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Abstract

A bargaining rule isordinally invariant if its solutions are independent of which utility functio
are chosen to represent the agents’ preferences. For two agents, only dictatorial bargaini
satisfy this property (Shapley, L., La Décision: Agrégation et Dynamique des Ordres de Préfé
Editions du CNRS (1969) 251). For three agents, we construct a “normalized subclass” of pr
through which an infinite variety of such rules can be defined. We then analyze the implic
of various properties on these rules. We show that a class of monotone path rules uniquely
ordinal invariance, Pareto optimality, and “monotonicity” and that the Shapley–Shubik rule is
only symmetric member of this class. We also show that the only ordinal rules to satisfy a str
monotonicity property are the dictatorial ones.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

We analyze the implications of standard bargaining axioms in ordinal environm
that is, in bargaining situations where the agents’ preferences are only restricted
complete, transitive, and continuous (asopposed to being of von Neumann–Morgenst
type as in most of the literature). For ordinal environments, thescale invariance axiom of
Nash (1950) is not sufficient to ensure the invariance of the physical bargaining ou
with respect to utility-representation changes that leave the underlying preferences inta
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158 Ö. Kıbrıs / Games and Economic Behavior 49 (2004) 157–170

rules
ongly
the

ations

ment
such

e joint
been
ing

struct
ns of

class

aining
letely
e has
fore,
n the

ordinal
ety
ized
If this
ation
es that

ce
7
to
ction

ey.
nd
, is

ing
It needs to be replaced with a stronger axiom calledordinal invariance. Unfortunately, all
of the well-known bargaining rules violate this axiom.

Shapley (1969) showed that for two-agent problems, only dictatorial bargaining
satisfy this property. For three agents, however, an ordinally invariant and str
individually rational bargaining rule appeared in Shubik (1982). We will refer to it as
Shapley–Shubik rule.1 Safra and Samet (2001a, 2001b) recently proposed generaliz
of the Shapley–Shubik formula to finitely manyagents. The literaturefollowing Shapley
(1969) mainly analyzed the implications of weakening the ordinal invariance require
on two-agent bargaining rules. Myerson (1977) and Roth (1979) showed that
weakenings and some basic properties characterize Egalitarian type rules. Th
implications of ordinal invariance and other basic properties, however, have not
studied further.2 In this paper, we attempt to fill this gap for three-agent bargain
problems.

To isolate the implications of ordinal invariance from other axioms, one can con
a “normalized” class of bargaining problems so that via increasing transformatio
utilities,

(i) any bargaining problem can be transformed into a (normalized) problem in this
and

(ii) a normalized problem can not be transformed into another normalized problem.

Due to (i), any physical problem can be represented as a normalized barg
problem. Once solutions to normalized problems are given, ordinal invariance comp
determines the solutions to non-normalized problems. Due to (ii), ordinal invarianc
no implications on relating solutions to two different normalized problems. There
any property, once restricted to apply only to normalized problems, does not ru
risk of comparing alternative utility representations of the same physical problem (which
is, in itself, a desirable consequence), and therefore, becomes compatible with
invariance. Using this special class of problems, one can also construct an infinite vari
of ordinally invariant bargaining rules by first arbitrarily specifying solutions to normal
problems and then, using ordinal invariance to obtain solutions of arbitrary problems.
normalized class admits a minimal set of symmetric problems and if the normaliz
procedure is anonymous, this method easily delivers symmetric (or anonymous) rul
are ordinal.

For Pareto surfaces with more than two agents, Sprumont (2000) proved the existen
of a “normalized” subclass of surfaces satisfying requirements (i) and (ii) (see Theorem
in Appendix A). For three-agent surfaces healso used the Shapley–Shubik formula
construct a “sufficiently symmetric” class. In Section 3, we generalize his constru

1 There is no reference on the origin of this rule in Shubik (1982). However, Thomson attributes it to Shapl
Furthermore, Roth (1979, pp. 72–73) mentions a three-agent ordinal bargaining rule proposed by Shapley a
Shubik (1974, Rand Corporation, R-904/4)which, considering the scarcity of ordinal rules in the literature
most probably the same bargaining rule.

2 There is also a body of literature which demonstrates thatin alternative approaches to modeling bargain
problems, ordinality can be recovered (see Rubinstein et al., 1992; O’neill et al., 2001).
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to a normalized class of three-agent bargaining problems (hereafter,ordinally normalized
problems).

In Section 4, we show that by using ordinally normalized problems, one can con
an infinite number ordinal rules. For example, it is possible to apply any one of the va
objective functions in the literature (such as Nash, Utilitarian, or Egalitarian) to ordi
normalized problems and construct an ordinal rule. We observe that among the
ordinal rule constructed by the Egalitarianobjective coincides with Shapley–Shubik rule.

In Section 5, we look for ordinal rules that are “monotonic” on ordinally normali
problems. We show that a class of “ordinal monotone path rules” uniquely satisfyPareto
optimality, ordinal invariance, and monotonicity. The Shapley–Shubik rule is the on
symmetric member of this class. All other members thus violate anonymity. These
results are similar in nature to previous findings on the Egalitarian (Kalai, 1977) and
the Kalai–Smorodinsky (1975) rules, as well as monotone path rules (see Kalai,
Thomson, 1980, and Thomson and Myerson, 1980). Finally, we show that the only o
rules that satisfy a stronger monotonicity property are the dictatorial ones.

2. Model

Let N = {1,2,3} be the set ofagents. Vector inequalities are defined as:x � y iff
xi � yi for eachi ∈ N ; x � y iff x � y and x �= y; x < y iff xi < yi for eachi ∈ N .
For eachi ∈ N, e(i) stands for the vector inRN+ whoseith coordinate is 1 and all othe
coordinates are 0. For eachX ⊂ RN andx ∈ RN , conv{X} is the convex hull ofX and
comp{X | x} = {y ∈ RN : y � x andy � z for somez ∈ X} is the comprehensive hull ofX
down tox.

A pair (S, d) ∈ 2R
N × RN is abargaining problem if S is compact,d ∈ S, and there is

x ∈ S with x > d . A bargaining problem(S, d) is strictly d-comprehensive if for eachx ∈ S

andy ∈ RN such thatd � y � x, y ∈ S and there isz ∈ S such thatz > y. LetB denote the
set of all strictlyd-comprehensive bargaining problems.3 Let the setsP(S, d) = {x ∈ S |
y � x ⇒ y /∈ S} andI (S, d) = {x ∈ S | x � d} denote thePareto optimal andindividually
rational profiles inS. Let IP(S, d) = I (S, d) ∩ P(S, d). LetBI be the class of bargainin
problems(S, d) ∈ B where every profile is individually rational, i.e.S = I (S, d). Theideal
payoff of an agenti ∈ N in (S, d) ∈ B is mi(S, d) = max{xi ∈ R: x ∈ I (S, d)}. Theideal
point of (S, d) is m(S,d) = (mi(S, d))i∈N (see Fig. 1). A bargaining problem(S, d) is 0–1
normalized if d = 0 andm(S,d) = (1,1,1). LetB0−1 denote the set of all such problem
in B.

For eachi ∈ N , let fi be an increasing continuous function onR and definef =
(fi)i∈N :RN → RN by f (x) = (fi(xi))i∈N for eachx ∈ RN . LetF denote the set of suc
functions. Two problems(S, d), (S′, d ′) ∈ B areordinally equivalent if there isf ∈F such
that f (S) = S′ andf (d) = d ′. Otherwise, they are calledordinally distinct. A subclass

3 This property implies, first, that utility is disposable down to the disagreement point, and second, th
individually rational and weakly Pareto optimal point isalso Pareto optimal. Roth (1979) shows that when wea
comprehensive problems are admitted, Shapley’s (1969) impossibility result generalizes to an arbitrary numb
of agents.
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Fig. 1. The ideal point of an arbitrary problem.

B′ ⊆ B ordinally spans B if for any problem(S, d) ∈ B, there is a problem(S′, d ′) ∈ B′
which isordinally equivalent to it. The subclassB′ is anordinal basis of B if it ordinally
spans B and all problems inB′ areordinally distinct.

A bargaining rule F :B → RN+ assigns each(S, d) ∈ B to a feasible payoff profile
F(S, d) ∈ S. It is Pareto optimal if for each(S, d) ∈ B, F(S, d) ∈ P(S, d). It is strongly
individually rational if for each(S, d) ∈ B, F(S, d) > d . The next property is based on t
principle of anonymity but is considerably weaker. LetΠ be the set of all permutationsπ
on N . For S ⊂ RN , let π(S) = {π(s) | s ∈ S}. A bargaining ruleF is symmetric if given
(S, d) ∈ B that satisfiesπ(S) = S and π(d) = d for eachπ ∈ Π , we haveFi(S, d) =
Fj (S, d) for eachi, j ∈ N . Our final property requires the physical bargaining outco
to be invariant under utility changes as long as the underlying preference information
unchanged:F is ordinally invariant if for each(S, d) ∈ B andf ∈ F , F(f (S), f (d)) =
f (F (S, d)).

3. Brace and ordinally normalized problems

In this section, we construct a class of normalized problems and establish its prop
Let (S, d) ∈ B. Definep−1(S, d) = d and for eachn ∈ N definepn(S, d) ∈ RN to be such
that

bn,1(S, d) = (
pn−1

1 (S, d),pn
2(S, d),pn

3(S, d)
) ∈ P(S, d),

bn,2(S, d) = (
pn

1(S, d),pn−1
2 (S, d),pn

3(S, d)
) ∈ P(S, d), and

bn,3(S, d) = (
pn(S, d),pn(S, d),pn−1(S, d)

) ∈ P(S, d).
1 2 3
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Fig. 2. Constructing the brace of an arbitrary problem.

The sequence{pn(S, d)}n∈N is uniquely defined and it is convergent (Shubik, 1982). A
note that for eachi ∈ N , limn→∞ pn(S, d) = limn→∞ bn,i(S, d). Thebrace of (S, d) is
defined as follows (and it is a subset ofIP(S, d)) (see Fig. 2):

br(S, d) =
⋃
n∈N

⋃
i∈N

{
bn,i(S, d)

}
.

Each brace point represents a “coalitional ideal payoff” for a two-agent coa
(Kibris, 2004). We use thebrace to define a subclass ofB. Let (S, d) ∈ B and define
b−1,1(S, d) = (m1(S, d), d2, d3), b−1,2(S, d) = (d1,m2(S, d), d3), and b−1,3(S, d) =
(d1, d2,m3(S, d)). For eachn ∈ N and i ∈ N , let An,i(S, d) be the Pareto optimal curv
that connectsbn−1,i(S, d) andbn,i+1(S, d) (with the convention that fori = 3, i + 1 = 1)
as follows:

An,i(S, d) =




x ∈ P(S, d): for eachj ∈ N,

min{bn−1,i
j (S, d), b

n,i+1
j (S, d)} � xj

� max{bn−1,i
j (S, d), b

n,i+1
j (S, d)}


 .

Theextended brace of (S, d) is A(S,d) = ⋃
n∈N

⋃
i∈N An,i(S, d) (Fig. 3).

Let d∗ = 0 and S∗ = comp{conv{e(1), e(2), e(3)} | d∗}. For this “unit” problem
(S∗, d∗) ∈ B, the brace and the extended brace are trivially defined:p0(S∗, d∗) =
(1

2, 1
2, 1

2), p1(S∗, d∗) = (1
4, 1

4, 1
4), and forn � 2 we havepn(S∗, d∗) = 1

2(pn−1(S, d) +
pn−2(S, d)) = 1

3 + 1
6(−1

2 )n → 1
3. Each brace point of this problem is the midpoint aver

of two others. Thenormalized extended brace is the extended brace of this problem:
A∗ = A(S∗, d∗) (Fig. 4).

A bargaining problem(S, d) ∈ B is ordinally normalized if d = 0, m(S,d) = (1,1,1),
andA(S,d) = A∗ (Fig. 5). LetBord denote the set of all such problems. Note thatBord ⊂
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ix A).
Fig. 3. Constructing the extended brace of an arbitrary problem.

Fig. 4. The normalized extended brace.

B0−1. Our first result is based on Sprumont’s (2000) theorem (Theorem 7, Append
It states that ordinally normalized problemsordinally span the whole class.4 Also, they
form anordinal basis for the class in which every payoff profile is individually rational.

4 The classBord contains at least one basis ofB, even though it is not one.
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Fig. 5. A typical ordinally normalized problem.

Proposition 1. The subclass Bord ordinally spans B. Moreover, BI ∩ Bord is an ordinal
basis of BI .

4. Constructing ordinal bargaining rules

Given the classBord, any bargaining rule defined via the following procedure
ordinally invariant, Pareto optimal, and individually rational: for each (S, d) ∈ Bord,
arbitrarily fix anx ∈ IP(S, d) and letF(S, d) = x. For each(S, d) ∈ B, let f ∈ F be such
that(f (S), f (d)) ∈ Bord (by Proposition 1, such anf exists and is unique onI (S, d)) and
let F(S, d) = f −1(F (f (S), f (d))). This procedure, furthermore, generates bargain
rules that are “independent of non-individually rational alternatives.”5

A more desirable selection from this very large class can be obtained as follow
A monotone path on [0,1]N is the imageG of a functionψ : [0,1] → [0,1]N such that
for eachi ∈ N ψi is continuous, non-decreasing, and satisfiesψi(0) = 0; moreover, there
is j ∈ N such thatψj (1) = 1. Theordinal monotone path rule relative to the monotone
path G, MG :B → RN is defined as follows: for each(S, d) ∈ Bord, MG(S,d) is the
maximal point ofS alongG; for an arbitrary problem(S, d) ∈ B, let f ∈ F be such tha
(f (S), f (d)) ∈ Bord and defineMG(S,d) = f −1(MG(f (S), f (d))).

This class contains the dictatorial rules whose monotone paths are[0, e(i)] for some
i ∈ N .6 The Shapley–Shubik rule is also a member and its path is[0,1]. Its original

5 A bargaining ruleF is independent on non-individually rational alternatives if for each (S, d) ∈ B,
F(S,d) = F(I (S, d), d).

6 Thedictatorial rule of agent i, Di is defined asDi(S,d) = (mi(S, d), d−i ).
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definition in Shubik (1982) is as follows: for each(S, d) ∈ B, the Shapley–Shubik
bargaining rule, Sh selects the limit of thebrace points (equivalently the limit of the
sequence{pn(S, d)}n∈N) as the solution:Sh(S, d) = limn→∞ pn(S, d). Given this relation,
it is no surprise that onBord, the Shapley–Shubik rule coincides with the Egalitarian rule
SinceBord ⊆ B0−1, on this subclass it coincides with the Kalai–Smorodinsky rule as w

Proposition 2. On the subclass Bord, the Shapley–Shubik, Kalai–Smorodinsky, and
Egalitarian rules coincide.

Propositions 1 and 2 together imply that theShapley-Shubik solution to any proble
in B is generated from the Egalitarian solution to anordinally equivalent problem inBord.

5. Implications of monotonicity

Monotonicity properties are based on the idea of solidarity. They essentially stat
an expansion in the feasible set should not make any agent worse-off. The str
formulation of this idea isstrong monotonicity which holds if for each(S, d), (S′, d) ∈ B,
S ⊆ S′ impliesF(S, d) � F(S′, d). AmongPareto optimal andsymmetric rules, the only
one to satisfystrong monotonicity is the Egalitarian rule (Kalai, 1977). More specifically
no scale invariant (nondictatorial) rule satisfies the property. Such rules, however, sa
a weaker version which restricts the comparison to “cardinally normalized” problem
pairs: F is cardinally monotonic if for each (S, d), (S′, d) ∈ B0−1, S ⊆ S′ implies
F(S, d) � F(S′, d).7 It is straightforward to check thatcardinal monotonicity only
compares “cardinally distinct” problems (that is, problems that can not be two alterna
representations of the same physical problem). Amongscale invariant, Pareto optimal and
symmetric rules, the onlycardinally monotonic one is the Kalai–Smorodinsky rule (Kal
and Smorodinsky, 1975; Roth, 1979).

Ordinally invariant (nondictatorial) rules violate both monotonicity properties. The
example demonstrates this on the Shapley–Shubik rule.

Example 1. Let d = 0. Let S = comp{conv{e(1), e(2), e(3)} | d}. S′ is as shown in
Fig. 6: letx1 = (1

4, 3
4,0), x2 = (1

4,0, 3
4), andx3 = (0, 3

4, 3
4). Let Q1 = conv{e(1), x1, x2},

Q2 = conv{x1, x2, x3}, Q3 = conv{x1, e(2), x3}, andQ4 = conv{x2, x3, e(3)}. Let S′ =
comp{Q1 ∪ Q2 ∪ Q3 ∪ Q4 | d∗}. Now S ⊆ S′ andm(S,d) = m(S′, d). But Sh(S, d) =
(1

3, 1
3, 1

3) andSh(S′, d) = (1
6, 1

2, 1
2). Therefore,Sh(S, d) � Sh(S′, d).

We next introduce a monotonicity property that, like cardinal monotonicity, res
the comparison to normalized problem pairs: a bargaining ruleF is ordinally monotonic
if for each(S, d), (S′, d) ∈ Bord, S ⊆ S′ implies F(S, d) � F(S′, d). Restriction toBord

7 In the literature, an alternative formulation which is equivalent for cardinal rules is better known:F is
restricted monotonic if for each(S, d), (S′, d ′) ∈ B, S ⊆ S′, d = d ′, andm(S,d) = m(S′, d ′) imply F(S,d) �
F(S′, d ′).
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Fig. 6. Agent 1 is worse-off as the feasible set extends.

effectively rules out the possibility of comparing the solutions to two alternative repr
tations of the same physical problem.8 Ordinal monotone path rules, the Egalitarian a
the Kalai–Smorodinsky rules all satisfy this property. Furthermore, amongPareto optimal
andordinally invariant rules, the ordinal monotone path rules are the only ones to sa
ordinal monotonicity.

Theorem 3. A bargaining rule is Pareto optimal, ordinally invariant, and ordinally
monotonicif and only if it is an ordinal monotone path rule.

Shapley–Shubik rule is the onlysymmetric member of this class.

Theorem 4. The Shapley–Shubik ruleis the only bargaining rule that is Pareto optimal,
symmetric, ordinally invariant, and ordinally monotonic.

Ordinal monotonicity essentially concerns theextended brace of a problem. Alterna-
tively, one can require that all agents weakly gain from an expansion of the feasib
that leaves thebrace Pareto optimal (and therefore, unchanged). Some ordinal mon
path rules including the Shapley–Shubik rule do satisfy this stronger monotonicity pro
erty. If, however, the property is strengthened further by allowing expansions at w

8 More precisely, unlessIP(S, d) �= IP(S′, d ′), two problems inBord can be ordinally equivalent. Thus, it
the following weakening of ordinal monotonicitythat only compares ordinally distinct problems:F is weakly
ordinally monotonic if for each (S, d), (S′, d ′) ∈ Bord, IP(S, d) �= IP(S′, d ′) and S ⊆ S′ imply F(S,d) �
F(S′, d ′). However, all results that we state for ordinal monotonicity also hold for weak ordinal monotonicity.
We use the stronger version simply for presentation purposes.
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some brace points cease to remain Pareto optimal, a negative result follows. CallF partial
brace-monotonic if for all (S, d), (S′, d) ∈ B, S ⊆ S′ and br(S, d)\ {bn,i(S, d)} ⊂ P(S′, d)

for somei ∈ N andn ∈ N imply F(S, d) � F(S′, d). This property, together withordinal
invariance, puts severe restrictions on the solution to the “unit” problem.

Lemma 5. Let d∗ = 0 and S∗ = comp{conv{e(1), e(2), e(3)} | d∗}. If F is an ordinally
invariantand partial brace-monotonicbargaining rule, F(S∗, d∗) ∈ {d∗, e(1), e(2), e(3)}.

The following result follows from this lemma.

Theorem 6. A bargaining rule satisfies Pareto optimality, ordinal invariance, and partial
brace-monotonicityif and only if it is a dictatorial rule.

A direct corollary of this theorem is that no ordinally invariant and strongly individu
rational bargaining rule is partial brace-monotonic.

6. Conclusion

We demonstrate that Sprumont’s (2000) result can be used to obtain a class of pr
that ordinally spans all three-agent strictly comprehensive problems. However, this clas
is not anordinal basis, even though it is a first step in obtaining one. At this point,
question of how to refine it to obtain abasis remains open. Also, if one restricts the analy
to problems in which every payoff profile is individually rational, ordinally normaliz
problems become a basis. This is not a severe restriction since many desirable bar
rules only take into account individually rational payoffs.

Since a sufficiently symmetric class of normalized problems does not yet exist for
than three agents, our results are restricted to this case and thus makes use of the S
Shubik idea. A generalization of the Shapley–Shubik formula to an arbitrary numb
agents is recently proposed (Safra and Samet, 2001b). It is an open question whether it c
be used to construct a normalized class of problems for more agents.
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Appendix A

Sprumont (2000) introduced a class of Pareto surfaces that form an ordinal bas
class of “0–1 normalized” Pareto surfaces. His main result can be rephrased as follo
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Theorem 7 (Sprumont, 2000).Let R = IP(S, d) for some (S, d) ∈ B. There exists a unique
R∗ satisfying R∗ = IP(S∗, d∗) for some (S∗, d∗) ∈ Bord and to which R is ordinally
equivalent. Moreover, for each i ∈ N , there is a unique continuous and increasing function
hi : [di,mi(S, d)] → [0,1] such that for h = (h1, h2, h3), h(R) = R∗.

The following lemma states that theIP set is ordinally defined.

Lemma 8. For each (S, d) ∈ B and f ∈ F , IP(f (S), f (d)) = f (IP(S, d)).

Proof. Let w ∈ f (IP(S, d)) and letx = f −1(w). Sincex ∈ IP(S, d), x ∈ S, x � d , and
for eachy � x, y /∈ S. Note thatx ∈ S impliesw ∈ f (S) andx � d impliesw � f (d). Let
z � w. Thenf −1(z) � x and therefore,f −1(z) /∈ S. By definition off (S), this implies that
f (f −1(z)) = z /∈ f (S). Therefore,w ∈ IP(f (S), f (d)). Sincef is invertible, similarly if
v ∈ IP(f (S), f (d)), thenv ∈ f (IP(S, d)). �

We conclude this section with the proofs of the results in the text.

Proof of Proposition 1. Let (S, d) ∈ B. We will first construct anf ∈ F such that
the transformed problem,(f (S), f (d)) ∈ Bord. It follows from Theorem 7 that for eac
i ∈ N there is a unique continuous and increasinghi : [di,mi(S, d)] → [0,1] such that
hi(di) = 0, hi(mi(S, d)) = 1 and forh = (h1, h2, h3), h(IP(S, d)) is theIP set of at leas
one ordinally normalized problem. Therefore,A∗ ⊂ h(IP(S, d)). Let f ∈ F be defined as
follows: for eachi ∈ N

fi(xi) =
{

xi − di if xi < di,

hi(xi) if di � xi � mi(S, d),

xi − mi(S, d) + 1 if mi(S, d) < xi.

Let f (S) = S′ andf (d) = d ′. Note thatd ′ = (0,0,0) andm(S′, d ′) = (1,1,1). Finally,
by Lemma 12,IP(S′, d ′) = f (IP(S, d)) = h(IP(S, d)). Therefore,A∗ ⊂ IP(S′, d ′). By the
uniqueness of the brace,A(S′, d ′) = A∗. Therefore,(S′, d ′) ∈ Bord. ThusBord ordinally
spansB. For the second claim, a similar argument proves thatBord ∩ BI ordinally spans
BI . Its being a basis follows from the uniqueness ofh (on [d,m(S, d)]) and that for each
(S, d) ∈ BI , x ∈ S impliesx ∈ [d,m(S, d)]. �
Proof of Proposition 2. Let E andK denote the Egalitarian and the Kalai–Smorodin
rules, respectively. Let(S, d) ∈ Bord. Note that thend = 0 and m(S,d) = (1,1,1).
Therefore,E(S,d) = K(S,d). Also limn→∞ pn(S, d) = Sh(S, d). Thus for eachi, j ∈ N ,
Shi (S, d) − di = Shj (S, d) − dj . This andSh(S, d) ∈ P(S, d) implies thatSh(S, d) =
E(S,d). �
Proof of Theorem 3. The if part is straightforward. Conversely, letF satisfy these
properties. Byordinal invariance, it is sufficient to show thatF coincides with an ordinally
normalized monotone path rule,MG onBord.
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Step 1 (Forming the pathG). Note thatd = (0,0,0) is fixed. LetS0 = comp{A∗ | d}. Note
thatS0 uniquely satisfies the property that for each(S, d) ∈ Bord, S0 ⊂ S. Also,(S0, d) /∈ B
sinceS0 is not strictlyd-comprehensive.

Similarly, let S1 ⊂ RN+ be such thatA∗ is weakly Pareto optimal inS1 and for each
(S, d) ∈ Bord, S ⊂ S1. Note thatS1 is uniquely defined and can be described by
following equation: for eachk ∈ {−1} ∪ N and i ∈ N , let Bk,i = comp{(bk,i

i , b
k+1,i−1
−i ),

bk+1,i−2 | d} andCk,i = comp{(bk+1,i
−i , b

k+3,i
i ), (b

k,i−1
−i , b

k+3,i
i ) | d} with the convention

that if, say,i = 1, i − 1 = 3. Then,

S1 =
∞⋃

k=−1

3⋃
i=1

(
Bk,i ∪ Ck,i

)
.

SinceA∗ is not Pareto optimal (even though weakly Pareto optimal) inS1, (S1, d) �∈ B as
well. Now, for eachα ∈ (0,1), fix anSα ⊂ RN+ such that

(i) (Sα, d) ∈ Bord,
(ii) if α < α′, Sα ⊂ Sα′

andIP(Sα, d) ∩ IP(Sα′
, d) = A∗,

(iii) lim α→0 Sα = S0, and
(iv) limα→1 Sα = S1.

Note that for eachα ∈ (0,1), S0 ⊂ Sα ⊂ S1. Let xα = F(Sα, d), x0 = limα→0 xα ,
x1 = limα→1 xα , and

G = {
xα: α ∈ (0,1)

} ∪ [
(0,0,0), x0] ∪ [

x1, (1,1,1)
]
.

By Pareto optimality of F , for eachα ∈ (0,1) xα ∈ IP(Sα, d). By ordinal monotonicity of
F , the limit pointsx0 andx1 are well-defined andα < α′ impliesxα � xα′

. Therefore,G
is a monotone and continuous path.

Step 2 (For each(S, d) ∈ Bord, F(S, d) = MG(S,d)). Let x = MG(S,d). Sincex ∈ G,
there isα ∈ (0,1) such thatx = F(Sα, d) = MG(Sα, d) ∈ IP(Sα, d). Let T = S ∩ Sα .
Note that(T , d) ∈ Bord.

Now T ⊂ Sα andT ⊂ S. By ordinal monotonicity applied to the pair{(Sα, d), (T , d)},
x � F(T ,d). Sincex ∈ IP(T , d), x = F(T ,d). Also, by ordinal monotonicity applied to
the pair{(T , d), (S, d)}, x � F(S, d). Sincex ∈ IP(S, d), x = F(S, d). �
Proof of Theorem 4. It is straightforward to show that the Shapley–Shubik rule,Sh
satisfies these properties. Conversely, letF satisfy the four properties. Note that b
Theorem 4,F is an ordinally normalized monotone path rule. Let(S, d) ∈ B. We will
show thatF(S, d) = Sh(S, d). By ordinal invariance of the two rules, we can assume th
(S, d) ∈ Bord. Let x = Sh(S, d) = (1

3, 1
3, 1

3). Note thatx ∈ P(S, d).
Let S′ = comp{conv{e(1), e(2), e(3)} | d}. Note that(S′, d) ∈ Bord. Since(S′, d) is a

symmetric problem, byPareto optimality andsymmetry, F(S′, d) = x. Then,F being an
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ordinally normalized monotone path rule,F(S′, d) = x, andx ∈ P(S, d) together imply
thatF(S, d) = x. �
Proof of Lemma 5. Let d = 0 and S = d − comp◦ conv{e(1), e(2), e(3)}. Note that
IP(S, d) = P(S, d) is the two-dimensional unit simplex and(S, d) ∈ Bord. LetF(S, d) = x.
Supposex �∈ {d, e(1), e(2), e(3)}. Then, there isi ∈ N such thatxi �∈ {0,1}. Without loss
of generality, leti = 1. That is, letx1 ∈ (0,1). Now letS′ be defined as in Example 1 (s
Fig. 6). Definef ∈F[0,1] as

f1(t) =
{ 1

2t if t ∈ [0, 1
2]

−1
2 + 3

2t if t ∈ [1
2,1] and f2(t) = f3(t) =

{ 3
2t if t ∈ [0, 1

2]
1
2 + 1

2t if t ∈ [1
2,1] .

Note thatf (S) = S′ and thus(S, d) and (S′, d) are ordinally equivalent. Next, we wi
show that the pair{(S, d), (S′, d)} satisfies the conditions ofpartial brace-monotonicity:
for eachk ∈ R defineRN

k = {x ∈ RN : x1 � k}. Note thatP(S, d)∩RN
1/4 = P(S′, d)∩RN

1/4.

Also note that, for eachn ∈ N \ {0} and i ∈ N , bn,i(S, d) ∈ P(S, d) ∩ RN
1/4. Finally,

b0,2(S, d), b0,3(S, d) ∈ P(S′d). Therefore, br(S, d) \ {b0,1(S, d)} ⊂ P(S′, d). Also,
S ⊂ S′. Therefore, bypartial brace-monotonicity applied to the pair{(S, d), (S′, d)}, x �
f (x). By ordinal invariance, F(S′, d) = f (x). However,x1 ∈ (0,1) impliesx1 > f1(x1),
a contradiction. �
Proof of Theorem 6. It is straightforward to show that the dictatorial rules satisfy th
properties. Conversely, letF be a bargaining rule that satisfies the given properties. N
that partial brace-monotonicity is a stronger property thanweak ordinal monotonicity.
Therefore, by Theorem 4,F is an ordinally normalized monotone path rule. Letd = 0
andS = d − comp◦ conv{e(1), e(2), e(3)}. Note that(S, d) ∈ Bord. Let F(S, d) = x. By
Lemma 5,x ∈ {d, e(1), e(2), e(3)}. By Pareto optimality,x �= d . Therefore,x = Di(S, d)

for some i ∈ N . Let (T , d) ∈ Bord. Then, x ∈ IP(T , d) and, sinceF is an ordinally
normalized monotone path rule,F(T ,d) = x = Di(T , d). Since bothF and Di are
ordinally invariant, this impliesF = Di . �
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