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34 Voie du Roman Pays, 1348, Louvain-la-Neuve, Belgium

E-mail: ozgur@sabanciuniv.edu

Received July 3, 2000; published online February 7, 2002

In order to analyze bargaining in pure exchange and public good economies when
the agents are not informed about their opponents’ payoffs, we embed each bargain-
ing problem into a noncooperative game of misrepresentation. In pure exchange
(public good) economies with an arbitrary number of agents whose true utilities
satisfy a mild assumption, the set of allocations obtained at the linear-strategies
Nash equilibria of this game is equal to the set of constrained Walrasian (Lindahl)
allocations with respect to the agents’ true utilities. Without this assumption, the
result holds for two-agent pure-exchange economies and, under alternative assump-
tions, for public good economies. Journal of Economic Literature Classification
Number: C72, C78.  2002 Elsevier Science (USA)
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1. INTRODUCTION

Many solution rules for economic problems are manipulable by mis-
representation of private information. Understanding the “real” outcomes
of such rules, therefore, requires taking strategic behavior into account.
A standard technique for this is to embed the original problem into a
noncooperative game (in which agents strategically “distort” their private
information) and to analyze its equilibrium outcomes. In this paper, we
use this technique to analyze bargaining in pure exchange and public good
economies when the agents are not informed about their opponents’ utility
information.

This paper is the second chapter of my Ph.D. thesis submitted to the University of
Rochester. I thank the seminar participants at the International Conference on Game Theory
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First assume that the agents’ (ordinal) preferences are publicly known.
Then, manipulation can only take place through misrepresentation of cardi-
nal utility information. In two-agent bargaining with the Nash (1950) or the
Kalai–Smorodinsky (1975) rules, an agent’s utility increases if his opponent
is replaced with another that has the same preferences but a more concave
utility function1 (Kihlstrom et al., 1981). This finding extends to n agents
(Nielsen, 1984) as well as to noncooperative models (Roth, 1985; Binmore
et al., 1986; Harrington, 1986). On allocation problems, this implies that an
agent can increase his payoff by declaring a less concave utility function.
For the Nash bargaining rule, it is a dominant strategy for each agent to
declare the least concave representation of his preferences (Kannai, 1977;
Crawford and Varian, 1979). For a single good, the equilibrium outcome is
an equal division.
If preferences are not publicly known, however, their misrepresentation

can also be used for manipulation. The resulting game does not have domi-
nant strategy equilibria. Nevertheless, for a large class of two-agent bargain-
ing rules, the set of allocations obtained at Nash equilibria in which agents
declare linear utilities is equal to the set of “constrained” Walrasian alloca-
tions from equal division (with respect to the agents’ true utilities) (Sobel,
1981 and 1998). This equivalence also holds for more general resource allo-
cation rules in n-agent quasilinear problems (Thomson, 1984 and 1988).
Following this branch of the literature, we also assume that the agents are
not informed about their opponents’ preferences.
The existing literature focuses on allocating a social endowment of pri-

vate goods. However, there are many exchange and public good economies
where bargaining takes place and agents strategically distort private infor-
mation (such as firm–union negotiations or bargaining between interest
groups on government projects). We, therefore, extend the analysis to such
economies.
Second, the literature is mostly restricted to two-agent problems. If there

are more agents the analysis gets very complicated since then each agent’s
attainable set is jointly determined by all of his opponents’ declarations.
Thomson (1984, 1988) overcomes this difficulty by restricting the true pref-
erences to be quasilinear. We discover an alternative restriction (interiority):
interior bundles are strictly preferred to boundary bundles. Any economy that
satisfies Inada conditions also satisfies this property. The class of economies
that satisfy interiority has an empty intersection with quasilinear economies.
Therefore, our results apply to a class not analyzed by Thomson. Third,
our results hold for all Pareto optimal and individually rational bargaining

1Assuming that the agents’ risk preferences satisfy Savage’s axioms, the concavity of their
(Bernoulli) utility functions determine their risk attitudes.
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rules. This class contains the Nash and Kalai–Smorodinsky rules on which
most of the literature is based as well as the class analyzed by Sobel (1981).2

For pure exchange economies (Section 3), our conclusions are similar
to those of Sobel (1981, 1998) and Thomson (1984, 1988). Interiority only
plays a role for the n-agent case. In public good economies (Section 4),
however, this conclusion fails even for two agents, unless interiority is
assumed. Since the two-agent case is still tractable without interiority,
we also explore the possibility of replacing it with other assumptions.
First, we analyze the implications of the Nash equilibrium outcomes
being Pareto optimal (Subsection 4.1). For two agents, this is equivalent
to strengthening the equilibrium concept to a strong Nash equilibrium.
Next, we analyze the implications of the bargaining rule being continuous
(Subsection 4.2). Supplementary results and proofs are contained in the
Appendix (Section 6).

2. MODEL

The vector inequalities are ≤�<, and �. There are m commodities. Let
N = �1� � � � � i� � � � � n� be the set of agents. Each i ∈ N has an endow-
ment, ωi ∈ �m

+ , and a true utility function, ui 	 �m
+ → �, which is con-

cave, nondecreasing, and increasing on �m
++.

3 A utility function ui satisfies
interiority if, for each x ∈ �m

++ and for each y ∈ �m
+\�m

++� ui�x > ui�y.
Let u = �u1� � � � � un and ω = �ω1� � � � � ωn. Let P�u and I�u�ω rep-
resent the sets of all Pareto optimal and individually rational allocations,
respectively.
An n-person bargaining problem is a pair �S� d where d ∈ �n is the

disagreement point and S ⊂ �n, the bargaining set, is nonempty, compact,
convex, and contains d. Let � be the class of all bargaining problems.
A bargaining rule F assigns each bargaining problem �S� d ∈ � to a payoff
profile F�S� d ∈ S. It is Pareto optimal if, for each �S� d ∈ �� s > F�S� d
implies s �∈ S. It is individually rational if, for each �S� d ∈ �� F�S� d ≥
d. It is continuous if, for each sequence of problems ��Sk� dk� in �
converging to some �S� d ∈ �, the sequence �F�Sk� dk� converges to
F�S� d.4 A bargaining rule is admissible if it is Pareto optimal and individ-
ually rational.
Let X be a set of feasible allocations. Let F be an admissible bargain-

ing rule. In the game, each agent i declares a utility function vi 	 �m
+ → �

2Sobel assumes Pareto optimality, symmetry, scale invariance, and symmetric monotonicity.
The last two properties imply individual rationality.

3A function f 	 �m
+ → � is nondecreasing [increasing] if, for each x� y ∈ �m

+ � x < y implies
f �x ≤ f �y�f �x < f �y�.

4The sequence �F�Sk� dk� converges to �S� d if �Sk� converges to S with respect to the
Hausdorff metric and �dk� converges to d with respect to the Euclidean metric.



94 özgür kibris

from the set of credible declarations V and a tie-breaking action fi in �m×n.
Each vi ∈ V is continuous, concave, nondecreasing, and increasing on �m

++.
The concavity assumption can be interpreted as the agents being known
to be risk-averse. Let v = �v1� � � � � vn and f = �f1� � � � � fn. The result-
ing bargaining set is S�v = �s ∈ �n � s = v�x for some x ∈ X�, and
the disagreement point is d�v = v�ω. The solution F�S�v� d�v to this
problem corresponds to the set of allocations B�v = �x ∈ X � v�x =
F�S�v� d�v�. A tie-breaking rule uses f to make a single-valued selec-
tion from B�v as follows:

�B�v� f  =



1
n

∑
fi if

1
n

∑
fi ∈ B�v,

a fixed element of B�v otherwise.

For each F� u, and ω, this procedure defines a distortion game

�F�u = �u� �V × �m×nn��B�
Sobel (1981) shows that any such game is well-defined. He also shows

that a strategy tuple, ��v∗1� f ∗
1 � � � � � �v∗n� f ∗

n , is a Nash equilibrium of the
game if and only if there is an x∗ ∈ B�v∗ such that, for each i ∈ N , x∗i
maximizes ui�xi subject to x ∈ B�V� v∗−i.5 It is straightforward to gener-
alize these results to pure exchange and public good economies with an
arbitrary number of agents. From now on we will refer to the pair �v∗� x∗
as a Nash equilibrium pair of the distortion game. Let ����F�u denote
the set of Nash equilibrium pairs of �F�u. Let

��v��F�u =
{
v ∈ V n � for some x ∈ X� �v� x ∈ ����F�u

}
denote the set of Nash equilibrium declarations and let

��x��F�u =
{
x ∈ X � for some v ∈ V n� �v� x ∈ ����F�u

}
denote the set of Nash equilibrium allocations.

3. PURE EXCHANGE ECONOMIES

Each agent i has an endowment ωi � 0 of private goods. For simplicity
assume

∑
ωi = 1.6 A consumption bundle of agent i is a vector xi ∈ �m

+ .
A feasible allocation is a list of consumption bundles x = �x1� � � � � xn ∈
�m×n

+ satisfying
∑
xi ≤ 1. The feasible set Xe is the set of all feasible

allocations. An allocation x∗ ∈ Xe is a constrained Walrasian allocation,

5From here on, B�V� v−i =
⋃

vi∈V B�vi� v−i.
6From here on, b ∈ �m denotes the vector whose every coordinate is equal to b.
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x∗ ∈ W c�u�ω, if there is a price vector p ∈ int��m−1 such that, for each
i ∈ N� x∗i maximizes ui�xi subject to pxi ≤ pωi and 0 ≤ xi ≤ 1.7 For each
i ∈ N , let li�p� ∈ V be a linear utility function associated with p ∈ �m

++:
given αi ∈ �++ and βi ∈ �� li�p��xi = αi�pxi + βi for each xi ∈ �m

+ .
The agents bargain to reallocate their endowments. However, each

agent manipulates the process by strategically distorting his utility infor-
mation. Even though the bargaining outcomes under truthful declaration
satisfy many desirable properties, after manipulation they may violate even
very basic properties such as Pareto optimality. Nevertheless, certain Nash
equilibrium outcomes still satisfy many desirable properties: they are con-
strained Walrasian allocations with respect to the agents’ true utilities.
Our first result states that every constrained Walrasian allocation is also
a Nash equilibrium outcome of the distortion game. Moreover, the price
vector associated with each such allocation determines the agents’ Nash
equilibrium strategies.

Theorem 1. If x∗ ∈ W c�u�ω, with associated price vector p∗ ∈ �m−1,
then �l1�p∗�� � � � � ln�p∗�� x∗ is a Nash equilibrium pair of �F�u.
Theorem 1 is a straightforward generalization of a similar result by Sobel

(1981).8 Its proof is based on the observation that at Nash equilibria in
linear declarations each agent’s set of attainable bundles is a subset of his
(constrained) budget set. Also note that, since any Walrasian allocation is
also a constrained Walrasian allocation, Theorem 1 holds for the Walrasian
rule as well.
Now that we know that certain manipulation outcomes are desirable, we

ask if the agents can be guaranteed to receive such allocations. If declaring
linear utilities at a Nash equilibrium always leads to a constrained Walrasian
allocation, a social planner can guarantee such an outcome by publishing
this information (or by restricting the agents’ strategy spaces to linear func-
tions). This turns out to be the case in Sobel (1981). His proof can be
divided into two steps, the first of which states that at any Nash equilib-
rium in linear utilities agents’ declared preferences have the same slope.

Lemma 2. Let N = �1� 2�. If �l1�p1�� l2�p2�� x∗ is a Nash equilibrium
pair of �F�u, then p1 = p2.

Due to the aforementioned reasons, this lemma does not straightfor-
wardly generalize to n agents. However, note that if two agents declare dif-
ferent slopes, (by Pareto optimality) one of them has to receive a boundary

7We use �m−1 = �x ∈ �m
+ � ∑xi = 1� to denote the �m− 1-dimensional simplex. We use

int�S to denote the interior of the set S.
8Sobel also notes that his result straightforwardly extends to n agents.
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bundle. Under interiority, this agent is strictly better off by truthful declara-
tion which (by individual rationality) at least gives him his (interior) endow-
ment. This observation leads to the following generalization of Lemma 2.

Lemma 3. Assume that u1� � � � � un satisfy interiority. If �l1�p1�� � � � �
ln�pn�� x∗ is a Nash equilibrium pair of �F�u, then p1 = · · · = pn.

The following lemma completes the argument. It states that any allo-
cation obtained at a Nash equilibrium in which agents declare linear
preferences with identical slopes is a constrained Walrasian allocation
(with respect to the true utilities). This result generalizes the second step
in Sobel’s argument.

Lemma 4. If �l1�p∗�� � � � � ln�p∗�� x∗ is a Nash equilibrium pair of �F�u,
then x∗ ∈ W c�u�ω with the associated price vector p∗.

Lemmas 3 and 4 together lead to the conclusion that under interiority
any “linear-strategies” Nash equilibrium outcome of the distortion game
is also a constrained Walrasian allocation with respect to the agents’ true
utilities. Due to Lemmas 2 and 4, this conclusion is also true for two-agent
economies that violate interiority.

Theorem 5. Assume that u1� � � � � un satisfy interiority. If �l1�p1�� � � � �
ln�pn�� x∗ is a Nash equilibrium pair of �F�u, then x∗ ∈ W c�u�ω.
Under interiority, the constrained Walrasian rule coincides with the

Walrasian rule. Therefore, Theorem 5 holds for the Walrasian rule as well.

4. PUBLIC GOOD ECONOMIES

There is a single private good and a single public good. The initial level
of the public good is 0. Each agent i has a positive endowment of the pri-
vate good, ωx� i > 0. Therefore, agent i’s endowment is ωi = �ωx� i� 0. For
simplicity assume

∑
ωx� i = 1. The public good is produced from the private

good via a constant returns-to-scale technology. To produce y units of the
public good, at least y units of the private good must be used. A con-
sumption bundle of agent i is zi = �xi� y ∈ �2

+, where xi denotes his
consumption of the private good and y that of the public good. A feasible
allocation is a list of consumption bundles z = �z1� � � � � zn ∈ �2×n

+ satisfy-
ing y +∑

xi ≤
∑
ωx� i = 1. The feasible set Xp is the set of all feasible

allocations.
An allocation z∗ ∈ Xp is a constrained Lindahl allocation, z∗ ∈ Lc�u�ω,

if for each i ∈ N there is a Lindahl individualized price πi ≥ 0 such that
(i) z∗ maximizes y

∑
πk −∑�ωx�k − xk subject to z ∈ Xp and (ii), for

each i ∈ N� z∗i maximizes ui�zi subject to xi + πiy ≤ ωx� i and xi + y ≤ 1.
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For each i ∈ N , let li�πi� ∈ V be a linear utility function associated with
πi ∈ �++: given αi ∈ �++ and βi ∈ �� li�πi��zi = αi�xi + πiy + βi for
each zi ∈ �2

+.
The results obtained for public good economies are different due to

some basic differences between the two models. Bargaining problems asso-
ciated with pure exchange economies are comprehensive. This is not true
for public good economies unless the utility functions satisfy interiority. In
pure exchange economies, agents have endowments of all goods. In public
good economies agents only have endowments of the private good. There-
fore, interiority does not imply that the agents prefer their endowments
to boundary bundles. Due to the monotonicity of preferences, in pure-
exchange economies, any utility maximizing bundle satisfies the budget
constraint with equality. This is not necessarily the case in public-good
economies. However, every constrained Lindahl allocation satisfies this
property (see Lemma 17). Moreover, at constrained Lindahl allocations,
the sum of the agents’ Lindahl prices never exceed one; if the public good
is produced (y > 0), these prices are uniquely defined and add up to one
(see Proposition 18).
The agents bargain over the amount of the public good to produce and

the allocation of the production cost. Even though each agent manipu-
lates the process by strategically distorting his utility information, certain
Nash equilibrium outcomes still satisfy desirable properties: they are con-
strained Lindahl allocations with respect to the agents’ true utilities. Our
next result states that every constrained Lindahl allocation is also a Nash
equilibrium outcome of the distortion game. Moreover, for such alloca-
tions, each agent’s individualized Lindahl price determines his equilibrium
strategy.

Theorem 6. If z∗ ∈ Lc�u�ω with associated prices π = �π1� � � � � πn,
then �l1�π1�� � � � � ln�πn�� z∗ is a Nash equilibrium pair of �F�u.
Since any Lindahl allocation is also a constrained Lindahl allocation,

Theorem 6 holds for the Lindahl rule as well.
Next we ask if Nash equilibria in linear strategies always lead to con-

strained Lindahl allocations. As in pure exchange economies, such a result
guarantees that by focusing on Nash equilibria in linear utilities the agents
will end up at a desirable allocation. We present our argument in two steps.
The first step, making explicit use of the interiority assumption, establishes
that at every Nash equilibrium in linear utilities the slopes of the agents’
declared preferences add up to one and the resulting allocation is Pareto
optimal with respect to the agents’ true utilities.

Lemma 7. Assume that u1� � � � � un satisfy interiority. If �l1�π1�� � � � �
ln�πn�, z∗ is a Nash equilibrium pair of �F�u, then

∑
πk = 1 and

z∗ ∈ P�u.
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The second step states that if these properties are satisfied at a Nash
equilibrium, z∗ is a constrained Lindahl allocation. This step does not use
the interiority assumption and, therefore, is true for any profile of true
utilities.

Lemma 8. If �l1�π1�� � � � � ln�πn�� z∗ is a Nash equilibrium pair of �F�u
where

∑
πk = 1 and z∗ ∈ P�u, then z∗ ∈ Lc�u�ω with associated prices π.

Lemmas 7 and 8 together lead to the conclusion that under interiority any
“linear-strategies” Nash equilibrium outcome of the distortion game is also
a constrained Lindahl allocation with respect to the agents’ true utilities.

Theorem 9. Assume that u1� � � � � un satisfy interiority. If �l1�π1�� � � � �
ln�πn�� z∗ is a Nash equilibrium pair of �F�u, then z∗ ∈ Lc�u�ω.
Under interiority, the constrained Lindahl rule coincides with the Lindahl

rule. Therefore, Theorem 9 holds for the Lindahl rule as well.
In pure exchange economies, the basic motivation for interiority was that

it enabled us to generalize the two-agent conclusion of Lemma 2 to an arbi-
trary number of agents (see Lemma 3). The rest of the argument did not
utilize this assumption (see Lemma 4). Similarly, in the proof of Theorem 9,
only Lemma 7 utilizes interiority. If this lemma continues to hold for two-
agent public-good economies that violate interiority, we can conclude that
the assumption plays the same role in both models. Surprisingly, as the
following example demonstrates, even when there is a single agent whose
true utility violates interiority, the two-agent version of Lemma 7 fails. That
is, for such economies, there are distortion games with linear Nash equi-
librium strategies �l�π1�� l�π2� violating π1 + π2 = 1. Moreover, even for
Nash equilibria satisfying π1 + π2 = 1, the resulting allocation does not
have to be Pareto optimal (and, therefore, not a constrained Lindahl allo-
cation) with respect to the agents’ true utilities. This example suggests that
interiority plays a much more central role in public good economies.

Example 10. Let N = �1� 2�. Let D∗
i denote the benevolent dictatorial

rule where agent i is the dictator.9 Let π∗
1 = 2

7 and

F =
{
D∗

1 if π1 > π∗
1 ,

D∗
2 if π1 ≤ π∗

1 .

Let ω1 = ω2 = 0�5. For each z ∈ Xp, let u1�x1� y = x
1/5
1 y4/5 and

u2�x2� y = x2 + 2y. Let π2 ∈ � 57 � 2. Let z∗ ∈ Xp be such that x∗2 = 0
and x∗1 + π∗

1y
∗ = ω1. Then �l1�π∗

1 �� l2�π2�� z∗ ∈ ����F�u. However,
z∗ �∈ Lc�u�ω (Fig. 1).

9Given �S� d ∈ �, D∗
i �S� d chooses the payoff profile that maximizes agent i’s payoff

subject to individual rationality and Pareto optimality constraints.
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FIG. 1. In Example 10, z∗ is not a constrained Lindahl allocation.

Note that the bargaining rule used in the above example is discontinuous.
Moreover, the allocation z∗ is not Pareto optimal with respect to the true
utilities. Thus, we ask how important these properties are to our conclusion;
we analyze the implications of using a continuous and admissible bargaining
rule and strengthening the Nash equilibrium concept. Since interiority is not
assumed, the results are restricted to the two-agent case.

4.1. Implications of Pareto Optimality

First we analyze the implications of the Nash equilibrium outcome being
Pareto optimal with respect to the agents’ true utilities. For two agents,
this requirement coincides with strengthening the Nash equilibrium concept
to strong Nash (Aumann, 1959) or coalition-proof Nash (Bernheim et al.,
1987) equilibria. The conclusion highly depends on the sum of the slopes
of the agents’ equilibrium declarations, π1 + π2. If it is equal to one, it
follows from Lemma 8 that the outcomes of any such Nash equilibria are
also constrained Lindahl allocations.

Corollary 11. Let N = �1� 2�. If �l1�π1�� l2�π2�� z∗ is a Nash equilib-
rium pair of �F�u such that π1 +π2 = 1 and z∗ ∈ P�u, then z∗ ∈ Lc�u�ω
with associated prices π1� π2.

If π1 + π2 < 1, Pareto optimality implies that z∗ = ω. That is, the public
good is not produced. However, this allocation being obtained at a Nash
equilibrium sufficiently informs us about the agents’ true utilities to con-
clude that it is also a constrained Lindahl allocation.

Proposition 12. Let N = �1� 2�. If �l1�π1�� l2�π2�� z∗ is a Nash equilib-
rium pair of �F�u such that π1 + π2 < 1 and z∗ ∈ P�u, then z∗ = ω ∈
Lc�u�ω for some prices π ′

1� π
′
2 such that π ′

1 + π ′
2 = 1.

Unfortunately, Pareto optimal Nash equilibrium outcomes at which π1 +
π2 > 1 are not necessarily constrained Lindahl allocations. The following
example demonstrates this point.
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Example 13. Let N = �1� 2�. Let D∗
i denote the benevolent dictatorial

rule where agent i is the dictator. Let π∗
1 = 6

8 and

F =
{
D∗

1 if π1 < π∗
1 ,

D∗
2 if π1 ≥ π∗

1 .

Let ω1 = 8
10 �ω2 = 2

10 . For each z ∈ Xp, let u1�x1� y = x
1/3
1 y2/3 and

u2�x2� y = x2 + 2y. Let π2 ∈ � 25 � 2. Let z∗ ∈ Xp be such that x∗2 = 0
and x∗1 + π∗

1y
∗ = ω1. Then �l1�π∗

1 �� l2�π2�� z∗ ∈ ����F�u. Moreover,
z∗ ∈ P�u. However, z∗ �∈ Lc�u�ω (Fig. 2).

4.2. Implications of Continuity

Next, we analyze the implications of restricting the class of distortion
games to those obtained from a continuous and admissible bargaining rule.
If the bargaining rule F is continuous, the outcome correspondence B is
upper hemicontinuous (see Lemma 19) even though it is not lower hemicon-
tinuous (see Example 20). This observation plays an important rule in this
section.
Once again, the conclusion depends on the sum of the slopes of the

agents’ equilibrium declarations, π1 + π2. If it is equal to one, the cor-
responding Nash equilibrium outcomes are also constrained Lindahl
allocations.

Proposition 14. Let N = �1� 2�. Let F be a continuous and admissible
bargaining rule. If �l1�π1�� l2�π2�� z∗ is a Nash equilibrium pair of �F�u
such that π1 + π2 = 1, then z∗ ∈ Lc�u�ω with associated prices π1� π2.

If π1 + π2 > 1, the public good is produced maximally subject to the
feasibility, Pareto optimality, and individual rationality constraints. Such
equilibrium outcomes also turn out to be constrained Lindahl allocations.

FIG. 2. In Example 13, z∗ is not a constrained Lindahl allocation.
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FIG. 3. Construction of Example 16.

Proposition 15. Let N = �1� 2�. Let F be a continuous and admissible
bargaining rule. Let �l1�π1�� l2�π2�� z∗ be a Nash equilibrium pair of �F�u
such that π1 + π2 > 1. Let z̄ = ��0� 1� �0� 1. If z̄ ∈ P�l1�π1�� l2�π2� ∩
I�l1�π1�� l2�π2��ω, then z∗ = z̄. Otherwise, z∗ is the closest point to z̄ in
P�l1�π1�� l2�π2� ∩ I�l1�π1�� l2�π2��ω. Moreover, in each case z∗ ∈ Lc�u�ω
with associated prices π ′

1 ≤ π1 and π ′
2 ≤ π2.

Unfortunately, continuity of F is not sufficient to ensure that Nash equi-
librium outcomes at which π1 + π2 < 1 are constrained Lindahl allocations.
The following example demonstrates this point.

Example 16. Let N = �1� 2�. Let F be a continuous and admis-
sible bargaining rule. Since π1 + π2 < 1� B�l1�π1�� l2�π2� = �ω�. Let
ω and u be such that ω �∈ P�u. Let P�u ∩ I�u�ω ⊂ int�Xp. Then
�l1�π1�� l2�π2��ω ∈ ����F�u, but ω �∈ Lc�u�ω (Fig. 3).

5. CONCLUSION

Our results basically state that the set of allocations obtained at a Nash
equilibrium in which agents declare linear utilities is equal to the set of
constrained Walrasian/Lindahl allocations (with respect to the agents’ true
utilities). Assuming interiority, we obtain results for an arbitrary number
of agents. Moreover, under this assumption, the Walrasian/Lindahl rules
coincide with their constrained versions. Therefore, unlike in the previ-
ous literature, the above equivalence also holds for the (unconstrained)
Walrasian/Lindahl rules. Also, note that the interiority assumption plays a
more central role in public good economies.
Some of the results have trivial extensions. It is straightforward to

extend the proofs of Theorems 1 and 6 to show that any constrained
Walrasian/Lindahl allocation is obtained at a strong Nash equilibrium
in which agents declare linear utilities. Also, the proofs of Lemmas 3,
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4, 7, and 8 make no explicit use of the bargaining framework. Therefore,
Theorems 5 and 9 hold for any distortion game derived from an allocation
rule that is Pareto optimal and individually rational.
Possible extensions of this work are as follows. In our model agents

are involved in a single bargaining process. In the case of disagreement,
trade does not occur and each agent gets his endowment. If agents are
involved in several bargaining processes simultaneously, the conclusions
may dramatically change. Our preliminary results on this issue are that
each agent is indifferent between declaring alternative representations of
his preferences. Next, note that in the case that the endowments are not
observable, the agents could manipulate the outcome via misrepresenta-
tion of this information. Many solution rules, such as the Walrasian rule in
exchange economies, are known to be manipulable through misrepresenta-
tion of endowment information. An analysis of the allocations that result
from such manipulation may prove to be very useful.

APPENDIX

A.1. Supplementary Results

The following lemma establishes that at every constrained Lindahl allo-
cation the budget constraints are satisfied with equality.

Lemma 17. Let z∗ ∈ Lc�u�ω. Let π = �π1� � � � � πn be associated with
z∗. Then, for each i ∈ N� x∗i + πiy

∗ = ωx� i.

Proof. If z∗ = ω the result trivially holds. So, assume z∗ �= ω. Then
y∗ > 0. Suppose there is i ∈ N such that x∗i + πiy

∗ < ωx� i. Then, by
the utility maximization of agent i� x∗i + y∗ = 1. Therefore, for each j ∈
N\�i�� x∗j = 0. By the utility maximization of agent j� πjy∗ = ωx� j . Adding
up these equalities over all j ∈ N\�i�� y∗∑N\i πj =

∑
N\i ωx� j . Adding up

the inequality for agent i� x∗i + y∗
∑
πk < 1. Since x∗i + y∗ = 1 we have∑

πk < 1. But then, the profit-maximizing output of the firm is y∗ = 0,
contradicting y∗ > 0.

We use Lemma 17 to prove the following result.

Proposition 18. Let z∗ ∈ Lc�u�ω. If z∗ �= ω, there is a unique associ-
ated price vector π and it satisfies

∑
πi = 1. If z∗ = ω, any associated price

vector π satisfies
∑
πi ≤ 1 and there is an associated price vector that satisfies∑

πi = 1.

Proof. Let z∗ ∈ Lc�u�ω. First assume z∗ �= ω. Then y∗ > 0. By
Lemma 6, for each i ∈ N� x∗i + πiy

∗ = ωx� i. Adding up over the agents,
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∑
x∗i + y∗

∑
πi =

∑
ωx� i = 1. Therefore,

y∗
∑

πi = 1−∑
x∗i =

∑�ωx� i − x∗i  = y∗�

Since y∗ > 0�
∑
πi = 1. However, there is a unique π associated with z∗,

and that satisfies
∑
πi = 1.

Now assume z∗ = ω. Then y∗ = 0. Let π be a price vector associ-
ated with z∗. Then

∑
πi ≤ 1. To see this suppose

∑
πi > 1. Then, by

the profit maximization of the firm, y∗ = 1 and therefore, for each i ∈ N ,
x∗i = 0. Since for each i ∈ N� z∗i satisfies agent i’s budget constraint, πiy

∗ =
πi ≤ ωx� i. Adding up over the agents we have

∑
πi ≤ ∑

ωx� i = 1, a
contradiction.
To show the existence of a π ′ such that

∑
π ′
k = 1, let

∑
πk < 1. For some

i ∈ N , let π ′
i = 1−∑N\i πj . For each j ∈ N\�i�, let π ′

j = πj . Then, π
′
i > πi

implies that z∗i maximizes ui subject to xi + π ′
iy ≤ ωx� i. Moreover, since∑

π ′
k = 1� z∗ is a profit-maximizing bundle with respect to π ′. Therefore,

π ′ is also associated with z∗.

The following lemma establishes the relation between the continuity of
the bargaining rule F and the outcome correspondence B. Note that the
function space V is equipped with the sup-norm topology.

Lemma 19. Let F 	 � → �n be a continuous and admissible bargaining
rule. Let X ⊆ �m×n be compact. Let B	 V n → X be defined as

B�v = {
x ∈ X � v�x = F�v�X� v�ω}�

Then, B is upper hemicontinuous.

Proof. First we will show that B is compact-valued. Let v ∈ V . Since
B�v ⊆ X, it is bounded. Let �xk�k∈� be a sequence in B�v converging to
x ∈ X. By the continuity of v� �v�xk�k∈� converges to v�x. Since, for each
k ∈ �� v�xk = F�v�X� v�ω we have v�x = F�v�X� v�ω. Therefore,
x ∈ B�v. This establishes the closedness of B�v.
Let �vk�k∈� be a sequence in V that converges to a v ∈ V . Let �xk�k∈�

be a sequence in X such that, for each k ∈ �� xk ∈ B�vk. Since X is com-
pact, �xk�k∈� has a convergent subsequence �xr�k�k∈� that converges to
an x ∈ X. We need to show that x ∈ B�v. That is, v�x = F�v�X� v�ω.
First, we show that �vr�k�xr�k�k∈� converges to v�x. To see this,

note that it is a subsequence of �vl�xm�l�m∈�. If this sequence converges
to v�x so does its subsequence. For each l ∈ �, by the continuity of
vl� �vl�xm�m∈� converges to vl�x. Now �vl� converges to v with respect
to the sup-norm topology. Moreover, convergence in the sup-norm metric
implies pointwise convergence. Therefore, �vl�x�l∈� converges to v�x.
This establishes the result.
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Next, we show that �F�vγ�k�X� vγ�k�ω� converges to F�v�X� v�ω.
Let d� δ, and D denote the Euclidean, sup-norm, and Hausdorff metrics,
respectively. Let v� v′ ∈ V . Then, for each x ∈ X,

d�v�x� v′�x ≥ inf
{
d�v�x� v′�y � y ∈ X

}
�

Therefore,

δ�v� v′ = sup
{
d�v�x� v′�x � x ∈ X

}
≥ sup

{
inf�d�v�x� v′�y � y ∈ X� � x ∈ X

}
�

Similarly,

δ�v� v′ = δ�v′� v ≥ sup�inf�d�v′�x� v�y � y ∈ X� � x ∈ X��
Thus, δ�v� v′ ≥ D�v�X� v′�X. However, this implies that if the sequence
�vγ�k� converges to v with respect to sup-norm topology, the sequence
�vγ�k�X� converges to v�X with respect to Hausdorff topology. More-
over, since sup-norm convergence implies pointwise convergence, the
sequence �vγ�k�ω� converges to v�ω. Therefore, by continuity of F , the
sequence �F�vγ�k�X� vγ�k�ω� converges to F�v�X� v�ω.
We showed that �F�vr�k�X� vγ�k�ω�k∈� converges to F�v�X� v�ω

and �vr�k�xr�k�k∈� converges to v�x. Moreover, for each k ∈ �,
vr�k�xr�k = F�vr�k�X� vγ�k�ω. Therefore, we have v�x = F�v�X,
v�ω. This establishes upper hemicontinuity of B.

Note that continuity of F does not imply lower hemicontinuity of B. The
following example establishes this point.

Example 20. Let N = �1� 2�. Note that, for πi +πj = 1, B�l�πi�� l�πj�
is the whole budget line. Let �πk

i � be a sequence that converges to πi
and is such that, for each k ∈ �, πk

i + πj > 1. Then, for each k ∈ �,
B�l�πk

i �� l�πj� is a singleton. Let z ∈ Xp be such that z � 0 and xi +
πiy = ωx� i. For each k ∈ �, let �zk� = B�l�πk

i �� l�πj�. Then, �zk� does
not converge to z. Therefore B is not lower hemicontinuous at �l�πi�� l�πj�.

A.2. Proofs

In the proofs of Theorem 1 and Lemma 4, we use l�p∗� to denote
�l1�p∗�� � � � � ln�p∗� and l�p∗

−i� to denote �lj�p∗�j �=i.
Proof of Theorem 1. Let d = d�l�p∗� and S = S�l�p∗�. It is straightfor-

ward to check that d is Pareto optimal in S. This, by the individual rational-
ity of F , implies d = F�S� d. Therefore, ω ∈ B�l�p∗�. Since x∗ ∈ W c�u�ω
and, for each i ∈ N� ui is monotonic, p∗x∗i = p∗ωi. Therefore, for each
i ∈ N , li�p∗��x∗i  = li�p∗��ωi. This implies x∗ ∈ B�l�p∗�.
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Let x ∈ B�V� l�p∗
−i�. By the individual rationality of F , for each j ∈ N\

�i� lj�p∗��xj ≥ lj�p∗��ωj and therefore p∗xj ≥ p∗ωj . Since
∑
p∗xk ≤∑

p∗ωk, this implies p∗xi ≤ p∗ωi.
Since x∗ ∈ W c�u�ω� x∗i maximizes ui�xi subject to 0 ≤ xi ≤ 1 and

p∗xi ≤ p∗ωi. By previous paragraphs, x∗ ∈ B�l�p∗� ⊆ B�V� l�p∗
−i� and

B�V� l�p∗
−i� is a subset of agent i’s constrained budget set. Therefore, x∗i

maximizes ui�xi subject to x ∈ B�V� l�p∗
−i�.

The proof of Lemma 2 is identical to that of Sobel (1981) and therefore
is omitted.

Proof of Lemma 3. Suppose there are i� j ∈ N such that pi �= pj .
Since x∗ ∈ B�l1�p1�� � � � � ln�pn�, x∗ ∈ P�l1�p1�� � � � � ln�pn�. There-
fore, i or j receives a boundary bundle. Without loss of generality
assume that x∗ik = 0 for some k ∈ �1� � � � �m�. Then, by interiority
ui�ωi > ui�x∗i . But agent i can declare ui and, since F is individ-
ually rational, obtain a share x′i such that ui�x′i ≥ ui�ωi > ui�xi.
Therefore, �l1�p1�� � � � � ln�pn�� x∗ �∈ ����F�u.
Proof of Lemma 4. Let �l�p∗�� x∗ ∈ ����F�u. Let i ∈ N . Then,

x∗i maximizes ui�xi subject to x ∈ B�V� l�p∗
−i�. Note that x∗ ∈ B

�li�p∗�� l�p∗
−i� ⊆ B�V� l�p∗

−i�. Moreover, x ∈ B�li�p∗�� l�p∗
−i� if and only if

x ∈ Xe and, for each k ∈ N , p∗xk = p∗ωk. Therefore, x
∗
i maximizes ui�xi

subject to p∗xi = p∗ωi and xi ∈ �0� 1�m. Since ui is monotonic, this implies
that x∗i maximizes ui�xi subject to p∗xi ≤ p∗ωi and xi ∈ �0� 1�m.
In the proofs of the remaining results, we use l�π� to denote �l1�π1�� � � � �

ln�πn� and l�π−i� to denote �lj�πj�j �=i.
Proof of Theorem 6. Let i ∈ N . By Lemma 6, x∗i + πiy

∗ = ωx� i. More-
over, since l�π��ω = d�l�π� is Pareto optimal in S�l�π�, l�π��ω =
F�S�l�π�, d�l�π�. Therefore ω ∈ B�l�π�. For each i ∈ N , x∗i + πiy

∗ =
ωx� i and, thus, li�πi��z∗i  = li�πi��ωi. This implies that z∗ ∈ B�l�π�.
Let z ∈ B�V� l�π−i�. Then, by the individual rationality of F , for each

j ∈ N\�i�, lj�πj��zj ≥ lj�πj��ωj and, thus, xj + πjy ≥ ωx� j . Adding up
these inequalities over all j ∈ N\�i� yields∑

N\�i�
xj +

∑
N\�i�

πjy ≥ ∑
N\�i�

ωx� j = 1−ωx� i�

By Proposition 18,
∑
πk ≤ 1. Therefore, πi ≤ 1 −∑

N\�i� πj and, since
y +∑

xk ≤ 1,

xi + πiy ≤ xi +
(
1− ∑

N\�i�
πj

)
y ≤ ωx� i�
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By assumption z∗i maximizes ui�zi subject to xi + πiy ≤ ωx� i and xi +
y ≤ 1. Note that z∗ ∈ B�l�π� ⊆ B�V� l�π−i�. Also, z ∈ B�V� l�π−i� implies
xi + πiy ≤ ωx� i and xi + y ≤ 1. Therefore, z∗ maximizes ui�zi subject to
z ∈ B�V� l�π−i�.
Proof of Lemma 7. First suppose that

∑
πk < 1. Then z∗ = ω. Let

i ∈ N declare li�π ′
i� where π ′

i = 1−∑
j �=1 πj . Then, since

B�li�π ′
i�� l�π−i� = �z ∈ Xp � for each k ∈ N� lk�πk��zk = lk�πk��ωk��

there is z′ ∈ B�li�π ′
i�� k�π−i� such that z′i � 0. Since ui satisfies interiority,

ui�z′i > ui�z∗i  = ui�ωi, contradicting Z∗ ∈ ��x��F�u.
Next, suppose that

∑
πk > 1. Then y∗ > 0 and there is i ∈ N such that

x∗i = 0. There are two possible cases.

Case 1:
∑

j �=i πj < 1. Let π ′
i = 1 − ∑

j �=i πj . There is z′ ∈ B�li�π ′
i�,

l�π−i� such that z′i � 0. Since ui satisfies interiority, ui�z′i > ui�z∗i ,
contradicting z∗ ∈ ��x��F�u.
Case 2:

∑
j �=i πj ≥ 1. Let π ′

i < ωx�i. Then, li�π ′
i��ωi > li�π ′

i��0� 1.
Therefore, for each z ∈ Xp such that xi = 0� li�π ′

i��ωi > li�π ′
i��zi. Let

z′ ∈ B�li�π ′
i�� l�π−i�. By Pareto optimality, y ′ > 0 and, by individual ratio-

nality, x′i > 0. Therefore, ui�z′i > ui�z∗i , contradicting z∗ ∈ ��x��F�u.
Since

∑
πk = 1� B�l�π� = �z ∈ Xp � for each i ∈ N�xi + πiy = ωx�i�.

By interiority, z∗ ∈ B�l�π� implies that, for each i ∈ N� z∗i � 0. Then,
for each i ∈ N� MRSi�z∗i  = πi and, since

∑
MRSi�z∗i  = ∑

πi = 1,
z∗ ∈ P�u.
Proof of Lemma 8. Since z∗ ∈ B�l�π� and ∑πk = 1, for each k ∈ N ,

x∗k + πky
∗ = ωx�k. Let i ∈ N . Suppose z∗i does not maximize ui subject

to xi + πiy ≤ ωx� i and xi + y ≤ 1. Then, there is z′ ∈ Xp such that x′i +
πiy

′ ≤ ωx� i� x
′
i + y ′ ≤ 1, and ui�z′i > ui�z∗i . Since z∗ ∈ ��x ��F�u� x′i +

πiy
′ < ωx� i. Since ui is nondecreasing, without loss of generality x

′
i+ y ′ = 1.

Therefore, y ′ > y∗ and, for each j ∈ N\�i�� x′j = 0.

Case 1: x∗i + y∗ < 1 (Fig. 4). Let z′′i be such that x′′i + πiy
′′ = ωx� i

and z′′i > αz′i + �1 − αz∗i for some α ∈ �0� 1. Since z∗ ∈ int�Xp or
z∗ = ω, such a z′′i exists. By the concavity of ui� ui�z′′i  > ui�z∗i . But since
x′′i + πiy

′′ = ωx� i� l�πi��z′′i  = l�πi��ωi. Therefore, z′′ ∈ B�l�π�. This con-
tradicts z∗ ∈ ��x��F�u.
Case 2: x∗i + y∗ = 1. Then, for each j ∈ N\�i�� z′j ≥ z∗j , and thus

uj�z′j ≥ uj�z∗j . This contradicts z∗ ∈ P�u.
Proof of Proposition 12. Since π1 + π2 < 1� B�l1�π1�� l2�π2� = �z∗� =

�ω�. Since ω ∈ P�u, by the Second Welfare Theorem z∗ = ω ∈ Lc�u�ω.
By Proposition 18, if ω ∈ Lc�u�ω then there are associated prices π ′

satisfying π ′
1 + π ′

2 = 1.
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FIG. 4. Construction of z∗� z′, and z′′ in Case 1 of Lemma 8.

Proof of Proposition 14 (Fig. 5). If z∗ ∈ int�Xp� z∗ = ��0� 1� �0� 1, or
z∗ = ω, then z∗ ∈ P�u. Therefore, the result follows from Lemma 8. Let
z∗ be such that x∗i > 0 and x∗j = 0. Suppose z∗ �∈ Lc�u�ω. Then, there
is z∗∗ ∈ Xp satisfying x∗∗i + πiy

∗∗ < ωx� i and ui�z∗∗i  > ui�z∗i . Since ui is
nondecreasing, it is no loss of generality to assume that x∗∗i + y∗∗ = 1 and
therefore x∗∗j = 0.
Note that, for each π ′

i > 1 − πj� B�li�π ′
i�� lj�πj� is a singleton. More-

over, by Lemma 19, B is an upper hemicontinuous correspondence.
Therefore, B�li���� lj�πj� is a continuous function on �1 − πj�∞. Let
b	 �1− πj�∞� → Xp be defined as

b�π ′
i =

{
B�l1�π ′

i�� lj�πj� if π ′
i > 1− πj ,

z∗ if π ′
i = 1− πj .

Since B is upper hemicontinuous, b is continuous. For π ′
i = 1� b�π ′

i = z′ is
such that x′i = 0. Therefore, there is π∗∗

i ∈ �1 − πj� 1 such that b�π∗∗
i  =

B�li�π∗∗
i �� lj�πj� = �z∗∗�. This contradicts z∗ ∈ ��x��F�u.

Proof of Proposition 15. Since π1 + π2 > 1� z̄ ∈ P�l1�π1�� l2�π2�.

FIG. 5. Construction of z∗, z∗∗, and z′ in the proof of Proposition 14.
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FIG. 6. Construction of Case 1 in the proof of Proposition 15.

Case 1 (Fig. 6). Assume that z̄ ∈ I�l1�π1�� l2�π2��ω. Suppose z∗ �= z̄.
Then, there are i ∈ N and z′ ∈ Xp such that z′i � z∗i and x′i + max�0�
�1− πj�y ′ < ωx� i.
Since z′i � z∗i � ui�z′i > ui�z∗i . Note that, for each π ′

i > max�0� 1�−πj��
B�li�π ′

j�� lj�πj� is a singleton. Moreover, B is an upper hemicontinu-
ous correspondence. Therefore, B�li���� lj�πj� is a continuous function
on �max�0� 1 − πj�� πi�. For each ε > 0, let πε

i = ε + max�0� 1 − πj�.
Let �zε� = B�li�πε

i �� lj�πj�. Then, for sufficiently small ε� x′i + πε
i y

′ <
ωx� i. That is, z′ �∈ I�li�πε

i �� lj�πj��ω. Therefore, by the continuity of
B�li���� lj�πj� there is π ′

i ∈ �πε
i � πi such that B�li�π ′

i�� lj�πj� = �z′�.
Since ui�z′i > ui�z∗i , this contradicts z∗ ∈ ��x��F�u. Therefore z∗ = z̄.
Let �π ′

1� π
′
2 be such that π ′

1 +π ′
2 = 1 and, for each i ∈ N�x∗i +π ′

iy
∗ = ωx� i.

Now suppose there is i ∈ N such that z∗i does not maximize ui subject
to xi + π ′

iy ≤ ωx� i and xi + y ≤ 1. Then, there is z′ ∈ Xp such that
ui�z′i > ui�z∗i � x′j = 0, and

x′i +max�0� �1− πj�y ′ < ωx� i�

The same argument as that used above shows that there is π ′
i such that

B�li�π ′
i�� lj�πj� = �z′�. This contradicts z∗ ∈ ��x��F�u.

Case 2 (Fig. 7). Assume that z̄ �∈ I�l1�π1�� l2�π2��ω. Let z′ be the clos-
est point to z̄ in P�l1�π1�� l2�π2� ∩ I�l1�π1�� l2�π2��ω. Then, there is i ∈ N
such that x′i = 0. Note that then z′ ∈ B�li�1− πj�� lj�πj�.
Suppose z′ �= z∗. Note that x′i = x∗i = 0 and y ′ > y∗. Then, there is

z∗∗ ∈ B�li�1 − πj�� lj�πj� such that z∗∗i � z∗i . Therefore ui�z∗∗i  > ui�z∗i .
Moreover, agent i can declare li�π∗∗

i � such that π∗∗
i = 1 − πj and get z∗∗i .

This contradicts z∗ ∈ ��x��F�u. Therefore z∗ = z′. Note that x∗i = 0.
Let �π ′

i � π
′
j be such that π ′

i = 1− πj and π
′
j = πj . Next we will show that

z∗ ∈ Lc�u�ω with associated prices π ′
i � π

′
j .

Since the feasibility constraint is not binding for agent i’s budget
set, for each z ∈ Xp such that xi + π ′

iy < ωi there is z′′ ∈ Xp such
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FIG. 7. Construction of Case 2 in the proof of Proposition 15.

that x′′i + π ′
iy

′′ = ωi and z′′i � zi. Moreover, z′′ ∈ B�li�π ′
i�� lj�π ′

j� ⊆
B�V� lj�π ′

j�. Therefore, if z∗i maximizes ui subject to z ∈ B�V� lj�π ′
j�, then

z∗i maximizes ui subject to xi + π ′
iy ≤ ωi and z ∈ Xp.

Treatment for agent j is more complicated since his budget set does
not satisfy this property. Suppose that z∗j does not maximize uj subject to
xj + π ′

jy ≤ ωj and z ∈ Xp. Let z′′ ∈ Xp be such that z′′j is a maximizer
of uj subject to xj + π ′

jy ≤ ωj and z ∈ Xp. Then x′′j + π ′
jy

′′ < ωj and
x′′j + y ′′ = 1. Let π̃j = 1 and �z̃� = B�li�πi�� lj�π̃j�. Then x̃j = 0. Finally,
note that B�li�πi�� lj��� is a continuous function on �πj� π̃j�. Therefore,
there is π ′′

j ∈ �πj� π̃j� such that B�li�πi�� lj�π ′′
j � = �z′′�. But this contradicts

z∗ ∈ ��x��F�u.
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