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Abstract

A multicoalitional bargaining problem is a non-transferable utility game and for each coalit
bargaining rule. We look for ordinally invariant solutions to such problems and discover a su
of Bennett’s (1997, Games Econ. Behav. 19, 151–179) that satisfies the property. On a s
of problems that is closely related to standard bargaining problems and allocation problem
majority decision-making, the two rules coincide. Therefore, Bennett solutions to such pro
are immune to misrepresentation of cardinal utility information. We also show that Shapley–S
solution to any bargaining problem is the limit of a sequence of unique Bennett solutions to ass
multicoalitional problems.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In an ordinal theory of bargaining, it is essential that the physical bargaining out
remains invariant under equivalent utility representations of the agents’ prefere
A property called ordinal invariance formulates this idea for bargaining rules. It is m
stronger than the scale invariance property of Nash (1950) and is violated by all
well-known bargaining rules.

In this paper, we look for ordinally invariant solutions tomulticoalitional bargaining
problems: these are environments where several interrelated bargaining processes s
neously take place. Formation of a coalitional government in a parliamentary system
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in an exchange economy, formation of jurisdictions, and production of public good
local public goods economy are a few of the many examples to multicoalitional barga

Formally, a multicoalitional bargaining problem is a non-transferable utility game
for each coalition, a bargaining rule which summarizes how bargaining takes plac
how it is resolved in that coalition. Unlike in standard bargaining theory, no exoge
disagreement outcome is specified. Rather, the disagreement payoffs for the memb
coalition are endogenously determined by their best potential agreement in other coa

The literature on multicoalitional bargaining starts with Binmore (1985) who analy
particular class of three-agent bargaining problems. A different analysis of the sam
is given by Bennett and Houba (1992). Bennett (1987, 1997) presents a general form
of multicoalitional bargaining problems and proposes a solution rule (hereafter, theBennett
rule). She also provides a very appealing noncooperative interpretation for this rule.

If, in a multicoalitional problem, the bargaining rules used by individual coalit
violate ordinal invariance, one might predict the “multicoalitional solution” to viola
the property as well. We, however, show that even then, a subset of Bennett so
(hereafter, theextreme-Bennett solutions) remains ordinally invariant. At extreme-Benn
solutions, the agents’ conjectures on what they can achieve in alternative coalitio
so high that no formed coalition can offer its members more than these conje
disagreement payoffs. It is this feature that generates their ordinal invariance and
them “extreme” among all Bennett solutions of the problem.

Unfortunately, there are problems for which the extreme-Bennett rule is empty-va1

Nevertheless, we discover a subclass of problems for which the extreme-Bennett rul
only nonempty-valued, but it also coincides with the Bennett rule. That is, on this sub
the Bennett rule itself is ordinally invariant. This subclass turns out to be quite intere
since

(i) each problem in this class has a direct link to bargaining problems; and
(ii) any allocation problem with majority decision-making corresponds to a multic

tional bargaining problem in this class.

It then follows from ordinal invariance that Bennett solutions to such allocation prob
are immune to manipulation via cardinal utility information: competition to be a mem
of the winning coalition rules out any possibility of manipulation.

The literature on ordinal invariance starts with Shapley (1969) who shows tha
two agents, no strongly individually rational bargaining rule satisfies this property. L
a three-agent bargaining rule (hereafter, theShapley–Shubik rule) satisfying both propertie
appears in Shubik (1982). Kıbrıs (2001, 2002) presents two characterizations
suggest this rule to be the ordinal counterpart of both the Nash (1950) and the
and Smorodinsky (1975) bargaining rules.2 While the Shapley–Shubik rule has not be

1 This, however, is solely due to the nature of the coalitions’ cooperative opportunities and not the bar
rules they use to resolve conflicts.

2 This rule uniquely satisfiesordinal invariance, Pareto optimality, symmetry, and a monotonicity propert
(similar to that of Kalai and Smorodinsky). Replacing the latter with an independence property (similar to
Nash) also characterizes the same rule.
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previously discussed in relation to multicoalitional bargaining, it turns out to be intim
related to the Bennett rule as well: we show that the Shapley–Shubik solution
bargaining problem is the limit of an iteratively defined sequence of unique Be
solutions to associated multicoalitional problems.

2. Model

Let N = {1, . . . , n} be the set of agents andN = 2N \ {∅} be the set of coalitions
For eachS ∈ N , the feasible set of coalition S, V (S) ⊂ R

S+ is compact and strictly
comprehensive.3 Assume that for eachi ∈ N, V ({i}) = {0}. The interior (boundary
of V (S) relative to R

S+ is denoted by int(V (S))[∂(V (S))].4 Since V (S) is strictly
comprehensive,∂(V (S)) is equal to the set of Pareto optimal payoff profiles inV (S). Note
that

V :N →
⋃
S∈N

R
S+

is a non-transferable utility (NTU) game. Let Vn be the set of all such games. For ea
m ∈ N , let Vn

m ⊂ Vn be the set of NTU games satisfying the following property: for e
S ∈N , if |S| � m,

V (S) = {
pS ∈ R

S+
∣∣ (pS,0N\s ) ∈ V (N)

};
otherwise,V (S) = {0}. For games inVn

m only coalitions of size at leastm are decisive
Also note thatVn

n is the class ofn-agent bargaining problems.
Let p ∈ R

N+ be a potential agreement. For eachT ∈ N such thati ∈ T , the best
agreement i can reach at T is

aTi (V ,p) =
{
pi if pT ∈ V (T ),

max
{
0, ti

∣∣ (p−i , ti ) ∈ V (T )
}

otherwise.

Let S ∈N andi ∈ S. Theoutside option of i in S is

dS
i (V ,p) = max

{
aTi (V ,p)

∣∣ i ∈ T andT ∈ N \ {S}},
the best agreement he can reach outsideS. Theoutside option vector of S is dS(V,p) =
(dS

i (V ,p))i∈S . For eachS ∈ N , f S :V |S|
|S| ×R

S+ → R
S+ is thebargaining rule of coalitionS.

For eachS ∈ N , f S satisfies

(i) (Pareto optimality) if dS ∈ V (S), f S(V (S), dS) ∈ ∂(V (S)),
(ii) (strong individual rationality) if dS ∈ int(V (S)), f S(V (S), dS) � dS and if dS ∈

∂(V (S)), f S(V (S), dS) � dS ,
(iii) ( continuity) f S is a continuous function ofdS , and
(iv) (agreeing to disagree) if dS /∈ V (S), f S(V (S), dS) = dS .

3 V (S) is strictly comprehensive if for eachx ∈ V (S) andy ∈ R
S+ such thaty � x, y ∈ V (S) and there is

z ∈ V (S) such thatz � y.
4 Note that the intersection ofV (S) with the boundary ofRS+ belongs to int(V (S)).
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Let f = {f S | S ∈N } and letF be the set all suchf .
A multicoalitional bargaining problem is a couple(V ,f ) ∈ Vn × F . Bennett (1997)

defines a solution to such problems to be a fixed point of the process of determ
potential agreements and corresponding outside options. TheBennett rule B :Vn × F →
R

N+ is defined as follows: for each(V ,f ) ∈ Vn × F andp ∈ R
N+ , p ∈ B(V,f ) if for

eachS ∈ N , pS = f S(V (S), dS(V,p)). Theextreme-Bennett rule EB :Vn × F → R
N+ is

defined as follows: for each(V ,f ) ∈ Vn×F andp ∈ R
N+ ,p ∈ EB(V ,f ) if for eachS ∈ N ,

pS = f S(V (S), dS(V,p)) andpS = dS(V,p). Note thatEB ⊂ B.
For eachi ∈ N , let λi :R+ → R+ be an increasing continuous function such t

λi(0)= 0. Letλ = (λ1, . . . , λn). LetΛ be the set of all such function tuples. For eachλ ∈ Λ

andV ∈ Vn, λ(V ) is defined as follows: for eachS ∈ N , λS(V (S)) = {λ(p) | p ∈ V (S)}.
A multicoalitional bargaining ruleF :Vn × F → R

N+ satisfiesordinal invariance if for
each(V ,f ) ∈ Vn ×F andλ ∈ Λ, λ(F (V,f )) = F(λ(V ),f ).

3. Extreme-Bennett rule

We start with a review of Bennett’s (1997) main theorem which, in several asp
is more general than this version. Bennett originally discusses payoff configuration
shows that at anyBennett solution they reduce to payoff profiles. For expositional purpos
we use this property in our definition.

Theorem 1 (Bennett, 1997).For each (V ,f ) ∈ Vn ×F , B(V,f ) �= ∅. Moreover, for each
p ∈ B(V,f ) and i ∈ N , there is S ∈ N such that i ∈ S and pS ∈ V (S).

We first observe that in aBennett solution, a coalition cannot improve upon the outsi
options of its members if and only if the members’ outside options are equal to
Bennett payoffs.

Lemma 2. Let (V ,f ) ∈ Vn ×F . Let p ∈ B(V,f ) and S ∈N . Then, dS(V,p) /∈ int(V (S))

if and only if pS = dS(V,p).

Proof. Sincep ∈ B(V,f ), for eachS ∈ N ps = f S(V (S), dS(V,p)). Let S ∈ N and
dS(V,p) /∈ int(V (S)). If dS(V,p) ∈ V (S), by strong individual rationality off s and
by strict comprehensiveness ofV (S)pS = dS(V,p). If dS(V,p) /∈ V (S), by agreeing to
disagreepS = dS(V,p).

Now let S ∈ N andpS = dS(V,p). SupposedS(V,p) ∈ int(V (S)). Then, by Pareto
optimalitypS = f S(V (S), dS(V,p)) �= dS(V,p), a contradiction. ✷

This observation comes handy in the proof of the following result.

Theorem 3. The extreme-Bennett rule, EB, is ordinally invariant.
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Proof. Let (V ,f ) ∈ Vn ×F andλ ∈ Λ. Letp ∈ EB(V ,f ). Then, for eachS ∈N ,

pS = f S
(
V (S), dS(V,p)

) = dS(V,p).

Step 1. For eachT ∈N such thati ∈ T , ai(λ(V ),λ(p)) = λi(a
T
i (V ,p)).

Case 1 (pT ∈ V (T )). ThenλT (pT ) ∈ λT (V (T )) andaTi (V ,p) = pi . The former implies
aTi (λ(V ),λ(p)) = λi(pi). Therefore,aTi (λ(V ),λ(p)) = λi(a

T
i (V ,p)).

Case 2 (pT /∈ V (T )). Then λT (pT ) /∈ λT (V (T )). In this caseaTi (V ,p) = max{0, qi |
(qi,pT \i ) ∈ V (T )}. Therefore,aTi (V ,p) � qi for eachqi ∈ R+ such that(qi,pT \i ) ∈
V (T ). Sinceλi is increasing,λi(aTi (V ,p)) � λi(qi). Now (qi,pT \i ) ∈ V (T ) if and only
if (λi(qi), λT \i (pT \i )) ∈ λT (V (T )). Thus,

λi
(
aTi (V ,p)

) = max
{
0, ti

∣∣ (
ti , λT \i (pT \i )

) ∈ λT
(
V (T )

)} = aTi
(
λ(V ),λ(p)

)
.

Step 2. For eachS ∈N such thati ∈ S, dS
i (λ(V ),λ(p)) = λi(d

S
i (V ,p)).

dS
i

(
λ(V ),λ(p)

) = max
{
aTi

(
λ(V ),λ(p)

) ∣∣ i ∈ T andT �= S
}

= λi
(
max

{
aTi (V ,p)

∣∣ i ∈ T andT �= S
}) = λi

(
dS
i (V ,p)

)
.

Step 3. For eachS ∈N , λS(pS) = dS(λ(V ),λ(p)).

For i ∈ S, pi = dS
i (V ,p). By Step 2,λi(pi) = λi(d

S
i (V ,p)) = dS

i (λ(V ),λ(p)).

Step 4. For eachS ∈N , λS(pS) /∈ int(λS(V (S))).

Case 1 (pS /∈ V (S)). Then,λS(pS) /∈ λS(V (S)). Thus,λS(pS) /∈ int(λS(V (S))).

Case 2 (pS ∈ V (S)). Then,pS ∈ ∂V (S). Thus, there is noqS ∈ V (S) such thatqS > pS .
Since for eachi ∈ S, λi is increasing, there is noqS ∈ V (S) such thatλS(qS) > λS(pS).
SinceqS ∈ V (S) if and only if λS(qS) ∈ λS(V (S)), there is notS ∈ λS(V (S)) such that
tS > λS(pS). Thus,λS(pS) /∈ int(V (S)).

Step 5. λ(p) ∈ EB(λ(V ), f ).

By Steps 3 and 4, for eachS ∈ N , dS(λ(V ),λ(p)) /∈ int(λS(V (S))). Thus, by
Lemma 2,f S(λS(V (S)), dS(λ(V ),λ(p)) = dS(λ(V ),λ(p)) = λS(pS). This, by definition
implies thatλ(p) ∈ EB(λ(V ), f ). ✷

We next demonstrate that theextreme-Bennett rule may be empty-valued.

Example 1. LetN = {1,2,3}. Let v(12) = 3 andv(13) = v(23) = 1. For eachS ∈ N such
that|S| �= 2, letv(S) = 0. For eachS ∈ N , let

V (S) =
{
pS ∈ R

S+
/∑

pi � v(S)

}
.

S
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Fig. 1. Construction of Example 1.

The unique Bennett solution to this problem isp = (f 12(V (12), (1,1)),0) (see Fig. 1).
Since(1,1) ∈ int(V (12)) andf 12 is strongly individually rational,p is not an extreme
Bennett solution to this problem.

However, for an interesting class of problems, theextreme-Bennett rule is not only
nonempty-valued, but also coincides with theBennett rule. Therefore, on this subclas
theBennett rule itself is ordinally invariant.

Theorem 4. Let m ∈ N satisfy n/2 < m < n. If (V ,f ) ∈ Vn
m × F , then EB(V ,f ) =

B(V,f ).

Proof. Let (V ,f ) ∈ Vn
m × F . Note that by definition,EB(V ,f ) ⊆ B(V,f ). For the

opposite inclusion, letp ∈ B(V,f ). If for eachS ∈ N pS = dS(V,p), p ∈ EB(V ,f ).
Let |S| < m. If |S| < m, V (S) = {0} and the result follows from Lemma 2. Now l
|S| � m. SupposepS �= dS(V,p). Then by Lemma 2,dS(V,p) ∈ int(V (S)) and by Pareto
optimalitypS ∈ ∂(V (S)).

First let |S| > m. Let T ⊂ S with |T | = m. Then, for eachi ∈ T dT
i (V ,p) � pi .

SincepT = f T (V (T ), dT (V,p)), strong individual rationality implies that for eachi ∈ T

pi � dT
i (V ,p). Therefore,pT = dT (V,p). Then by Lemma 2,pT /∈ int(V (T )). Since

pS ∈ V (S), T ⊂ S, and|T | = m, pT ∈ V (T ). Hence,pT ∈ ∂(V (T )). Therefore, for each
i ∈ S \ T pi = 0. Note that for eachi ∈ S there is aT ⊆ S \ {i} such that|T | = m. This
implies that for eachi ∈ S pi = 0, contradictingV (S) �= {0} andpS ∈ ∂(V (S)).

Now let |S| = m. Then, by strong individual rationality, for eachi ∈ S pi > dS
i (V ,p).

Let j /∈ S. By Theorem 1, there isT ∈ N such thatj ∈ T andpT ∈ V (T ). If T ∩ S �= ∅,
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int
since for eachi ∈ T ∩ S pi > dS
i (V ,p) pT /∈ V (T ). So T ∩ S = ∅. But then|T | < m

and thereforeV (T ) = {0}. Thus, for eachj /∈ S pj = 0. LetT �= S be such that|T | = m.
SincepT /∈ V (T ) and for eachj ∈ T \ S, pj = 0, (pT∩S;0T \S) /∈ V (T ). SinceV ∈ Vn

m,
this implies that(pT∩S,0N\(T∩S)) /∈ V (N). By the same reason(pT∩S,0S\T ) /∈ V (S). By
comprehensiveness ofV (S), pS /∈ V (S), a contradiction. ✷

Theorem 4 assumes decisive coalitions to be majorities (i.e.,m> n/2). This, however, is
a natural assumption since, otherwise, multiple decisive coalitions can simultaneous
and contradict to each other. Also,strong individual rationality of individual coalitions’
bargaining rules is essential for Theorem 4. We next demonstrate that when it is re
with weak individual rationality (i.e.,f S(V (S), dS) � dS ), the two rules do not coincide

Example 2. Let N = {1,2,3}. For eachS ∈ N , if |S| < 2, let V (S) = {0}; otherwise,
let V (S) = {pS ∈ R

S+ | ∑
S pi = 1}. Let p = (1,1,0). The payoff vectorp is a Bennett

solution for weakly individually rational bargaining rules. However, for coalitionS =
{2,3} the outside option vector isdS(V,p) = (0,0) is not equal to the agreement po
p = (1,0).

4. Bennett and the Shapley–Shubik rules

We first define the (three-agent)Shapley–Shubik rule. Let N = {1,2,3} and(V (N),0)
be a bargaining problem. Letx0 ∈ R

N+ satisfy {(x0
1, x

0
2,0), (x0

1,0, x0
3), (0, x

0
2, x

0
3)} ⊂

∂(V (N)). Next, let 0� y0 � x0 satisfy{(y0
1, y

0
2, x

0
3), (y

0
1, x

0
2, y

0
3), (x

0
1, y

0
2, y

0
3)} ⊂ ∂(V (N))

(see Fig. 2). Iterating in this manner, for eachk ∈ N let xk andyk satisfy

Fig. 2. Constructing the Shapley–Shubik solution:x0 andy0.
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{(
xk

1, x
k
2, y

k−1
3

)
,
(
xk

1, y
k−1
2 , xk

3

)
,
(
yk−1

1 , xk
2, x

k
3

)
,
(
yk

1, y
k
2, x

k
3

)
,
(
yk

1, x
k
2, y

k
3

)
,(

xk
1, y

k
2, y

k
3

)} ⊂ ∂
(
V (N)

)
(see Fig. 3). For eachk ∈ N, xk andyk are uniquely defined. TheShapley–Shubik solution
to V (N) is the unique limit of both sequences{xk} and{yk}.

As previously discussed, each bargaining problem,(V (N),0) is associated with a gam
V in V3

2. Multicoalitional problems obtained from such games have a uniqueBennett
solution that satisfies certain properties:

Lemma 5. Let |N | = 3 and (V ,f ) ∈ V3
2 ×F . Then B(V,f ) = {p} is such that (p1,p2,0),

(p1,0,p3), and (0,p2,p3) are all Pareto optimal in V (N).

Proof. Let p ∈ B(V,f ).

Step 1. For eachi, j ∈ Np{i,j} ∈ ∂(V ({i, j })).

Supposep{i,j} /∈ ∂(V ({i, j })). By Pareto optimality off {i,j},p{i,j} /∈ V ({i, j }). Since
V ∈ V3

2, (p{i,j},0) /∈ V (N). Therefore,p /∈ V (N). Moreover, by agreeing to disagre
d{i,j}(V ,p) = p{i,j}. Now supposepi = 0. Then pj > 0. This impliespj /∈ V (j).
Since bothV ({i, j }) andV ({j, k}} are projections ofV (N), (0,pj ) /∈ V {i, j }) implies
(pj ,0) /∈ V ({j, k}). Therefore,p{j,k} /∈ V ({j, k}). But then there is no feasible coalition
which agentj getspj . This contradictsp being aBennett solution to (V ,f ). Therefore,
p{i,j} � 0.
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Fig. 4. In Lemma 5,{p} =B(V,f ) = OB(V ,f ).

Sincep{i,j} /∈ V ({i, j }), p /∈ V (N), and p{i,j} � 0 we havep{i,k} ∈ V ({i, k}) and

p{j,k} ∈ V ({j, k}). Since{i, k} is the only feasible coalition that containsi, d{i,k}
i (V ,p) <

pi . Sincek getspk in both {i, k} and{j, k}, d{i,k}
k (u,p) = pk . But these contradict stron

individual rationality off {i,k}.

Step 2. |B(V,f )| = 1.

By Step 1,p ∈ B(V,f ) implies{(p1,p2,0), (p1,0,p3), (0,p2,p3)} ⊂ ∂(V (N)). For
uniqueness, letb∗ = max{bi ∈ R+ | (bi,0−i ) ∈ V (N)} be the highest utility agenti can get
in V (N). Fori ∈ {1,2} letfi+1 : [0, b∗

i ] → R+ be defined as(xi, fi+1(xi)) ∈ ∂(V (i, i+1)).
Letf1 : [0, b∗

3] → R+ be defined as(f1(x3), x3) ∈ ∂(V (1,3)). By strict comprehensivenes
of V (N), all these functions are well-defined. Moreover they are continuous an decre
Now let f = f1 ◦ f3 ◦ f2. Then,f is a continuous, decreasing function on[0, b∗

1] and
it satisfiesf (0) = b∗

1 and f (b∗
1) = 0. Therefore, it has a unique fixed point,p1. Then

p2 = f2(p1) andp3 = f3(p2) are also uniquely defined.✷
Next, we present the main result of this section.

Proposition 6. Let |N | = 3 and (V ,f ) ∈ V3
2 × F . The Shapley–Shubik solution x of

(V (N),0) is the limit of a sequence of unique Bennett solutions.

Proof. Let {xk} and {yk} be the sequences defining the Shapley–Shubik solu
to (V (N),0). Let (V ,f ) be the multicoalitional bargaining problem associated w
(V (N),0). Let V 0 = V . By Lemma 5, the problem(V 0, f ) has a uniqueBennett solu-
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Fig. 5. Constructingp0 andt0 in the proof of Proposition 6.

tion. Let {p0} = B(V 0, f ). Note that{(p0
1,p

0
2,0), (p0

1,0,p0
3), (0,p

0
2,p

0
3)} ⊂ ∂(V 0(N)).

Therefore,p0 = x0.
Let U0 be defined as follows. ForS ∈ N such that|S| = 2, let U0(S) = {s ∈ R

S+ |
for i /∈ S, (s,p0

i ) ∈ V 0(N)}. Let U0(N) = {0} and for eachi ∈ N , let U0({i}} = {0}.
The proof of Lemma 5 can be used to show that the unique{t0} = B(U0, f ) satisfies
{(t01, t02,p0

3), (t
0
1 ,p

0
2, t

0
3), (p

0
1, t

0
2, t

0
3)} ⊂ ∂(V (N)). Therefore,t0 = y0 (see Fig. 5).

Given t0, let the problem(V 1(N),0) be defined asV 1(N) = {x ∈ R
N+ | x +

t0S ∈ V 0(N)} (see Fig. 6). Let(V 1, f ) be the multicoalitional problem associat
with (V 1(N),0). By Lemma 5, (V 1, f ) has a uniqueBennett solution. Let {q1} =
B(V 1)(u), f ). Then,{(q1

1, q
1
2,0), (q1

1,0, q1
3), (0, q

1
2, q

1
3)} ⊂ ∂(V 1(N)). Let p1 = q1 + t0.

Then,{(p1
1,p

1
2, t

0
3), (p

1
1, t

0
2 ,p

1
3), (t

0
1,p

1
2,p

1
3)} ⊂ ∂(V 0(N)). Thusp1 = x1. Continuing in

this manner, for eachk ∈ N pk = xk andtk = yk , the desired conclusion.✷

5. Conclusion

Standard bargaining solutions to allocation problems are manipulable via cardinal
information. However, such solutions require a unanimous agreement. If, on the othe
the agreement of a majority is sufficient to implement an allocation, our results i
that theBennett solutions to the resulting multicoalitional problem are immune to su
manipulation.
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Fig. 6. The reduced problem is defined byt0.

TheBennett rule is descriptive rather than normative: it does not rule out any outc
on the basis of desirability. Theextreme-Bennett rule, since it isordinally invariant, is
a more desirable refinement. However, further axiomatic study is needed to analy
implications of other desirable properties. Also, the relation between theBennett and
Shapley–Shubik rules may be useful in extending the latter’s definition to more than t
agents. Finally, the noncooperative interpretation of theBennett rule may be useful in
constructing a game that implements theShapley–Shubik rule.

Acknowledgment

This paper is based on the third chapter of my PhD thesis submitted to the Univer
Rochester. I thank Arzu Ilhan, Leslie Marx, and my advisor, William Thomson for he
comments and suggestions. All errors are on my own responsibility.

References

Bennett, E., 1987. Nash Bargaining Solutions of Multiparty Bargaining Problems. In: Holler, M.J. (Ed.
Logic of Multiparty Systems. Martinus Nijhoff, Dordrecht, Netherlands.

Bennett, E., Houba, H., 1992. Odd man out: bargaining among three players. Working Paper Series. De
of Economics, Johns Hopkins University.

Bennett, E., 1997. Multilateral bargaining problems. Games Econ. Behav. 19, 151–179.



Ö. Kıbrıs / Games and Economic Behavior 46 (2004) 76–87 87

ining.

518.
abanci

ue des
Binmore, K.G., 1985. Bargaining and coalitions. In: Roth, A.E. (Ed.), Game Theoretic Models of Barga
Cambridge Univ. Press, Cambridge, pp. 269–304.

Kalai, E., Smorodinsky, M., 1975. Other solutions to Nash’s bargaining problem. Econometrica 43, 513–
Kıbrıs, Ö., 2001. Characterizing ordinalism and egalitarianism in bargaining: the Shapley–Shubik rule. S

University Economics Discussion Paper, suecdp-01-07.
Kıbrıs, Ö., 2002. Nash bargaining in ordinal environments. Mimeo. Sabanci University.
Nash, J.F., 1950. The bargaining problem. Econometrica 18, 155–162.
Shapley, L., 1969. Utility comparison and the theory of games. In: La Decision: Agrégation et Dynamiq

Ordres de Préférence. CNRS, Paris, pp. 251–263.
Shubik, M., 1982. Game Theory in the Social Sciences. MIT Press, Cambridge, MA. pp. 92–98.


