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Abstract

A bargaining rule isordinally invariant if its solutions are independent of which utility functions
are chosen to represent the agents’ preferences. For two agents, only dictatorial bargaining rules
satisfy this property (Shapley, L., La Décision: Agrégation et Dynamique des Ordres de Préférence,
Editions du CNRS (1969) 251). For three agents, we construct a “normalized subclass” of problems
through which an infinite variety of such rules can be defined. We then analyze the implications
of various properties on these rules. We show that a class of monotone path rules uniquely satisfy
ordinal invariance, Pareto optimality, and “monotonicity” and that the Shapley—Shubik rule is the
only symmetric member of this class. We also show that the only ordinal rules to satisfy a stronger
monotonicity property are the dictatorial ones.
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

We analyze the implications of standard bargaining axioms in ordinal environments,
that is, in bargaining situations where the agents’ preferences are only restricted to be
complete, transitive, and continuous @gposed to being of von Neumann—Morgenstern
type as in most of the literature). For ordinal environmentsstiake invariance axiom of
Nash (1950) is not sufficient to ensure the invariance of the physical bargaining outcome
with respect to utility-representation changeg feave the underlying preferences intact.
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It needs to be replaced with a stronger axiom cadietinal invariance. Unfortunately, all
of the well-known bargaining rules violate this axiom.

Shapley (1969) showed that for two-agent problems, only dictatorial bargaining rules
satisfy this property. For three agents, however, an ordinally invariant and strongly
individually rational bargaining rule appeared in Shubik (1982). We will refer to it as the
Shapley-Shubik rule.! Safra and Samet (2001a, 2001b) recently proposed generalizations
of the Shapley—Shubik formula to finitely maagents. The literaturillowing Shapley
(1969) mainly analyzed the implications of weakening the ordinal invariance requirement
on two-agent bargaining rules. Myerson (1977) and Roth (1979) showed that such
weakenings and some basic properties characterize Egalitarian type rules. The joint
implications of ordinal invariance and other basic properties, however, have not been
studied furthe? In this paper, we attempt to fill this gap for three-agent bargaining
problems.

To isolate the implications of ordinal invariance from other axioms, one can construct
a “normalized” class of bargaining problems so that via increasing transformations of
utilities,

(i) any bargaining problem can be transformed into a (normalized) problem in this class
and

(i) a normalized problem can not be transformed into another normalized problem.

Due to (i), any physical problem can be represented as a normalized bargaining
problem. Once solutions to normalized problems are given, ordinal invariance completely
determines the solutions to non-normalized problems. Due to (i), ordinal invariance has
no implications on relating solutions to two different normalized problems. Therefore,
any property, once restricted to apply only to normalized problems, does not run the
risk of comparing alternative utility repregations of the same phigsl problem (which
is, in itself, a desirable consequence), and therefore, becomes compatible with ordinal
invariance. Using this special class of preiis, one can also construct an infinite variety
of ordinally invariant bargaining rules by first arbitrarily specifying solutions to normalized
problems and then, using ordinal invariance to obtain solutions of arbitrary problems. If this
normalized class admits a minimal set of symmetric problems and if the normalization
procedure is anonymous, this method easily delivers symmetric (or anonymous) rules that
are ordinal.

For Pareto surfaces with more than two @aige Sprumont (2000) proved the existence
of a “normalized” subclass of surfaces satisfymequirements (i) and (ii) (see Theorem 7
in Appendix A). For three-agent surfaces &lso used the Shapley—Shubik formula to
construct a “sufficiently symmetric” class. In Section 3, we generalize his construction

1 There is no reference on the origin of this rule imuBik (1982). However, Thomson attributes it to Shapley.
Furthermore, Roth (1979, pp. 72—73) mentions a threetagrelinal bargaining rule proposed by Shapley and
Shubik (1974, Rand Corporation, R-904idhich, considering the scarcity of ordinal rules in the literature, is
most probably the same bargaining rule.

2 There is also a body of literature which demonstratesithatternative approaches to modeling bargaining
problems, ordinality can be recovered (see Rubinstein et al., 1992; O’neill et al., 2001).
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to a normalized class of three-ageargaining problems (hereaftardinally normalized
problems).

In Section 4, we show that by using ordinally normalized problems, one can construct
an infinite number ordinal rules. For example, it is possible to apply any one of the various
objective functions in the literature (such as Nash, Utilitarian, or Egalitarian) to ordinally
normalized problems and construct an ordinal rule. We observe that among these, the
ordinal rule constructed by the Egalitariabjective coincides ith Shapley—Shubik rule.

In Section 5, we look for ordinal rules that are “monotonic” on ordinally normalized
problems. We show that a class of “ordinal monotone path rules” uniquely sB&sfio
optimality, ordinal invariance, and monotonicity. The Shapley—Shubik rule is the only
symmetric member of this class. All other members thus violate anonymity. These two
results are similar in nature to previousdings on the Egaliteain (Kalai, 1977) and
the Kalai-Smorodinsky (1975) rules, as well as monotone path rules (see Kalai, 1977,
Thomson, 1980, and Thomson and Myerson, 1980). Finally, we show that the only ordinal
rules that satisfy a stronger monotonicity property are the dictatorial ones.

2. Moded

Let N = {1, 2, 3} be the set ofagents. Vector inequalities are defined as:< y iff
x; S y; foreachi e N; x <y iff x <y andx # y; x <y iff x; < y; for eachi € N.
For eachi € N, e(i) stands for the vector iiﬂii’ whoseith coordinate is 1 and all other
coordinates are 0. For eachc RY andx € RY, con(X} is the convex hull ofX and
compX | x}={y eR": y > x andy < 7 for somez € X} is the comprehensive hull of
down tox.

A pair (S,d) 2RV W RN is abargaining problemif S is compactd € S, and there is
x € S with x > d. A bargaining problendS, d) is strictly d-comprehensiveif for eachx € S
andy € RY suchthat/ < y < x, y € S and there ig € S such that > y. Let 3 denote the
set of all strictlyd-comprehensive bargaining problefket the setsP(S,d) = {x € § |
y2x=y¢StandI(S,d) ={x € S| x = d} denote thePareto optimal andindividually
rational profiles inS. LetIP(S,d) = I1(S,d) N P(S,d). Let B; be the class of bargaining
problemd(S, d) € B where every profile is individually rational, i.8.= 1 (S, d). Theideal
payoff of an agent € N in (S,d) € Bism;(S,d) =max{x; e R: x € I(S,d)}. Theideal
point of (S,d)ism(S,d) = (m;(S,d))icn (See Fig. 1). A bargaining proble¢s, d) is 0-1
normalized if d =0 andm (S, d) = (1,1, 1). Let Bp_1 denote the set of all such problems
in B.

For eachi € N, let f; be an increasing continuous function &and definef =
(fien :RY = RN by f(x) = (fi (x;))ien for eachx € RV. Let F denote the set of such
functions. Two probleméS, d), (§’, d") € B areordinally equivalent if there is f € F such
that (S) = 8’ and f(d) = d’. Otherwise, they are calleardinally distinct. A subclass

3 This property implies, first, that utility is disposable down to the disagreement point, and second, that any
individually rational and weakly Pareto optimal pointiso Pareto optimal. Roth (1979) shows that when weakly
comprehensive problems are admitted, Shapley’s (1968pssibility result generalizes to an arbitrary number
of agents.
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(m1(8,d), d2,ds)

us (d1,da, m3(S,d))

Fig. 1. The ideal point of an arbitrary problem.

B’ € B ordinally spans B if for any problem(S, d) € B, there is a probleniS’, d’) € B
which isordinally equivalent to it. The subclas®’ is anordinal basis of B if it ordinally
spans B and all problems i3” areordinally distinct.

A bargaining rule F: B — Rﬁ assigns eacliS, d) € B to a feasible payoff profile
F(S,d) € S. Itis Pareto optimal if for each (S, d) € B, F(S,d) € P(S,d). Itis strongly
individually rational if for each(S, d) € B, F (S, d) > d. The next property is based on the
principle of anonymity but is considerably weaker. U&tbe the set of all permutations
onN. ForS c RV, letn(S) = {n(s) | s € §}. A bargaining ruleF is symmetric if given
(S,d) € B that satisfiest(S) = S andw(d) = d for eachwm € IT, we haveF;(S,d) =
F;(S,d) for eachi, j € N. Our final property requires the physical bargaining outcome
to be invariant under utility changes as long as tinderlying preference information is
unchangedF is ordinally invariant if for each(S,d) e Band f € F, F(f(S), f(d)) =
F(F(S,d)).

3. Braceand ordinally normalized problems

In this section, we construct a class of normalized problems and establish its properties.
Let (S, d) € B. Definep~1(S, d) = d and for each € N definep” (S, d) € RY to be such
that
b"1(S,d) = (py7H(S. d). p3(S.d), pA(S.d)) € P(S.d),
b3S, d) = (pi(S,d), py H(S.d), pa(S.d)) € P(S,d), and
b3S, d) = (pi (S, d), p5(S,d), p (S, d)) € P(S,d).
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Fig. 2. Constructing the brace of an arbitrary problem.

The sequencep” (S, d)}en is uniquely defined and it is convergent (Shubik, 1982). Also
note that for eachi € N, lim,—. p"(S,d) = lim,_ o b™' (S, d). Thebrace of (S, d) is
defined as follows (and it is a subsetl&{S, d)) (see Fig. 2):

bres. )= |J{o"(s. )}

neNieN

Each brace point represents a “coalitional ideal payoff” for a two-agent coalition
(Kibris, 2004). We use thérace to define a subclass d@. Let (S,d) € B and define
b~YY(S, d) = (m1(S,d), do,d3), b~12(S,d) = (d1, m2(S,d),d3), and b~13(S,d) =
(d1,d2, m3(S, d)). For eachm € N andi € N, let A™(S,d) be the Pareto optimal curve
that connect$”1i(S, d) andb™*+1(S, d) (with the convention that for=3,i + 1= 1)
as follows:

x € P(S,d): foreachj EN,
AME(S, d) = min{b;?‘“(s, d), b;?”“(s, d)} < x;
< max(p (8. d), b (S, d))

Theextended brace of (S, d) is A(S, d) = ey Uiy A™ (S, d) (Fig. 3).

Let d* = 0 and $* = comgcone(1), e(2),e(3)} | d*}. For this “unit” problem
(§*,d*) € B, the brace and theextended brace are trivially defined: p°(S*, d*) =
(3,3, %), pl(s*,d") = (3,1, 1), and forn > 2 we havep” (§*,d*) = 3(p" (S, d) +
p"2(S,d)) = 3 + £(3)" — . Each brace point of this problem is the midpoint average
of two others. Thenormalized extended brace is the extended brace of this problem:

A* = A(S*,d*) (Fig. 4).

A bargaining probleniS, d) € B is ordinally normalized if d =0, m(S,d) = (1,1, 1),

andA(S, d) = A* (Fig. 5). LetBorq denote the set of all such problems. Note tBat C
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Fig. 4. The normalized extended brace.

Bo_1. Our first result is based on Sprumont’s (2000) theorem (Theorem 7, Appendix A).
It states that ordinally normalized problemsiinally span the whole clasé.Also, they
form anordinal basis for the class in which every payoff profile is individually rational.

4 The classB,g contains at least one basis8f even though it is not one.
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Fig. 5. A typical ordinally normalized problem.

Proposition 1. The subclass Borg ordinally spans 5. Moreover, B; N Borg is an ordinal
basisof B;.

4. Constructing ordinal bargaining rules

Given the classBorg, any bargaining rule defined via the following procedure is
ordinally invariant, Pareto optimal, and individually rational: for each (S, d) € Bord,
arbitrarily fix anx € IP(S, d) and letF (S, d) = x. For each(S, d) € B3, let f € F be such
that(f(S), f(d)) € Borg (by Proposition 1, such aji exists and is unique oh(S, d)) and
let F(S,d) = f~Y(F(f(S), f(d))). This procedure, furthermore, generates bargaining
rules that are “independent of non-individually rational alternatives.”

A more desirable selection from this yelarge class can be obtained as follows.
A monotone path on [0, 1]V is the imageG of a functiony : [0, 1] — [0, 1] such that
for eachi € N ; is continuous, non-decreasing, and satisfieg®) = 0; moreover, there
is j € N such thaty; (1) = 1. Theordinal monotone path rule relative to the monotone
path G, M%:B — RY is defined as follows: for eachs, d) € Borg, M (S, d) is the
maximal point ofS alongG; for an arbitrary problengs, d) € B, let f € F be such that
(f(S), f(d)) € Borg and defineM 9 (S, d) = f~HME (£ (S), f(d))).

This class contains the dictatorial rules whose monotone path®ar€¢)] for some
i € N5 The Shapley—Shubik rule is also a member and its pafl®,i]. Its original

5A bargaining rule F is independent on non-individually rational alternatives if for each (S,d) € B,
F(S,d)=F((S,d),d). _ _
6 Thedictatorial rule of agent i, D' is defined a' (S, d) = (m;(S,d),d_;).



164 O. Kibris/ Games and Economic Behavior 49 (2004) 157-170

definition in Shubik (1982) is as follows: for eaat$,d) € B, the Shapley—Shubik
bargaining rule, Sh selects the limit of thérace points (equivalently the limit of the
sequencép” (S, d)},en) as the solutionsh(S, d) =lim, . » p" (S, d). Given this relation,

it is no surprise that ol¥yq, the Shapley—Shubik rule coinad with the Egalitarian rule.
SinceBorg C Bo-1, on this subclass it coincides with the Kalai-Smorodinsky rule as well.

Proposition 2. On the subclass Borg, the Shapley—Shubik, Kalai—Smorodinsky, and
Egalitarian rules coincide.

Propositions 1 and 2 together imply that tBkeapley-Shubik solution to any problem
in 5 is generated from the Egalitarian solution toaxdinally equivalent problem inBgq.

5. Implications of monotonicity

Monotonicity properties are based on the idea of solidarity. They essentially state that
an expansion in the feasible set should not make any agent worse-off. The strongest
formulation of this idea istrong monotonicity which holds if for eacKS, d), (5’,d) € B,

S C 8 implies F(S,d) £ F(S',d). AmongPareto optimal andsymmetric rules, the only

one to satisfystrong monotonicity is the Egalitarian rule (Kalail977). More specifically,

no scale invariant (nondictatorial) rule satisfies the property. Such rules, however, satisfy
a weaker version which restricts the ccamigon to “cardinally normalized” problem
pairs: F is cardinally monotonic if for each (S,d), (8',d) € Bo-1, S € S’ implies
F(S,d) < F(S',d).” It is straightforward to check thatardinal monotonicity only
compares “cardinally distinct’neblems (that is, problems that can not be two alternative
representations of the same physical problem). Arrsoakp invariant, Pareto optimal and
symmetric rules, the onlycardinally monotonic one is the Kalai—-Smorodinsky rule (Kalai
and Smorodinsky, 1975; Roth, 1979).

Ordinally invariant (nondictatorial) rules violate both monotonicity properties. The next
example demonstrates this on the Shapley—Shubik rule.

Example 1. Let d = 0. Let S = compgcone(1), e(2),e(3)} | d}. S’ is as shown in
Fig. 6: letx? = (3, 3,0),x2= (3,0, 3), andx® = (0, 3, J). Let 0 = conve(1), x%, x?},
02 = conMx?, x2, x3}, 0% = conMx?, e(2), x3}, and 0% = convx2, x3,¢(3)}. Let §' =
comgQt U 02U Q3 U 0% | d*}. Now S C §" andm(S,d) = m(S', d). But Sh(S, d) =
(3.3.3) andSh(S'. d) = (3. 3. 3)- Thereforesn(S. d) £ (S, d).

We next introduce a monotonicity property that, like cardinal monotonicity, restricts
the comparison to normalized problem pairs: a bargaining Fuige ordinally monotonic
if for each (S, d), (§',d) € Borg, S C 8" implies F(S,d) < F(S’,d). Restriction toBgqg

7 In the literature, an alternative formulation which is equivalent for cardinal rules is better krfovis:
restricted monotonic if for each(S,d), (S’,d")e B, SC §',d =d’, andm(S,d) =m(S’,d") imply F(S,d) <
F(S'.d").
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Fig. 6. Agent 1 is worse-off as the feasible set extends.

effectively rules out the possibility of comparing the solutions to two alternative represen-
tations of the same physical problén®rdinal monotone path rules, the Egalitarian and
the Kalai-Smorodinsky rules all satisfy this property. Furthermore, arRarajo optimal
andordinally invariant rules, the ordinal monotone path rules are the only ones to satisfy
ordinal monotonicity.

Theorem 3. A bargaining rule is Pareto optimal, ordinally invariantand ordinally
monotonidf and only if it is an ordinal monotone path rule

Shapley—Shubik rule is the onbymmetric member of this class.

Theorem 4. The Shapley—Shubik rulés the only bargaining rule that is Pareto optimal
symmetri¢ ordinally invariant and ordinally monotonic

Ordinal monotonicity essentially concerns théended brace of a problem. Alterna-
tively, one can require that all agents weakly gain from an expansion of the feasible set
that leaves thérace Pareto optimal (and therefore, unchanged). Some ordinal monotone
path rules including the Shapley—Shubikedo satisfy this stronger monotonicity prop-
erty. If, however, the property is strengthened further by allowing expansions at which

8 More precisely, unlesiP(S, d) # IP(S’,d’), two problems inByrg can be ordinally equivalent. Thus, it is
the following weakening of ordinal monotonicitpat only compares ordinally distinct problenys:is weakly
ordinally monotonic if for each (S, d), (8',d") € Borg, IP(S,d) # IP(S’,d") and S € S’ imply F(S,d) <
F(S',d’). However, all results that we state for ordinabmotonicity also hold for wak ordinal monotonicity.
We use the stronger version simply for presentation purposes.
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some brace points cease to remain Paretongb, a negative result follows. Calt partial
brace-monotonicif for all (S, d), (S',d) € B, S € S’ and b(S, d) \ {b"™(S,d)} C P(S',d)
for somei € N andn e Nimply F(S,d) < F(S',d). This property, together witbrdinal
invariance, puts severe restrictions on the solution to the “unit” problem.

Lemma 5. Let d* = 0 and S* = compgconve(1), e(2), e(3)} | d*}. If F is an ordinally
invariantand partial brace-monotonisargaining rule, F(S*, d*) € {d*, e(1), e(2), e(3)}.

The following result follows from this lemma.

Theorem 6. A bargaining rule satisfies Pareto optimality, ordinal invariancand partial
brace-monotonicityf and only if it is a dictatorial rule

A direct corollary of this theorem is that no ordinally invariant and strongly individually
rational bargaining rule is partial brace-monotonic.

6. Conclusion

We demonstrate that Sprumont’s (2000) result can be used to obtain a class of problems
thatordinally spans all three-agent strictly comprehews problems. However, this class
is not anordinal basis, even though it is a first step in obtaining one. At this point, the
guestion of how to refine it to obtaintasisremains open. Also, if one restricts the analysis
to problems in which every payoff profile is individually rational, ordinally normalized
problems become a basis. This is not a severe restriction since many desirable bargaining
rules only take into account individually rational payoffs.

Since a sufficiently symmetric class of normalized problems does not yet exist for more
than three agents, our results are restricted to this case and thus makes use of the Shapley—
Shubik idea. A generalization of the Shapley—Shubik formula to an arbitrary number of
agents is recently proposed (Safra and Sa@@1b). It is an open question whether it can
be used to construct a normalized class of problems for more agents.

Acknowledgments

Part of this research was completed when | was a visiting researcher at CORE. | thank
this institution for its hospitality. | thank Ahmet Alkan, Matt Jackson, Francgois Maniquet,
William Thomson, and Yun Tong Wang for useful discussions. | also thank the seminar
participants at the Jacant, Autonoma de Barcelona, Bilkent, zici, Caen, Leuven,
Maastricht, Paris, Tilburg universities, CORE, and the Fifth Conference of the Society
for the Advancement of Economic Theory for comments and suggestions. The usual
disclaimer applies.

Appendix A

Sprumont (2000) introduced a class of Pareto surfaces that form an ordinal basis for a
class of “0-1 normalized” Pareto surfaces. His main result can be rephrased as follows.
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Theorem 7 (Sprumont, 2000).et R = IP(S, d) for some (S, d) € B. There existsa unique
R* satisfying R* = IP(S*, d*) for some (S§*, d*) € Borg and to which R is ordinally
equivalent. Moreover, for eachi € N, thereis a unique continuousand increasing function
h; i [d;, m;(S,d)] — [0, 1] such that for & = (h1, ho, h3), h(R) = R*.

The following lemma states that the set is ordinally defined.
Lemma 8. For each (S,d) e Band f € F, IP(f(S), f(d)) = f(IP(S, d)).

Proof. Letw € f(IP(S,d)) and letx = f~1(w). Sincex € IP(S,d), x € S, x > d, and
foreachy > x, y ¢ S. Note thatx € § impliesw € f(S) andx = d impliesw = f(d). Let
z>w. Thenf~1(z) > x and thereforef ~1(z) ¢ S. By definition of £ (), this implies that
F(fF @) =z ¢ f(S). Thereforew € IP(f(S), f(d)). Sincef is invertible, similarly if
v e IP(f(S), f(d)), thenv e F(IP(S,d)). O

We conclude this section with the proofs of the results in the text.

Proof of Proposition 1. Let (S,d) € B. We will first construct anf € F such that

the transformed problentf (S), f(d)) € Borg. It follows from Theorem 7 that for each
i € N there is a unique continuous and increastag(d;, m;(S,d)] — [0, 1] such that

hi(d;) =0, hi(m;(S,d)) =1 and forh = (h1, ho, h3), h(IP(S, d)) is thelP set of at least

one ordinally normalized problem. Therefore;, C h(IP(S, d)). Let f € F be defined as
follows: for eachi € N

x,-—d,- if x,'<d,',
fi(xi) = {hi(xi) if di <x; Sm;i(S,d),
xi —mi(S,d)+1 ifm;(S,d) <x;.

Let £(S) =S andf(d) =d’. Note thatd’ = (0,0, 0) andm (S’,d") = (1, 1, 1). Finally,
by Lemma 12|P(S’,d") = f(IP(S, d)) = h(IP(S, d)). ThereforeA* C IP(S’,d’). By the
uniqueness of the bracd,(S’,d’) = A*. Therefore (S’,d’) € Borg. ThusBorg ordinally
spansB. For the second claim, a similar argument proves g N B; ordinally spans
B;. Its being a basis follows from the uniquenesadbn [d, m(S, d)]) and that for each
(S,d) e By, x € Simpliesx € [d, m(S,d)]. O

Proof of Proposition 2. Let E andK denote the Egalitarian and the Kalai—Smorodinsky
rules, respectively. LetS,d) € Borg. Note that thend = 0 andm(S,d) = (1,1,1).
Therefore E(S,d) = K(S,d). Also lim,_ o0 p"(S,d) = (S, d). Thus for each, j € N,
Si(S,d) — di = Sn;(S,d) — d;. This andSh(S,d) € P(S,d) implies thatSh(S, d) =
E(S,d). O

Proof of Theorem 3. The if part is straightforward. Conversely, Iét satisfy these
properties. Byordinal invariance, it is sufficient to show thaf” coincides with an ordinally
normalized monotone path rul#® on Boyg.
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Step 1 (Forming the patiG). Note thatd = (0, 0, 0) is fixed. LetS® = compA* | d}. Note
thatSC uniquely satisfies the property that for edhd) € Borg, S° C S. Also, (S0, d) ¢ B
sincesY is not strictlyd-comprehensive.

Similarly, let S* ¢ RY be such thatd* is weakly Pareto optimal is* and for each
(S,d) € Borg, S C S1. Note thats?! is uniquely defined and can be described by the
following equation: for eaclt € {—1} UN andi € N, let BX' = comp((b}"*, b*t171),
p*HLi=2 | gy and C = comg (b* T pEE (bRt pEF31) | 4y with the convention
thatif, sayi =1,i —1=3. Then,

oo 3
Sl: U U(Bk’iUCk’i).

k=—1i=1

SinceA* is not Pareto optimal (even though weakly Pareto optimablin(st, d) ¢ B as
well. Now, for eachx € (0, 1), fix an S ¢ RY such that

(i) ($*,d) € Bords , )

(i) if @ <o/, $* C ¥ andIP(S%,d) NIP(SY,d) = A*,
(iii) lim4_08% =59 and
(iv) limg_1 8% =St

Note that for eachu € (0,1), S° c 5% c SL. Let x* = F(5%,d), x° = limy_0x?,
x1=lim,_1x%, and

G={x* «€(0,1)}U[©0,00),x° U[x} 1 1 D]

By Pareto optimality of F, for eachx € (0, 1) x € IP(S%, d). By ordinal monotonicity of
F, the limit pointsx® andx! are well-defined and < o’ impliesx® < x®. ThereforeG
is a monotone and continuous path.

Step 2 (For each(S, d) € Bord, F(S,d) = MY(S,d)). Letx = MY (S, d). Sincex € G,
there isa € (0, 1) such thatx = F(S%,d) = M®(S%,d) € IP(S%,d). Let T = S N S*.
Note that(T', d) € Borg.

Now T C §* andT C S. By ordinal monotonicity applied to the paif(S%, d), (T, d)},
x 2 F(T,d). Sincex € IP(T,d), x = F(T,d). Also, by ordinal monotonicity applied to
the pair{(T, d), (S,d)}, x £ F(S,d). Sincex € IP(S,d),x = F(S,d). O

Proof of Theorem 4. It is straightforward to show that the Shapley—Shubik rde,
satisfies these properties. Conversely, fetsatisfy the four properties. Note that by
Theorem 4,F is an ordinally normalized monotone path rule. K&t d) € B. We will
show thatF' (S, d) = (S, d). By ordinal invariance of the two rules, we can assume that
(S,d) € Borg. Letx = Sn(S,d) = (3, 3. 3). Note thatx € P(S, d).

Let §" = comgconve(1), e(2), e(3)} | d}. Note that(S’, d) € Borg. Since(S’,d) is a
symmetric problem, byareto optimality andsymmetry, F(S’,d) = x. Then,F being an
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ordinally normalized monotone path rulB(S’, d) = x, andx € P(S, d) together imply
thatF(S,d)=x. O

Proof of Lemma 5. Let d =0 and S = d — compo conve(1), e(2), e(3)}. Note that
IP(S,d) = P(S, d) is the two-dimensional unit simplex aiil, d) € Borg. Let F (S, d) = x.
Supposex ¢ {d, e(1), e(2), e(3)}. Then, there i$ € N such thatx; ¢ {0, 1}. Without loss
of generality, let = 1. Thatis, letx; € (0, 1). Now let S’ be defined as in Example 1 (see
Fig. 6). Definef € Fo,17 as

5t if  €[0, 3]
1,3, - 1
—5+5t ifrel3,1]

3

3y if 7 [0, 1]

1) = and H=fat)=1 7% 2,
fl() { fZ() f3() {%4—%[ ifte[%,l]
Note that f(S) = S’ and thus(S, d) and (S8’, d) are ordinally equivalent. Next, we will
show that the paif(S, d), (§’, d)} satisfies the conditions glrtial brace-monotonicity:
for eachk € R defineRY = {x € RV: x1 > k}. Note thatP (S, d)lel\’/4 =P(S, d)mR’lV/4.
Also note that, for eaclw € N\ {0} andi € N, b™(S,d) € P(S,d) N R’l"/4. Finally,

b%2(S,d), b%3(S,d) € P(S'd). Therefore, biS,d) \ {p*1(S,d)} c P(S',d). Also,
S c §’. Therefore, bypartial brace-monotonicity applied to the paif(S, d), (8, d)}, x <
f(x). By ordinal invariance, F(S’,d) = f(x). Howeverx; € (0, 1) impliesxy > f1(x1),
a contradiction. O

Proof of Theorem 6. It is straightforward to show that the dictatorial rules satisfy these
properties. Conversely, |ét be a bargaining rule that satisfies the given properties. Note
that partial brace-monotonicity is a stronger property thaweak ordinal monotonicity.
Therefore, by Theorem 4 is an ordinally normalized monotone path rule. ldet= 0
and S = d — compo confe(1), e(2), e(3)}. Note that(S, d) € Borg. Let F(S,d) = x. By
Lemma 5,x € {d, e(1), e(2), e(3)}. By Pareto optimalityx # d. Thereforex = D' (S, d)

for somei € N. Let (T,d) € Borg. Then,x € IP(T,d) and, sinceF is an ordinally
normalized monotone path rulé;(7T,d) = x = D'(T,d). Since bothF and D' are
ordinally invariant, this impliesF = D'. O
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