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Abstract

A multicoalitional bargaining problem is a non-transferable utility game and for each coalition, a
bargaining rule. We look for ordinally invariant solutions to such problems and discover a subrule
of Bennett's (1997, Games Econ. Behav. 19, 151-179) that satisfies the property. On a subclass
of problems that is closely related to standard bargaining problems and allocation problems with
majority decision-making, the two rules coincide. Therefore, Bennett solutions to such problems
are immune to misrepresentation of cardinal utility information. We also show that Shapley—Shubik
solution to any bargaining problem is the limit of a sequence of unique Bennett solutions to associated
multicoalitional problems.
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1. Introduction

In an ordinal theory of bargaining, it is essential that the physical bargaining outcome
remains invariant under equivalent utility representations of the agents’ preferences.
A property called ordinal invariance formulates this idea for bargaining rules. It is much
stronger than the scale invariance property of Nash (1950) and is violated by all of the
well-known bargaining rules.

In this paper, we look for ordinally invariant solutions raulticoalitional bargaining
problems. these are environments where several interrelated bargaining processes simulta-
neously take place. Formation of a coalitional governmentin a parliamentary system, trade
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in an exchange economy, formation of jurisdictions, and production of public goods in a
local public goods economy are a few of the many examples to multicoalitional bargaining.

Formally, a multicoalitional bargaining problem is a non-transferable utility game and
for each coalition, a bargaining rule which summarizes how bargaining takes place and
how it is resolved in that coalition. Unlike in standard bargaining theory, no exogenous
disagreement outcome is specified. Rather, the disagreement payoffs for the members of a
coalition are endogenously determined by their best potential agreementin other coalitions.

The literature on multicoalitional bargaining starts with Binmore (1985) who analyzes a
particular class of three-agent bargaining problems. A different analysis of the same class
is given by Bennett and Houba (1992). Bennett (1987, 1997) presents a general formulation
of multicoalitional bargaining problems and proposes a solution rule (hereaftBerihett
rule). She also provides a very appealing noncooperative interpretation for this rule.

If, in a multicoalitional problem, the bargaining rules used by individual coalitions
violate ordinal invariance, one might predict the “multicoalitional solution” to violate
the property as well. We, however, show that even then, a subset of Bennett solutions
(hereafter, thextreme-Bennett solutions) remains ordinally invariant. At extreme-Bennett
solutions, the agents’ conjectures on what they can achieve in alternative coalitions are
so high that no formed coalition can offer its members more than these conjectured
disagreement payoffs. It is this feature that generates their ordinal invariance and makes
them “extreme” among all Bennett solutions of the problem.

Unfortunately, there are problems for which the extreme-Bennett rule is empty-Valued.
Nevertheless, we discover a subclass of problems for which the extreme-Bennettrule is not
only nonempty-valued, but it also coincides with the Bennett rule. That is, on this subclass,
the Bennett rule itself is ordinally invariant. This subclass turns out to be quite interesting
since

(i) each problem in this class has a direct link to bargaining problems; and
(i) any allocation problem with majority decision-making corresponds to a multicoali-
tional bargaining problem in this class.

It then follows from ordinal invariance that Bennett solutions to such allocation problems
are immune to manipulation via cardinal utility information: competition to be a member
of the winning coalition rules out any possibility of manipulation.

The literature on ordinal invariance starts with Shapley (1969) who shows that for
two agents, no strongly individually rational bargaining rule satisfies this property. Later,
athree-agent bargaining rule (hereafter 3hapley—Shubikrule) satisfying both properties
appears in Shubik (1982). Kibris (2001, 2002) presents two characterizations which
suggest this rule to be the ordinal counterpart of both the Nash (1950) and the Kalai
and Smorodinsky (1975) bargaining rufevhile the Shapley—Shubik rule has not been

1 This, however, is solely due to the nature of the coalitions’ cooperative opportunities and not the bargaining
rules they use to resolve conflicts.

2 This rule uniquely satisfiesrdinal invariance, Pareto optimality, symmetry, and a monotonicity property
(similar to that of Kalai and Smorodinsky). Replacing the latter with an independence property (similar to that of
Nash) also characterizes the same rule.
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previously discussed in relation to multicoalitional bargaining, it turns out to be intimately

related to the Bennett rule as well: we show that the Shapley—Shubik solution to a
bargaining problem is the limit of an iteratively defined sequence of unique Bennett
solutions to associated multicoalitional problems.

2. Moddl

Let N = {1,...,n} be the set of agents and = 2V \ {#} be the set of coalitions.
For eachS € N, the feasible set of coalition S, V(S) C Ri is compact and strictly
comprehensivé. Assume that for each € N, V({i}) = {0}. The interior (boundary)
of V(S) relative to RS is denoted by intV(S)[3(V(S))].* Since V(S) is strictly
comprehensived(V (S)) is equal to the set of Pareto optimal payoff profiledi¢s). Note
that

. S
VN — U RS
SeN
is a non-transferable utility (NTU) game. Let V" be the set of all such games. For each

m € N, letV! C V" be the set of NTU games satisfying the following property: for each
SeN,if |S| =m,

V(S) ={ps €RY | (ps,Om) € V(N };

otherwise,V (S) = {0}. For games iV} only coalitions of size at leasi are decisive.
Also note that’] is the class ofi-agent bargaining problems.

Let p € Rﬁ be apotential agreement. For eachT € N such thati € T, the best
agreement i canreachat T is

A if pr e V(T),
i\ P max{0, 1 | (p—i.t;) € V(T)} otherwise

Let S € N andi € S. Theoutsideoption of i in S is
d¥(V,p)=maxa] (V,p)|ieT andT e N'\ {S}},

the best agreement he can reach outsid€he outside option vector of S is d5(V, p) =
(d3(V, p))ies. Foreacts e NV, f5: V"g" xRS — RY is thebargaining rule of coalition s.
For eachs e V, f*5 satisfies

(i) (Pareto optimality) if 45 € V(S), fS5(V(S),d5) € a(V(S)),
(ii) (strong individual rationality) if d5 € int(V(S)), fS(V(S),d’) > d5 and ifdS e
IV(S). fEV(S).d%) =d5,
(iii) (continuity) £ is a continuous function af’, and
(iv) (agreeingto disagree) if d5 ¢ V(S), fS(V(S),dS) =d>.

3v(©)is strictly comprehensive if for eache V(S§) andy € Ri such thaty < x, y € V(S) and there is
z € V(S) such that; > y.
4 Note that the intersection af (S) with the boundary OI’&fr belongs to itV (S)).
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Let f ={f5| S e N} and letF be the set all suclf.

A multicoalitional bargaining problemis a couple(V, f) € V" x F. Bennett (1997)

defines a solution to such problems to be a fixed point of the process of determining
potential agreements and corresponding outside optionsBérett rule B: V" x F —
RY is defined as follows: for eactV, f) € V" x F andp € RY, p € B(V, f) if for
eachS e NV, ps = f5(V(S),d5(V, p)). Theextreme-Bennett rule EB: V" x F — RY is
defined as follows: foreaatV, f) € V" x Fandp € Rﬁ, p € EB(V, f)ifforeachsS e NV,
ps = 5(V(S),d5(V, p)) andps =dS(V, p). Note thatEB C B.

For eachi € N, let A;:Ry — R be an increasing continuous function such that
Ai(0) =0.Letr = (A1, ..., 1,). Let A be the set of all such function tuples. For each A
andV € V", A(V) is defined as follows: for eachie N, As(V(S)) ={A(p) | p € V(S)}.

A multicoalitional bargaining ruleF : V" x F — Rﬁ satisfiesordinal invariance if for
each(V, f) e V' x Fandre A, A(F(V, f)) = F(A(V), f).

3. Extreme-Bennett rule

We start with a review of Bennett's (1997) main theorem which, in several aspects,
is more general than this version. Bennett originally discusses payoff configurations and
shows that at anBennett solution they reduce to payoff profiles. For expositional purposes,
we use this property in our definition.

Theorem 1 (Bennett, 1997)For each (V, f) e V" x F, B(V, f) # (. Moreover, for each
peB(V, fyandi € N, thereis S € N suchthati € S and pg € V(S).

We first observe that in Bennett solution, a coalition cannot improve upon the outside
options of its members if and only if the members’ outside options are equal to their
Bennett payoffs.

Lemma2.Let (V, f) e V' x F.Let pe B(V, f)and S e N. Then, dS(V, p) ¢ int(V (S))
ifand only if ps =dS(V, p).

Proof. Sincep € B(V, f), for eachS e N p; = fS(V(S),d5(V, p)). Let S e N and
dS(V, p) ¢ int(V(S)). If d5(V, p) € V(S), by strong individual rationality off* and
by strict comprehensiveness Bi(S)ps = d5(V, p). If d5(V, p) ¢ V(S), by agreeing to
disagreeps = d5(V, p).

Now let S € N and ps = d5(V, p). Supposel®(V, p) € int(V(S)). Then, by Pareto
optimality ps = fS5(V(S),d5(V, p)) #d5(V, p), a contradiction. O

This observation comes handy in the proof of the following result.

Theorem 3. The extreme-Bennett rule, EB, is ordinally invariant
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Proof. Let (V, f) e V" x F andi € A. Let p e EB(V, f). Then, for eacls e V,
ps=r5(V(S).d5(V. p)) =d5(V. p).

Step 1. For eachl’ € V' such that € T, a;(A(V), A(p)) = Ai(al (V, p)).

Casel (pr € V(T)). Thenir(pr) € A7 (V(T)) andal.T(V, p) = pi. The former implies
al (M(V), M(p)) = 1i(pi). Thereforea! (A(V), A(p)) = 1;(a] (V, p)).

Case 2 (pr ¢ V(T)). Thenir(pr) ¢ Ar(V(T)). In this casea! (V, p) = max0, g; |
(qi, pr\i) € V(T)}. Therefore,al.T(V, p) = q; for eachg; € Ry such that(g;, pr\;) €
V(T). Sincej; is increasing; (a,-T(V, P)) = Xi(gi). Now (¢;, pr\;) € V(T) if and only
if (Ai(g:), Ar\i(pr\i)) € AT (V(T)). Thus,

ri(al (V. p)) =max{0,1 | (t;, Arvi(pr\0) € Ar (VD)) } = a] (x(V), A(p)).

Step 2. For eachS € A such that € S, d¥(A(V), A(p)) = 1i(d>(V, p)).
d¥ (A:(V), (p)) =max{a] (M(V), A(p)) | i € T andT # S}
=xi(max{al (V, p) |i € T andT # S}) = A (d} (V, p)).
Step 3. For eachS e NV, As(ps) =d5(A(V), A(p)).
Fori €S, pi=df(V, p). By Step 2. (p;) = :i(dF(V, p)) = df (\(V), 1(p)).
Step 4. For eachS e NV, As(ps) ¢ int(As(V (S))).
Casel(ps ¢ V(S))- Thenis(ps) ¢ As(V(S)). Thus,ks(ps) ¢ int(As(V(S))).
Case 2 (ps € V(S)). Then,ps € aV (S). Thus, there is ngs € V(S) such thays > ps.
Since for eachi € S, A; is increasing, there is ngs € V(S) such thatis(gs) > As(ps).

Sincegs € V(S) if and only if As(gs) € As(V (S)), there is narg € Ag(V (S)) such that
ts > As(ps). Thus,As(ps) ¢ int(V(S)).

Step 5. A(p) € EB(A(V), f).

By Steps 3 and 4, for eacl € N, d5(A(V), A(p)) ¢ int(As(V(S))). Thus, by
Lemma2,fS(as(V(S)),dS(A(V), A(p)) =dS(A(V), A(p)) = As(ps). This, by definition
implies thati(p) € EB(A(V), f). O

We next demonstrate that tleetreme-Bennett rule may be empty-valued.

Examplel. Let N = {1, 2, 3}. Letv(12) = 3 andv(13) = v(23) = 1. For eacts € N such
that|S| # 2, letv(S) = 0. For eachs e NV, let

V(S) = {ps eR} /Y pi< v(S)}.
S
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Uz

S S  F2(V(12),d2(V, p))

D3 A D1

us
Fig. 1. Construction of Example 1.

The unique Bennett solution to this problemyis= (f12(V (12), (1, 1)), 0) (see Fig. 1).
Since(1, 1) € int(V(12)) and f12 is strongly individually rationalp is not an extreme-
Bennett solution to this problem.

However, for an interesting class of problems, txereme-Bennett rule is not only
nonempty-valued, but also coincides with tBennett rule. Therefore, on this subclass,
the Bennett rule itself is ordinally invariant.

Theorem 4. Let m e N satisfy n/2 <m < n. If (V, f) e VI x F, then EB(V, f) =
BV, f).

Proof. Let (V, f) € Vj, x F. Note that by definitionEB(V, f) € B(V, f). For the
opposite inclusion, lep € B(V, f). If for eachS e N' ps = d5(V, p), p € EB(V, f).
Let |S| <m. If |S| <m, V(S)= {0} and the result follows from Lemma 2. Now let
|S| > m. Supposes # d5(V, p). Then by Lemma 245 (V, p) € int(V(S)) and by Pareto
optimality ps € a(V(S)).

First let |S| > m. Let T C S with |T| = m. Then, for eachi € T d!(V, p) > p;.
Sincepr = fT(V(T),dT (V, p)), strong individual rationality implies that for eacke T
pi = dl-T(V, p). Therefore,pr = d” (V, p). Then by Lemma 2p7 ¢ int(V(T)). Since
pseV(S), T cS,and|T|=m, pr € V(T). Hence,pr € 3(V(T)). Therefore, for each
i € S\ T p; =0. Note that for each e S thereis al' C S\ {i} such thaiT| = m. This
implies that for each € § p; = 0, contradicting/ (S) # {0} andps € 3(V (S)).

Now let |S| = m. Then, by strong individual rationality, for eacte S p; > dl.S(V, D).
Let j ¢ S. By Theorem 1, there i$ € N suchthatj e T andpy € V(T). If TN S # 0,
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since for each e T NS p; > d>(V, p) pr ¢ V(T). SOT NS = @. But then|T| < m
and therefore/ (T') = {0}. Thus, for eacly ¢ S p; =0. LetT # S be such thalT' | = m.
Sincepr ¢ V(T) and for eachj e T\ S, p; =0, (prns; Or\s) € V(T). SinceV € V)",
this implies that(prns, On\(7ns)) ¢ V (V). By the same reasaprns, Os\7) ¢ V(S). By
comprehensiveness 8f(S), ps ¢ V(S), a contradiction. O

Theorem 4 assumes decisive coalitions to be majoritiesii.e.n/2). This, however, is
a natural assumption since, otherwise, multiple decisive coalitions can simultaneously form
and contradict to each other. Alssirong individual rationality of individual coalitions’
bargaining rules is essential for Theorem 4. We next demonstrate that when it is replaced
with weak individual rationality (i.e.fS(V (S), d%) > d%), the two rules do not coincide.

Example 2. Let N = {1, 2, 3}. For eachS e NV, if |S| < 2, let V(S) = {0}; otherwise,
let V(S) ={ps € Ri | > gpi =1}. Let p = (1,1,0). The payoff vectorp is a Bennett
solution for weakly individually rational bargaining rules. However, for coalit®a-
{2, 3} the outside option vector i#5(V, p) = (0, 0) is not equal to the agreement point
p=(10).

4. Bennett and the Shapley—Shubik rules

We first define the (three-ager®@)apley—Shubik rule. Let N = {1, 2, 3} and(V(N), 0)
be a bargaining problem. Let® € RY satisfy {(x?, x2,0), (x2,0,x9), (0, x3,x2)}
d(V(N)). Next, let 0< y0 < x0 satisfy{ (7, y9, x9), (0, x3, ¥9), (7, ¥3, y3)} CA(V(N))
(see Fig. 2). Iterating in this manner, for edch N let x* andy* satisfy

U2

Uy

Fig. 2. Constructing the Shapley—Shubik solutief:and©.
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U2

Ui

u3
Fig. 3. Constructing the Shapley—Shubik solutioh:

{(e1 x5, ¥5 1), (1, ¥5 5 x5), (5 x5, 65), (%, ¥5. x5), (0f, x5, ¥5),

(x1. ¥3, ¥5)} CA(V(V))

(see Fig. 3). For eache N, x* andy* are uniquely defined. Thghapley—Shubik solution
to V(N) is the unique limit of both sequences’} and{y¥}.

As previously discussed, each bargaining probl@ni)N), 0) is associated with a game
Vin Vg’. Multicoalitional problems obtained from such games have a uniBpnaett
solution that satisfies certain properties:

Lemmab. Let [N|=3and (V, f) € Vg x F.Then B(V, f)={p}issuchthat (p1, p2, 0),
(p1,0, p3), and (0, p2, p3) areall Pareto optimal in V(N).

Proof. Let p € B(V, f).
Step 1. For each, j € Npyi jy € 9(V{i, j})).

Supposepy;, jy ¢ d(V({i, j})). By Pareto optimality off"/}, p; ;; ¢ V({i, j}). Since
Ve Vg, (pi.j), 0 ¢ V(N). Therefore,p ¢ V(N). Moreover, by agreeing to disagree,
d“(V,p) = pyu j;. Now supposep; = 0. Then p; > 0. This implies p; ¢ V(j).
Since bothV ({i, j}) and V({j, k}} are projections oV (N), (O, p;) ¢ V{i, j}) implies
(pj,0) ¢ V{j, k}). Thereforep; iy ¢ V({j, k}). But then there is no feasible coalition in
which agentj getsp;. This contradictp being aBennett solution to (V, f). Therefore,
pii.j) > 0.
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Uz

T3V, p) = F3V(13),dB3(V, p))

ug

Fig. 4. In Lemma5{p} = B(V, ) =0B(V, f).

Since pi jy € VUi, j}), p ¢ V(N), and p; j; > 0 we havepy i € V'({i,k}) and
pii.ky € V({j, k}). Since{i, k} is the only feasible coalition that containsd,.{”k}(v, p) <
pi. Sincek getspy in both{i, k} and{j, k}, d,fi’k}(u, p) = pi. But these contradict strong
individual rationality of f {4}

Step 2. |B(V, f)|=1.

By Step 1,p € B(V, f) implies{(p1, p2,0), (p1.0, p3), (0, p2, p3)} C d(V(N)). For
unigueness, let* = max{b; € Ry | (b;,0_;) € V(N)} be the highest utility agemtcan get
in V(N).Fori € {1, 2} let f;+1:[0, ] — R be defined aéx;, fi+1(x;)) € 9(V(i,i+1)).
Let f1:[0, b3] — R4 be defined agf1(x3), x3) € 3(V (1, 3)). By strict comprehensiveness
of V(N), all these functions are well-defined. Moreover they are continuous an decreasing.
Now let f = f1 o fzo f2. Then, f is a continuous, decreasing function 53] and
it satisfies f(0) = b7 and f(b7) = 0. Therefore, it has a unique fixed poigt;. Then
p2 = f2(p1) andps = f3(p2) are also uniquely defined.o

Next, we present the main result of this section.

Proposition 6. Let [N| =3 and (V, f) € vg x F. The Shapley—Shubik solution x of
(V(N), 0) isthe limit of a sequence of unique Bennett solutions.

Proof. Let {x*} and {y*} be the sequences defining the Shapley—Shubik solution
to (V(N),0). Let (V, f) be the multicoalitional bargaining problem associated with
(V(N),0). Let VO = V. By Lemma 5, the problemiv®, f) has a uniqudennett solu-
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U2

31

Fig. 5. Constructingp0 and:9 in the proof of Proposition 6.

tion. Let {p°} = B(VO, f). Note that{(p{, p3, 0), (p, 0, p9). (0, p3, P} C I(VO(N)).
Therefore pg = x°.

Let U° be defined as follows. Fa§ € A such that|S| = 2, let U%(S) = {s e R |
fori ¢S, (s,p%) € VO(N)}. Let U%N) = {0} and for each € N, let U%({i}} = {O}.
The proof of Lemma 5 can be used to show that the uniglie= B(U?, f) satisfies
(2,19, p9), (12, p3,19), (9. 13,19} C 3(V(N)). Therefores® = yO (see Fig. 5).

Given %, let the problem(V1(N),0) be defined asVi(N) = {x e RY | x +
19 € VO(N)} (see Fig. 6). Let(VL, f) be the multicoalitional problem associated
with (V1(N),0). By Lemma 5,(V%, f) has a uniqueBennett solution. Let {¢l} =
B(VY(u), f). Then,{(¢1.43.0). (41,0, 43)., (0.43,43)} C AI(VL(N)). Let pt =g* +/°.
Then,{(p}. p3. 1), (p1. 19, pD). (12, p3, p2)} C 3(VO(N)). Thus p! = x1. Continuing in
this manner, for each € N pk = x* andr* = y¥, the desired conclusion.o

5. Conclusion

Standard bargaining solutions to allocation problems are manipulable via cardinal utility
information. However, such solutions require a unanimous agreement. If, on the other hand
the agreement of a majority is sufficient to implement an allocation, our results imply
that theBennett solutions to the resulting multicoalitional problem are immune to such
manipulation.
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)
U2

Uy

Fig. 6. The reduced problem is defined 4y

The Bennett rule is descriptive rather than normative: it does not rule out any outcome
on the basis of desirability. Thextreme-Bennett rule, since it isordinally invariant, is
a more desirable refinement. However, further axiomatic study is needed to analyze the
implications of other desirable properties. Also, the relation betweerBéneett and
Shapley—Shubik rules may be useful in extending the latter’s definition to more than three
agents. Finally, the noncooperative interpretation of Beanett rule may be useful in
constructing a game that implements fnapley—Shubik rule.
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