.

There are two alternative approaches to modeling cooperative bargaining
problems. The first and the most standard in the literature, following Nash
(1950), is formulating the problems in utility space and using consistency axi-
oms [such as scale invariance (Nash 1950) or ordinal invariance (Shapley 1969)]
to render the solution independent of the particular utility functions chosen
to represent the underlying preferences. The second approach formulates the
problems in the space of alternatives along with preferences over these but
without any reference to utility functions. With a finite number of alternatives,
the two approaches are equivalent.3 While all our results can be rephrased in
the utility framework, here we nevertheless adopt the latter approach as more
appropriate to model our ordinal problems.

There is a related literature that considers problems with a finite number of
alternatives but focuses on cardinal rules. For example, see Mariotti (1998) or
Nagahisa and Tanaka (2002) and the literature cited therein. Anbarcı (2005)
alternatively uses an ordinal framework to present a strategic and axiomatic
analysis of two real-life arbitration schemes on a finite number of alternatives.

In our analysis, a rule previously proposed by Hurwicz and Sertel (1997)
as the “Kant-Rawls Social Compromise” and further analyzed by Brams and
Kilgour (2001) under the name of “fallback bargaining” plays a central role. (It is
also related to the Majoritarian Compromise social choice rule of
Sertel (1985), also studied by Sertel and Yılmaz (1999).) This rule, hereafter
the “Unanimity Compromise”, is based on the idea that to reach an agreement,
both bargainers will simultaneously have to make compromises. If there is no
alternative that is a first best for both, the agents also accept their second bests.
If there is still no agreement, they proceed to accept their third bests. The
procedure continues in this way until an agreement is reached. The Unanimity

1 Even in bargaining over monetary payoffs, the number of alternatives is bounded by the
indivisibility of the smallest monetary unit.
2 It is possible to construct other ordinal rules if there are more than two bargainers (e.g. see
Shubik 1982; Kıbrıs 2004).
3 With an infinite number of alternatives, this is no more true. Solution rules defined for the latter
type of problems do not translate into rules for the former type (Sertel and Yıldız, 2003), that is,
unless the set of alternatives is fixed (e.g. as in Rubinstein et al. 1992, who follow the latter approach
to redefine the Nash bargaining rule with cardinal preferences).
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Compromise rule can equivalently be interpreted as maximizing the welfare
of the worst-off agent when each agent’s payoff from an alternative x is the
cardinality of that agent’s lower contour set at x.4 It is therefore very closely
related to the Egalitarian (Kalai 1977) and the Kalai–Smorodinsky (1975) rules,
as well as the Shapley–Shubik rule (see Kıbrıs 2002, 2004).

The intuitive procedure that defines the Unanimity Compromise makes it
a natural candidate as a prescriptive tool. An evaluation of this rule is thus
particularly useful for an arbitrator. The descriptive relevance of the Una-
nimity Compromise (for real-life bargaining) on the other hand depends on
the existence of noncooperative games that implement it and their relevance
to real-life bargaining situations. Constructing this relationship, as part of the
Nash program, is left for future research.

We axiomatically evaluate the Unanimity Compromise and compare it with
other well-known bargaining rules. Additionally to the standard axioms con-
sidered in the bargaining literature, we propose new axioms. In particular,
we introduce an invariance property related to the monotonicity property of
Maskin (1986). It requires that for certain problems, B, the set of chosen alter-
natives, F(B), is not affected if an agent’s preferences are changed so that (1) the
lower contour set of his first best in F(B) weakly enlarges and (2) the lower con-
tour sets of the other alternatives in F(B) remain unchanged (see Subsect. 2.2
for a discussion).

In Sect. 2, we introduce our model. In Sect. 3, we discuss solution rules
for finite bargaining problems. In particular, we observe that among neutral
and anonymous rules the Unanimity Compromise rule uniquely satisfies Pareto
optimality, “monotonicity”, and “invariance”. In Sect. 4, we allow the feasible
set to be countably infinite. We show that, when such problems are admitted,
no rule choosing finite subsets of alternatives can be neutral. When rephrased
in the utility framework of Nash, this result states that there is no ordinal rule
that is finite-valued. It is, therefore, closely related to Shapley (1969).

2 Model

There are two bargainers, N = {1, 2}. Let S be a finite set of alternatives. Each
i ∈ N is equipped with a linear order Li on S.5 Let L be the class of all such
linear orders. Given a linear order Li, let Pi denote its strict part: sPit if and
only if sLit and s �= t.

Given S ⊆ S, i ∈ N, and Li ∈ L, the “ranking utility function” that represents
Li with respect to S assigns each alternative s to the number of alternatives in its
strict lower-contour set in S: formally, for each s ∈ S, vi(s/S) = |{t ∈ S | sPit}|.
Given T ⊆ S, let vi(T/S) = min{vi(s/S) | s ∈ T}.

4 For more on the relationship between the two interpretations, see Brams and Kilgour (2001).
5 A linear order Li on S is a binary relation that is complete (for each s, t ∈ S, sLit or tLis), transitive
(for each s, t, r ∈ S, sLit and tLir imply sLir), and antisymmetric (for each s, t ∈ S, sLit and tLis
imply s = t).
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Two agents with preferences L1 and L2 are bargaining over a set of alterna-
tives S ⊆ S. In case of disagreement, an alternative d ∈ S is realized. To rule out
degenerate problems, assume there is s ∈ S \ {d} such that for each i ∈ N, sLid.
A bargaining problem, simply a problem, is a quadruple B = (S, d, L1, L2)

satisfying these properties. Let B be the class of all problems.
For each B ∈ B, let P(B) = {s ∈ S |there is no t ∈ S such that tP1s and tP2s}

denote the set of Pareto optimal alternatives in B, and I(B) = {s ∈ S | sL1d
and sL2d} denote the set of individually rational alternatives in B. Let IP(B) =
I(B) ∩ P(B). Let BI be the class of problems B ∈ B such that every alternative
is individually rational: S = I(S, d, L1, L2).

2.1 Bargaining rules

A bargaining rule, simply a rule, is a function F assigning to each B =
(S, d, L1, L2) ∈ B, a nonempty F(B) ⊆ S. The rule which we call the Una-
nimity Compromise plays an important role in our analysis. Its outcome can be
defined by the following simple algorithm. Initially, both agents request their
first bests. This is possible when there is a unique Pareto optimal alternative, in
which case the Unanimity Compromise rule chooses it. Otherwise, each agent
considers his second best. If there are alternatives which are at least second best
for both agents, they are chosen by the Unanimity Compromise. Otherwise, the
rule chooses the set of alternatives which are at least third best for both, if
this set is nonempty. Let k be the smallest integer for which the problem pos-
sesses an alternative which is at least kth best for both agents. The Unanimity
Compromise picks the set of such alternatives as the solution of the problem at
hand.

As Brams and Kilgour (2001; Theorem 3) show, the Unanimity Compromise
solution to any problem comprises all alternatives that maximize the minimum
ranking of any bargainer.6 Therefore, the Unanimity Compromise rule (UC) is
equivalently defined at each B ∈ B as follows:

UC(B) = arg max
s∈S

min
i∈N

vi(s/S).

The two alternative definitions of the Unanimity Compromise rule are demon-
strated in the following example.

Example 1 The feasible set is S = {x1, . . . , x5, d} and preferences are as follows
(the alternatives are ranked from the best, left-most, to the worst, right-most)

L1 | x1 x2 x3 x4 x5 d

L2 | x5 x4 x3 x2 x1 d

6 Sertel and Yılmaz (1999) also utilize a similar equivalence in presenting the Majoritarian
Compromise social choice rule of Sertel (1985).
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Fig. 1 In Example 1, the utility representation of the problem (on the left) and its Unanimity
Compromise solution as the maximizer of a Leontief type social welfare function (on the right)

Fig. 1 (left) represents the problem B = (S, d, L1, L2) in payoff space. To solve
B, the Unanimity Compromise procedure follows the following steps:

Step 1 Agent 1 requests his first best, {x1}, and Agent 2 requests his first best,
{x5}. The requests are not compatible.

Step 2 Agent 1 requests alternatives down to his second best, {x1, x2}, and Agent
2 requests alternatives down to his second best, {x5, x4}. The requests are not
compatible.

Step 3 Agent 1 requests alternatives down to his third best, {x1, x2, x3} and
Agent 2 requests alternatives down to his third best, {x5, x4, x3}. The requests
are compatible since the two sets have a nonempty intersection. The procedure
stops and the intersection set {x3} is chosen as the Unanimity Compromise
solution to this problem: UC(B) = {x3}.
Figure 1 (right) illustrates that the same outcome is also obtained by maximizing
the minimum ranking of any bargainer.

The Unanimity Compromise solution to some problems is a doubleton. If
the preferences of Agent 2 in Example 1 are instead

L′
2 | x5 d x4 x3 x2 x1

the Unanimity Compromise solution is UC(S, d, L1, L′
2) = {x3, x4}.

Note that dL′
2x3 and dL′

2x4. That is, the Unanimity Compromise violates one
of the more important axioms of bargaining: individual rationality. However,
the same compromise idea, when applied to the set of individually rational
alternatives I(B) guarantees individually rational outcomes. The (Individually)
Rational (Unanimity) Compromise rule (RC) is defined at each B ∈ B as
follows:

RC(B) = arg max
s∈I(B)

min
i∈N

vi(s / I(B)).
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Fig. 2 Example 2 (on the left) and Example 3 (on the right)

In Example 1, all alternatives are individually rational. Thus, the two rules coin-
cide. However, RC(S, d, L1, L′

2) = {x5} since x5 is the only individually rational
alternative for (S, d, L1, L′

2).
Restricting the comparison to only individually rational and Pareto optimal

(that is, imputational) outcomes leads to an alternative rule which coincides
with the finite version of the Equal Length (EqL) rule (Thomson 1996). The
Imputational Compromise (IC) is defined at each B ∈ B as follows:

IC(B) = EqL(B) = arg max
s∈IP(B)

mini∈N vi(s/IP(B)).

The finite version of the Equal Area rule (see Thomson 1994) does not coin-
cide with any of the previous rules; the Equal Area solution EqA to a problem
chooses those Pareto optimal points at which the difference between the num-
ber of better individually rational alternatives for each agent is minimized: for
each s ∈ P(B), let Dif(s/B) = |v1(s/I(B)) − v2(s/I(B))|. Then

EqA(B) = {s ∈ P(B) | t ∈ P(B) ⇒ Dif(s/B) � Dif(t/B)}.

The following example demonstrates the differences between these two rules
and the Unanimity Compromise.

Example 2 (Fig. 2, left) In Example 1, change preferences of Agent 2 to

L′′
2 | x3 x5 x4 x2 x1 d

Let B′′ = (S, d, L1, L′′
2). The Equal Area solution to this problem is EqA(B′′) =

{x2, x3}, whereas the Unanimity (as well as the Rational) Compromise solution
is UC(B′′) = RC(B′′) = {x3}. The Imputational Compromise (or the Equal
Length) solution is different than either: IC(B′′) = EqL(B′′) = {x2}.

Note that for this framework, cardinal rules such as that of Nash (1950) or
Kalai and Smorodinsky (1975) as well as the Egalitarian and the Utilitarian
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rules fail to be well-defined, as they depend on the particular utility represen-
tation of the preferences. Once a representation is fixed, however, these rules
can be redefined. Here, we take the “utility” of an alternative for an agent as
the cardinality of the agent’s lower contour set at that alternative. Then the
“Nash-like” product maximizing rule, N, is defined as

N(B) = arg max
s∈I(B)

v1(s/I(B)) × v2(s/I(B))

and the “Utilitarian-like” sum maximizing rule, U, is defined as

U(B) = arg max
s∈S

v1(s/S) + v2(s/S).

Finally note that the “Egalitarian-like” rule, E, which maximizes the utility of
the worst-off agent coincides with the Rational Compromise:

E = RC.

The following example demonstrates the differences between these two rules
and the Unanimity Compromise.

Example 3 (Fig. 2, right) In Example 1, change preferences of Agent 2 to

L′′′
2 | x5 x4 x3 d x2 x1

Let B′′′ = (S, d, L1, L′′′
2 ). Then, the Nash-like solution is N(B′′′) = {x4} and the

Utilitarian-like solution is U(B′′′) = {x3, x4, x5}. The Unanimity Compromise
solution to the same problem is UC(B′′′) = {x3}.

2.2 Properties

We focus on rules whose outcomes are independent of the alternatives’ names.
Let � be the class of all bijections π : S → S. For Li ∈ L and π ∈ �, let
Lπ

i be defined as follows: for each s, t ∈ S, sLπ
i t if and only if π−1(s)Liπ

−1(t).
For B = (S, d, L1, L2), let π(B) = (π(S), π(d), Lπ

1 , Lπ
2 ). A rule F is neutral if

for each B ∈ B and each π ∈ �, we have F(π(B)) = π(F(B)). Using standard
terminology, we also say that a rule F is anonymous if for each (S, d, L1, L2) ∈ B,
we have F(S, d, L1, L2) = F(S, d, L2, L1). A rule F is regular if it is both neutral
and anonymous. When possible, we focus on the regular rules.

The first set of properties are standard in both the bargaining and social
choice literatures. A rule F is individually rational if for each B ∈ B, we have
F(B) ⊆ I(B). It is Pareto optimal if for each B ∈ B, we have F(B) ⊆ P(B).

The next class of properties relate solutions to a given pair of problems. The
first one is a weaker form of a monotonicity property introduced by Nagahisa
and Tanaka (2002). These authors note that for standard (infinite) problems,
their property is weaker than the monotonicity properties of Kalai (1977) and



Ö. Kıbrıs, M. R. Sertel

Kalai and Smorodinsky (1975). This property requires that, given a problem
B = (S, d, L1, L2), if the feasible set S expands to a set T in such a way that all
added alternatives t ∈ T \ S are considered by every agent better than his worst
alternative in F(B), then each agent’s worst alternative in F(T, d, L1, L2) is bet-
ter than his worst alternative in F(B). Formally, let si(F, B) = arg min

x∈F(B)

vi(x/S)

be the worst alternative for i in F(B). Then, a rule F is monotonic if for each
B = (S, d, L1, L2) ∈ B and B′ = (T, d, L1, L2) ∈ B satisfying S ⊂ T and for each
t ∈ T \ S and i ∈ N, tPisi(F, B), we have si(F, B′)Pisi(F, B) for each i ∈ N.

Monotonicity can either be interpreted as a solidarity requirement on an
impartial arbitrator (a change in the environment that is favorable to both
agents should affect the arbitrator’s proposal in a similar way), or as a rational-
ity requirement on the bargainers (each agent should refuse to be worse-off by
the discovery of an alternative that is better than a current agreement).7

The second type of property requires that certain changes in the agents’
preferences should not affect the solution. Given a problem at which the worst
chosen alternative for each agent is ranked the same, if an agent i’s ranking
changes so that his top choice si(F, B) (weakly) improves while the other choices
s ∈ F(B) \ {si(F, B)} remain the same in rank, the solution should be the same.
Formally, let si(F, B) = arg max

x∈F(B)

vi(x/S) be the best alternative for i in F(B).

Then, a rule F is preference replacement invariant if for each B = (S, d, Li, Lj) ∈
B with vi(F(B)/S) = vj(F(B)/S), we have F(S, d, L′

i, Lj) = F(S, d, Li, Lj) so long
as L′

i satisfies for each t ∈ S,

1. si(F, B)L′
it if si(F, B)Lit and

2. for each s ∈ F(B) \ {si(F, B)}, sL′
it if and only if sLit.

This property is a weaker version of “Maskin monotonicity” (see Maskin
1986). Indeed, the original property is violated by all the rules introduced in
the previous section.8 The reason is quite intuitive. Resolving a bargaining situ-
ation (or any conflict for that matter) requires the choice of an agreement that
appropriately balances the preferences of the parties. Some of the preference
changes allowed by Maskin monotonicity can severely damage this balance.9

Preference replacement invariance is limited to problems where the solution is

7 An equivalent definition that demonstrates this welfare comparison is as follows: a rule F is
monotonic if for each B = (S, d, L1, L2) ∈ B and B′ = (T, d, L1, L2) ∈ B satisfying S ⊂ T and for
each t ∈ T \ S and i ∈ N, vi(t/T) > vi(F(B)/T)), we have vi(F(B′)/T) > vi(F(B)/T) for each i ∈ N.
8 To see this, consider the problem in Example 2. Moving x1 up to second rank in L′′

2 changes
the UC, RC, Nash, and Utilitarian solution from x3 to x1. Similar violations can be shown for the
Equal Area rule (e.g. moving x2 up to second rank in L′′

2 makes it the unique solution) or the Equal
Length rule (e.g. moving {x4, x5} up to third rank in L1 makes x4 the unique solution).
9 For example, moving x1 up to second rank in L′′

2 (of Example 2) makes it a “better compromise”
than x3 (since in the new problem, x1 is ranked first by an agent and second by another while x3 is
only ranked first and third).
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symmetric (in the sense that the chosen set is ranked the same by both agents)
and it rules out preference changes that distort this symmetry.10

Preference replacement invariance ignores changes in the individually rational
set. As a result, it is violated by the Rational Compromise rule (see Example 4,
Part (i)) which, however, satisfies the property on a restricted domain: a rule is
restricted preference replacement invariant if it is preference replacement invari-
ant on BI. Even on this subdomain however, preference changes can affect
the imputation set, and thus the Imputational Compromise rule violates the
property (see Example 4, Part (ii)).

Example 4 Consider the problem in Example 1. Note that RC(S, d, L1, L2) =
IC(S, d, L1, L2) = {x3}.

(i) If preferences of Agent 2 are replaced with

L′′′
2 | x5 x4 x3 d x2 x1,

the lower contour set of x3 remains unchanged (only d moves from sixth
to fourth place). However, RC(S, d, L1, L′′′

2 ) = {x4}. Thus RC violates
preference replacement invariance.

(ii) If preferences of Agent 2 are replaced with

L′′
2 |x3 x5 x4 x2 x1 d,

x3 improves in rank. Furthermore, (S, d, L1, L2), (S, d, L1, L′′
2) ∈ BI.

However, IC(S, d, L1, L′′
2) = {x2}. Thus IC violates restricted preference

replacement invariance.

3 Finite bargaining problems

Our first result is as follows.

Theorem 5 The Unanimity Compromise is the unique regular rule that is Pareto
optimal, monotonic, and preference replacement invariant.

We prove this result in two steps. However, let us first note that all our three
compromise rules, UC, RC, and IC, choose at most two alternatives for each
problem.

Lemma 6 For every problem B ∈ B, max{|UC(B)|, |RC(B)|, |IC(B)|} � 2.

10 In a way, this is reminiscent of “strong monotonicity” in bargaining theory. This property (which
says any expansion of the feasible set should make everyone better-off) allows expansions that
change a symmetric bargaining problem into a very asymmetric one and is criticized for this reason.
As a result, weaker versions that preserve some of the symmetry are proposed (e.g. Roth 1979,
achieves this in “restricted monotonicity” by keeping the agents’ ideal payoffs fixed).
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Also note that neutrality and anonymity can be weakened to a “welfare-
symmetry” property, which is quite standard in the utility-based bargaining
literature following Nash (1950). A set S is welfare-symmetric with respect to
the profile L if for each s ∈ S, there is t ∈ S such that v1(s/S) = v2(t/S) and
v1(t/S) = v2(s/S). A problem B is welfare-symmetric if (i) v1(d/S) = v2(d/S)

and (ii) S is welfare-symmetric with respect to L. The welfare-symmetric prob-
lems have utility images that are symmetric with respect to the x1 = x2 line in R

2.
A rule F is welfare-symmetric if for each welfare-symmetric problem B, F(B)

is also welfare-symmetric. This property is the counterpart of the symmetry
property in Nash (1950) and Kalai and Smorodinsky (1975).

Lemma 7 If F is regular then it is welfare-symmetric.

Proof Let B = (S, d, L1, L2) be a welfare-symmetric problem. Let π : S → S
be the bijection defined as follows: for each s ∈ S, π(s) is such that v1(s/S) =
v2(π(s)/S) and v1(π(s)/S) = v2(s/S). Note that π(B) = (S, d, L2, L1). As-
sume that F is regular. By neutrality, F(π(B)) = π(F(B)) and by anonymity,
F(π(B)) = F(B). Therefore, π(F(B)) = F(B) and so, F is welfare-symmetric. 	


The following lemma describes the implications of the given properties for
welfare-symmetric problems.

Lemma 8 Let B ∈ B be a welfare-symmetric problem. If F is a Pareto optimal,
monotonic, and welfare-symmetric rule, then F(B) = UC(B).

Proof Let B = (S, d, L1, L2) be a welfare-symmetric problem and let F be a rule
satisfying the given properties. Since the feasible set S is constant throughout
the proof, we write vi(s) instead of vi(s/S).

Let π : S → S be the bijection defined as follows: for each s ∈ S, π(s) is such
that v1(s) = v2(π(s)) and v1(π(s)) = v2(s). Note that x ∈ P(B) implies π(x) ∈
P(B). If π(x) �∈ P(B), there is y ∈ S such that for each i ∈ N vi(y) > vi(π(x)),
which implies that for each i ∈ N, vi(π(y)) > vi(x), a contradiction.

Let P(B) = {x1, x2, . . . , xk}. Without loss of generality, assume that for each
l ∈ {2, . . . , k} xl−1L1xl. Then, Agent 2 has the opposite ranking. That is, for each
l ∈ {1, . . . , k − 1} xl+1L2xl. To see this, suppose there is l ∈ {1, . . . , k − 1} such
that xlL2xl+1. Since xlL1xl+1, then xl+1 Pareto dominates xl, a contradiction.

Next note that for each l ∈ {1, . . . , k}, π(xl) = xk−l+1. To see this, first note that
x1, π(x1) ∈ P(B). Therefore, π(x1) = xl for some l ∈ {2, . . . , k}. Suppose l < k.
Then v1(xk) < v1(xl) = v2(x1) and v2(xk) > v2(xl) = v1(x1). Since xk ∈ P(B),
π(xk) ∈ P(B) and by definition of π , v1(π(xk)) = v2(xk) > v2(xl) = v1(x1). This
contradicts x1 being agent 1′s top ranked Pareto optimal alternative. Therefore,
π(x1) = xk. A similar reasoning shows that π(x2) = xk−1. Iterating, one obtains
the desired conclusion.

Note that every x �∈ P(B) is Pareto dominated by an x ∈ P(B). So, for each
x ∈ P(B), let D(x) be the union of the set of alternatives that x Pareto dominates,
the alternative d, and the alternative x itself. Now, for each l ∈ {1, . . . ,

⌈
k
2

⌉
}, let
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Fig. 3 Construction of the sets S1 and S2

Sl =
⎛
⎝

l⋃
i=1

D(xi)

⎞
⎠ ∪

⎛
⎝

l⋃
i=1

D(π(xi))

⎞
⎠ .

Note that S�k/2 = S and each (Sl, d, L1, L2) is welfare-symmetric (see Fig. 3).
It follows from Pareto optimality and welfare-symmetry that F(S1, d, L1, L2) =

{x1, xk}. Now note that S2 ⊃ S1. Furthermore, for each x ∈ S2 \ S1, xL1xk and
xL2x1. Therefore, by monotonicity of F, for each i ∈ N, si(F, (S2, d, L1, L2))Pisi
(F, (S1, d, L1, L2)). This implies x1, xk �∈ F(S2, d, L1, L2) and thus, F(S2, d, L1, L2)

= {x2, xk−1}. Iterating, we obtain F(S, d, L1, L2) = {x�k/2, π(x�k/2)} = UC(S, d,
L1, L2). 	


All of the rules that we introduced coincide with the Unanimity Compromise
rule on welfare-symmetric problems. However, none other satisfies preference
replacement invariance.

Lemma 9 Let F be a preference replacement invariant rule. If F = UC on
welfare-symmetric problems, then F = UC (on the whole domain).

Proof Let F be a rule satisfying the given properties. Let B ∈ B. By Lemma 6,
|UC(B)| � 2. Let UC(B) = {a, b} and assume that aL1b and bL2a. Note that
v1({a, b}) = v2({a, b}).

Let L′
1 be obtained from L1 by moving a down in agent 1’s ranking to the spot

right above b. Let L′
2 be obtained from L2 by moving b down in agent 2’s ranking

to the spot right above a. Let B′ = (S, d, L′
1, L′

2). Note that v′
1({a, b}) = v′

2({a, b}).
For i ∈ N, let

Ui = {t ∈ S \ {a, b} | tL′
ia and tL′

ib} and

Di = {t ∈ S \ {a, b} | a L′
jt and bL′

jt}.

Note that by Pareto optimality of UC, Ui ⊆ Dj for i �= j.
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For each i ∈ N and j �= i, enumerate

Di ∩ Uj = Uj = {t1(i), t2(i), . . . , tn(i)} and

Di ∩ Dj = {r1(i), r2(i), . . . , rm(i)}

so that for l ∈ {1, . . . , n−1}, tl+1(i) L′
j tl(i) and for l ∈ {1, . . . , m−1}, rl(i) L′

j rl+1(i).
By the previous paragraph, n and m are independent of i.

For each i ∈ N, let L′′
i be obtained from L′

i by moving alternatives in Di ∩ Uj
above those in Di ∩ Dj and reordering alternatives in Di ∩ Uj so that for l ∈
{1, . . . , n − 1}, tl(i) L′′

i tl+1(i).
Finally, let L′′′

1 = L′′
1 and let L′′′

2 be obtained from L′′
2 by reordering alterna-

tives in D1 ∩ D2 so that for l ∈ {1, . . . , m − 1}, rl(2) L′′′
2 rl+1(2).

The problem B′′′ = (S, d, L′′′
1 , L′′′

2 ) is of the following form:

L′′′
1

∣∣ tn(2) . . . t1(2) a b t1(1) . . . tn(1) r1(2) . . . rm(2)

L′′′
2

∣∣ tn(1) . . . t1(1) b a t1(2) . . . tn(2) r1(2) . . . rm(2)

Note that this is a welfare-symmetric problem since

(1) for each s ∈ D1 ∩ D2, v′′′
1 (s) = v′′′

2 (s),
(2) for each s ∈ Di ∩ Uj, there is t ∈ Ui ∩ Dj such that v′′′

i (s) = v′′′
j (t) and

v′′′
i (t) = v′′′

j (s),
(3) v′′′

1 (a) = v′′′
2 (b) and v′′′

1 (b) = v′′′
2 (a).

For each i ∈ N and j �= i, we have Ui ⊆ Dj; thus UC(B′′′) = {a, b}. Therefore,
by assumption F(B′′′) = UC(B′′′) = {a, b}.

Now, note that v′′′
1 (b) = v′′′

2 (a) and L′′′
1 = L′′

1. Furthermore for each t ∈ S,
aL′′′

2 t if and only if aL′′
2t, and bL′′′

2 t if and only if bL′′
2t. Therefore, by prefer-

ence replacement invariance, F(B′′) = F(B′′′) = UC(B′′′) = UC(B′′). Similarly,
F(B′) = F(B′′) = UC(B′′) = UC(B′).

Now note that v′
1(b) = v′

2(a). For Agent 1, for each t ∈ S, aL1t if aL′
1t and

bL1t if and only if bL′
1t. For Agent 2, for each t ∈ S, bL2t if bL′

2t and aL2t if and
only if aL′

2t. Therefore, by preference replacement invariance, F(B) = F(B′) =
UC(B′) = UC(B). 	


The proof of Theorem 5 then proceeds as follows. It is straightforward to ver-
ify that UC satisfies the claimed properties. Conversely, if F is a rule satisfying
these properties, by Lemmata 7 and 8, F is equal to UC on welfare-symmetric
problems. Then, by Lemma 9, F is equal to UC on every problem.

The next result replaces the monotonicity requirement with a minimality
condition: a rule F is minimally connected if for each B = (S, d, L1, L2) ∈ B,
s, s′ ∈ F(B) implies that there is no t ∈ S such that sPitPis′ and s′PjtPjs. That is,
if s and s′ are both chosen and if there is t which both agents rank in between
s and s′, then s and s′ should not have been chosen in the first place since t is a
better compromise.
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Theorem 10 The Unanimity Compromise is the unique regular rule that is
Pareto optimal, minimally connected, and preference replacement invariant.

The proof is similar to the previous one except that instead of Lemma 8 it
resorts to the following result.

Lemma 11 Let B ∈ B be a welfare-symmetric problem. If F is a Pareto optimal,
minimally connected, and welfare-symmetric rule, then F(B) = UC(B).

Proof Let F be a rule satisfying the given properties. Since B = (S, d, L1, L2) is
welfare-symmetric, let π : S → S be the bijection defined as follows: for each
s ∈ S, π(s) is such that v1(s/S) = v2(π(s)/S) and v1(π(s)/S) = v2(s/ S).

Let P(B) = {x1, x2, . . . , xk}. Without loss of generality, assume that for each
l ∈ {2, . . . , k}, xl−1L1xl. Note that then Agent 2 has the opposite ranking. In the
proof of Lemma 8, we established that for each l ∈ {1, . . . , k}, π(xl) = xk−l+1.

Let UC(B) = {a, π(a)} and note that a = x�k/2. If k is odd, then a = π(a);
otherwise, a = xk/2 and π(a) = x(k/2)+1. Suppose there is s ∈ F(B) such that
s �∈ {a, π(a)}. Then by welfare-symmetry of F, π(s) ∈ F(B) as well. Also note
that {s, π(s)} ⊆ P(B). However then s = xl for some l < �k/2. Therefore,
sL1aL1π(s) and π(s)L2aL2s, contradicting minimal-connectedness of F. There-
fore, s �∈ F(B) for any s ∈ P(B) \ {a, π(a)}. Since F(B) �= ∅, a ∈ F(B), and by
welfare-symmetry π(a) ∈ F(B). Thus, F(B) = UC(B) 	


The properties listed in Theorems 5 and 10 are logically independent. To see
this, enumerate S = {s1, . . . , sK}. First, the rule F1 defined as

F1(B) = {sk ∈ UC(B) | for each sl ∈ UC(B), k � l}

satisfies all properties except neutrality. Second, the rule F2 defined as

F2(B) = {sk ∈ UC(B) | for each sl ∈ UC(B), skL1sl}

satisfies all properties except anonymity. Let B2 = {(S, d, L1, L2) ∈ B | |S| = 2
and L1 = L2}. Then the rule F3 defined as

F3(B) =
⎧⎨
⎩

S if(S, d, L1, L2) ∈ B2,

UC(B) otherwise.

satisfies all properties except Pareto optimality. Fourth, the Pareto rule, P, sat-
isfies all properties except monotonicity and minimal connectedness.11 Finally,
the Rational Compromise rule, RC, satisfies all properties except preference
replacement invariance.

11 Note that monotonicity and minimal connectedness are equivalent for rules that satisfy all the
other properties. This equivalence need not hold in general. However, all our other examples satisfy
both of these properties.
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Results similar to Theorems 5 and 10 are obtained for the Rational Compro-
mise rule if only individually rational alternatives are deemed to be important
for the determination of an agreement. A rule F is independent of nonin-
dividually rational alternatives if for each B = (S, d, L1, L2) ∈ B, we have
F(S, d, L1, L2) = F(I(B), d, L1, L2). In the standard framework of Nash (1950),
this property is satisfied by all of the well-known rules with the only exception
of the Kalai–Rosenthal (1978) rule.

Theorem 12 The Rational Compromise is the unique regular rule that is Pareto
optimal, monotonic, restricted preference replacement invariant, and indepen-
dent of nonindividually rational alternatives.

Theorem 13 The Rational Compromise is the unique regular rule that is Pareto
optimal, minimally connected, restricted preference replacement invariant, and
independent of non-individually rational alternatives.

The proofs of these two results proceed similarly. It follows from the proof
of Theorem 5 that if F satisfies these properties, then on the subclass BI we
have F = UC = RC. For every B = (S, d, L1, L2) �∈ BI, however, the problem
B′ = (I(B), d, L1, L2) ∈ BI. Therefore F(B′) = RC(B′) and via independence
of nonindividually rational alternatives, we have F(B) = F(B′) = RC(B′) =
RC(B).12

The following table compares the discussed rules in terms of the properties
they satisfy.13 We also discuss the Agent-i-Dictatorial rule, Di, which chooses
agent i’s first best among individually rational alternatives.

Properties rules UC RC = E IC = EqL EqA N U Di

Pareto optimality + Thm 5, 10 + Thm 12, 13 + + + + +
Individual rationality − + + + + − +
Neutrality + Thm 5, 10 + Thm 12, 13 + + + + +
Anonymity + Thm 5, 10 + Thm 12, 13 + + + + −
Welfare symmetry + + + + + + −
Monotonicity + Thm 5 + Thm 12 + − + + +
Pref. repl. inv. + Thm 5, 10 − − − − − +
Restricted pref. repl. inv. + + Thm 12, 13 − − − − +
Minimal connectedness + Thm 10 + Thm 13 + + − − +
Ind. of non-ind. rat. alt. − + Thm 12, 13 + + + − +

12 The properties stated in these results are also logically independent. Replacing the UC with
RC in the definitions of F1, F2, and F3 produces examples of rules that only violate neutrality,
anonymity, and Pareto optimality, respectively. The rule IP (that picks all individually rational and
Pareto optimal alternatives) violates only monotonicity and minimal connectedness. The rule IC
violates only restricted preference replacement invariance. Finally, UC violates only independence
of nonindividually rational alternatives.
13 The superscripts in the table refer to the characterization theorems in which the property
corresponding to that row appears.
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All of the above rules, except dictatorship, violate Nash’s “independence
of irrelevant alternatives axiom”.14 These rules also violate strategy proofness.
Example 4 already demonstrates this point for RC and IC. Similar examples
can be constructed for the other rules.

4 Infinite bargaining problems

In this section we allow the universal set S and the feasible sets S to be countably
infinite. This has an important implication. For a finite number of alternatives,
the Unanimity Compromise rule can be equivalently defined on either the alter-
native space or the utility space. For an infinite number of alternatives, however,
simply because the agents can now have infinite sized upper or lower contour
sets, this equivalence no longer holds.

When the space of alternatives is infinite, even if the analysis is restricted to
physical problems, there is no unique way of defining the Unanimity Compro-
mise. If there is an agent who has an infinite sized upper contour set at every
alternative, it is not possible to apply the compromise algorithm. Similarly, if
there is an agent who has an infinite sized lower contour set at every alterna-
tive, one cannot apply the previously equivalent definition of maximizing the
ranking of the worst-off agent. If, for example, S = {1, 2, 3, . . .} and L1, L2 are
such that for each k ∈ {1, 2, 3, . . .}, kL1(k + 1) and (k + 1)L2k, neither definition
yields an outcome.

On the class of countable problems, neutrality turns out to have interesting
implications. We discuss them next. Let B = (S, d, L1, L2) ∈ B and π ∈ �. Let
T[S, π ] = {s ∈ S | π(s) �= s}. The set T[S, π ] contains a finite cycle if there is
a finite subset D = {s1, . . . , sk} of T[S, π ] such that for each l ∈ {1, . . . , k − 1}
π(sl) = sl+1 and π(sk) = s1.

Lemma 14 Let B ∈ B and π ∈ �. If π(B) = B then T[S, π ] contains no finite
cycle.

Proof Suppose T[S, π ] contains a finite cycle D = {s1, . . . , sk}. Let s1 ∈ D be
such that s1L1sl for each l ∈ {2, . . . , k} and let s2 = π(s1). Now for each l ∈
{2, . . . , k}, π(s1)Lπ

1 π(sl) implies s2Lπ
1 π(sl). But s1 = π(sl) for some l ∈ {2, .., k}.

Thus s2Lπ
1 s1. Since s1L1s2, L1 �= Lπ

1 , contradicting π(B) = B. 	

Note that if T[S, π ] is finite, it automatically contains a finite cycle. Therefore,

π(B) = B implies that T[S, π ] is infinite. We use Lemma 14 in the proof of the
following result.

14 To be more precise, a bargaining rule F is independent of irrelevant alternatives if for each
(S, d, L1, L2), (T, d, L1, L2) ∈ B, S ⊂ T and s ∈ F(T, d, L1, L2) ∩ S implies s ∈ F(S, d, L1, L2).
A weaker form of this property requires the dropped out alternatives to be ranked below the
chosen ones: a bargaining rule F is weakly independent if s ∈ F(S, d, L1, L2), t ∈ S, and t ∈
L1L2(F(S, d, L1, L2)), then s ∈ F(S\{t}, d, L1, L2). This version is satisfied by all the above rules
except N and U.
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Theorem 15 Let F be a neutral rule. Let B ∈ B and π ∈ � be such that π(B) = B.
If F(B) ∩ T[S, π ] �= ∅ then |F(B)| = ∞.

Proof Assume F(B)∩ T[S, π ] �= ∅. Let x1 ∈ F(B)∩ T[S, π ] and let x2 = π(x1).
Then x2 ∈ π(F(B)) = F(π(B)). Since π(B) = B, however, x2 ∈ F(B). Since
x2 ∈ T[S, π ] as well, we have x2 ∈ F(B) ∩ T[S, π ].

Now for each k ∈ N, let xk = π(xk−1). By Lemma 14, T[S, π ] does not contain
a finite cycle. Therefore, xk �= xl for l ∈ {1, . . . , k−1}. By iterating the argument
of the previous paragraph, we have xk ∈ F(B) ∩ T[S, π ] for each k ∈ N. Thus,
|F(B) ∩ T[S, π ]| = ∞ establishes the desired conclusion. 	


For problems where T[S, π ] contains a single “infinite chain”, the theorem
goes further to state that F(B) ⊇ T[S, π ]. This however is not true in general.
For instance, let S = {sl}l∈Z ∪ {tl}l∈Z and for each l ∈ Z, π(sl) = sl+1 and
π(tl) = tl+1. If for example, s1 ∈ F(B), then {sl}l∈Z ⊆ F(B). However, it might
be that F(B) ∩ {tl}l∈Z = ∅.

Say a rule F is finite if for each B ∈ B, F(B) �= {d} is a finite set. We then have
the following corollary to Theorem 15.

Corollary 16 On the class of two-agent countable problems, no finite rule is
neutral.

Proof Let S = {d}∪ {sn}∞n=1 ∪{tn}∞n=1 be a countable subset of S. Let L1 be such
that for each n ∈ {1, 2, . . .}

sn+1L1sn, tnL1tn+1, s1L1t1, and for each s ∈ S, sL1d.

Let L2 represent the inverse ranking of L1 on S\{d}; that is for each n ∈ {1, 2, . . .}

tn+1L2tn, snL2sn+1, t1L2s1, and for each s ∈ S, sL2d.

Let B = (S, d, L1, L2). Let F be a finite rule. Then F(B) is a nonempty and finite
subset of S.

Now let π : S → S be a bijection such that for each n ∈ {1, 2, . . .}

π(sn) = sn+1, π(tn+1) = tn, π(t1) = s1, and π(d) = d.

By neutrality, F(π(B)) = π(F(B)). Now note that π(S) = S, π(d) = d and for
each i ∈ N Lπ

i = Li. Therefore, π(B) = B. If F(B) �= {d} then F(B) ∩ T[S, π ] �=
∅. By Theorem 15 then, |F(B)| = ∞, contradicting finiteness of F. 	


Note that the statement of Corollary 16 can be strenghtened further. In the
construction of the above proof, the only infinite subset of S that is invariant
under π is S. Therefore, the only solution a neutral rule can suggest for S is the
set itself.

This result should be related to Shapley’s (1969) finding. Neutrality in our
framework stands for what Roemer (1996) refers to as welfarism: that is, the
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bargaining outcome should only depend on the problem’s utility image. There-
fore, a neutral rule in our framework corresponds to a (welfarist) ordinal rule in
the Nash framework. Based on this relation, Corollary 16 can be rephrased as
follows: on the class of two-agent countable problems, no finite rule is ordinal.

Acknowledgements We are grateful to an associate editor and two anonymous referees of this
journal for detailed comments and suggestions. Any possible error is our own responsibility.
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