Simultaneous-move games with mixed strategies

Until now, the strategy of each agent corresponded to a single action. Such strategies in simultaneous-move games are called pure strategies.

Ex: (prisoners' dilemma)
Cooperate

Both pure strategies
Defect

No equilibrium: no pair of actions best response

 to each other
pure strategy in a simultanous-move game $=$ action

$$
\text { also }=\text { expectation on other's action }
$$

Take a step back in time:
Hingis' expectation on other's action is uncertain.
Thus
Hingis' best-response is uncertain

We want to model this uncertainty

To handle these issues, we will introduce:

1. mixed strategies
2.

mixed strategy Nash equilibrium

What is a mixed strategy?

It specifies that a pure strategy be chosen randomly that is,
it assigns probabilities to the agent's pure strategies.

Choose a mixed strategy = choose a probability (of playing) for each pure strategy

A mixed strategy is a probability distribution on pure strategies

Intuition for a mixed strategy

A population of agents (say tennis players)

Interpretation 1:

Some percentage p of them plays DL all the time
The remaining percentage (1-p) of them plays CC all the time

Interpretation 2:

Each agent sometimes plays DL and sometimes plays CC
(p percent of the time)
((1-p) percent of the time)

Example: (chicken game between Mercedes and BMW drivers)

Some Mercedes drivers always Swerve, some always go straight

Example:(tennis game) sometimes DL, sometimes CC

Example: (the chicken game)
I throw a coin. If heads, I swerve; if tails, I go straight.

So a mixed strategy is two probability numbers:
$1 / 2$ for Swerve (in general p for Swerve)
1/2 for Straight (in general 1-p for Straight)

NOTE:

Every pure strategy is a degenerate mixed strategy
It simply says that this pure strategy be chosen 100% of the time.

That is, you assign the probability number 1 to that pure strategy and the probability number 0 to all other strategies.

A (strategic) game with mixed strategies is

1. A set of players N
2. For each player i in N, a set of his strategies:
3. For each player i in N, his payoff function:

Defining mixed strategies

$S_{i} \quad$ the set of pure strategies of player i
$\Pi\left(S_{i}\right) \quad$ the set probability distributions on S_{i}
$=$ the set of mixed strategies of player i
π_{i} in $\Pi\left(S_{i}\right)$ is a typical mixed strategy for i
$\pi_{i}\left(s_{i}\right) \quad$ the probability of player i playing pure strategy s_{i}
$\pi_{i}: S_{i} \rightarrow[0,1]$ is a function such that the sum of $\pi_{i}\left(s_{i}\right)$ numbers is 1

$$
\sum_{s_{i} \in S_{i}} \pi_{i}\left(s_{i}\right)=1
$$

Defining payoffs of mixed strategies

u_{i} (.) player i's payoffs from pure strategies
Example: $\quad u_{i}\left(s_{i}, s_{-i}\right)$
U_{i} (.) player i's payoffs from mixed strategies
Example: $\quad U_{i}\left(\pi_{i}, \pi_{-i}\right)$

Important assumption:
$U_{i}\left(\pi_{i}, \pi_{-i}\right) \quad$ is the expected payoff of i from lottery $\left(\pi_{i}, \pi_{-i}\right)$
it is a weighted average of $u_{i}\left(s_{i}, s_{-i}\right)$ values where the weight of $u_{i}\left(s_{i}, s_{-i}\right)$ is $\pi_{1}\left(s_{1}\right), \pi_{2}\left(s_{2}\right) . \ldots \pi_{n}\left(s_{n}\right)$

The expected payoff of a lottery

Example:
Say you will get payoff X_{1} with probability p_{1}
X_{2} with probability p_{2}
X_{n} with probability p_{n}

Then your expected payoff is the weighted average:

$$
\mathrm{p}_{1} \mathrm{X}_{1}+\mathrm{p}_{2} \mathrm{X}_{2}+\ldots .+\mathrm{p}_{\mathrm{n}} \mathrm{X}_{\mathrm{n}}
$$

gent i's expected payoff from the mixed strategy profile: $\left(\pi_{1}, \ldots, \pi_{n}\right)$

$$
U_{i}\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)=\sum u_{i}\left(s_{1}, \ldots, s_{n}\right) \pi_{1}\left(s_{1}\right) \ldots \pi_{n}\left(s_{n}\right)
$$

The summation is over all pure strategy profiles.

> Agent i’s payoff from the pure strategy profile
> $\left(s_{l}, \ldots, s_{n}\right)$

$$
\pi_{\text {Seles }}(D L)=0.4 \quad \pi_{\text {Seles }}(C C)=0.6
$$

$$
\pi_{\text {Hingis }}(D L)=0.7 \quad \pi_{\text {Hingis }}(C C)=0.3
$$

		HINGIS				
		$\mathbf{0 . 7}$	DL	$\mathbf{0 . 3}$	CC	
SELES	$\mathbf{0 . 4}$	DL	$\mathbf{0 . 2 8}$	50	$\mathbf{0 . 1 2}$	80
	$\mathbf{0 . 6}$	CC	$\mathbf{0 . 4 2}$	90	$\mathbf{0 . 1 8}$	20

$$
\begin{aligned}
U_{i}\left(\pi_{1}, \pi_{2}\right) & =0.2850+0.1280+0.4290+0.1820 \\
\text { Seles } & =65
\end{aligned}
$$

$$
\pi_{l}(D L)=p \quad \pi_{l}(C C)=(1-p)
$$

$$
\pi_{2}(D L)=q \quad \pi_{2}(C C)=(1-q)
$$

$$
U_{i}\left(\pi_{1}, \pi_{2}\right)=
$$

A (strategic) game with mixed strategies is

1. A set of players N
2. For each player i in N,
a set of his pure strategies: $\quad S_{i}$ and from that a set of his mixed strategies: $\Pi\left(S_{i}\right)$
3. For each player i in N,
his payoff function on pure strategies:

Payoffs are no more ordinal

With pure strategies, two games are equivalent if in them players' ranking of outcomes are identical

Ex: prisoner's dilemma and students doing a joint project

This is no more true when mixed strategies are allowed
Because, the players' ranking of lotteries might be different in the two games.

Example:
Consider the lottery which gives 0.25 probability to each cell

Nash equilibrium in mixed strategies:

Specify a mixed strategy for each agent that is, choose a mixed strategy profile with the property that
each agent's mixed strategy is a best response
to her opponents' strategies.

Intuition for mixed strategy Nash equilibrium
It is a steady state of the society in which the frequency of each action is fixed
(with pure strategies it was a fixed action instead $)^{0}$

Seles vs. Hingis: a zero-sum game with no pure strategy Nash eq. What would the expectations be in reality?

Extending the game

Allow mixed strategies π_{H} for Hingis: play DL with probability q and play CC with probability (1-q)

If Seles plays DL, her expected payoff is

$$
U_{\text {Seles }}\left(D L, \pi_{H}\right)=50 q+80(1-q)
$$

If Seles plays CC, her expected payoff is

$$
U_{\text {Seles }}\left(C C, \pi_{H}\right)=90 q+20(1-q)
$$

Extending the game table for the column player An infinite number of new columns

Given a q-choice for Hingis, what will Seles choose?

eles' best responses to different q choices of Hingis:

Against q s.t. $q<0.6 \quad$ Seles plays DL

Against q s.t. $0.6<q \quad$ Seles plays CC

Against $q=0.6 \quad$ Both pure strategies best response

If two pure strategies are both best responses, then any mixture of them is also a best response

Fix $q=0.6$
Then

$$
U_{\text {Seles }}\left(D L, \pi_{H}\right)=U_{\text {Seles }}\left(C C, \pi_{H}\right)=62
$$

Fix a mixed strategy π_{S} for Seles:
play DL with probability p and play CC with probability (1-p)

Seles' expected payoff from $\left(\pi_{S}, \pi_{H}\right)$ is

$$
\begin{aligned}
U_{\text {Seles }}\left(\pi_{S}, \pi_{H}\right) & =p q U_{\text {Seles }}(D L, D L)+p(1-q) U_{\text {Seles }}(D L, C C) \\
& +(1-p) q U_{\text {Seles }}(C C, D L)+(1-p)(1-q) U_{\text {Seles }}(C C, C C) \\
& =p U_{\text {Seles }}\left(D L, \pi_{H}\right)+(1-p) U_{\text {Seles }}\left(C C, \pi_{H}\right) \\
& =p 62+(1-p) 62=62 .
\end{aligned}
$$

Seles' best responses to different q choices of Hingis:

Against q s.t. $q<0.6$
Seles plays $p=1$

Against q s.t. $0.6<q$
Seles plays $p=0$

Against

$$
q=0.6
$$

Seles plays any p in $[0,1]$

The best response curve of Seles:

What will Hingis do?

Fix a mixed strategy π_{S} for Seles: play DL with probability p and play CC with probability (1-p)

If Hingis plays DL, her expected payoff is:

$$
U_{\text {Hingis }}\left(\pi_{S}, D L\right)=100-[50 p+90(1-p)]=100-U_{\text {Seles }}\left(\pi_{S}, D L\right)
$$

f Hingis plays CC, her expected payoff is:
$U_{\text {Hingis }}\left(\pi_{S}, C C\right)=100-[80 p+20(1-p)]=100-U_{\text {Seles }}\left(\pi_{S}, C C\right)$

Extending the game table for the row player
An infinite number of new rows

		HINGIS	
		DL	CC
SELES	DL	50	80
	CC	90	20
	p-Mix	$50 p+90(1-p)$	$80 p+20(1-p)$

iven a p-choice for Seles, what will Hingis choose?

Seles' payoffs (Hingis' payoffs are 100 minus these)

Hingis' payoffs

lingis' best responses to different \mathbf{p} choices of Seles:

Against p s.t. $p<0.7$
Hingis plays CC

Against p s.t. $0.7<p$
Hingis plays DL

Against $\quad p=0.7$
Both pure strategies best response
(=> all mixed strategies best response

Hingis' best responses to different \mathbf{p} choices of Seles:

Against p s.t. $p<0.7$

Against p s.t. $0.7<p$

Against

$$
p=0.7
$$

Hingis plays $q=0$

Hingis plays $q=1$

Hingis plays any q in $[0,1]$

The best response curve of Hingis:

Best response curve of
 Hingis

Best response curve of Seles

Best response curves combined

The mixed strategy Nash equilibrium is

$$
((0.7,0.3),(0.6,0.4))
$$

and the payoff profile resulting from this equilibrium is

$$
(62,100-62)
$$

Tote:

the equilibrium, Seles gets the same expected payoff from DL and C

$$
U_{\text {Seles }}\left(D L, \pi_{H}\right)=U_{\text {Seles }}\left(C C, \pi_{H}\right)=62
$$

imilarly, Hingis gets the same payoff from DL and CC

$$
U_{\text {Hingis }}\left(\pi_{S}, D L\right)=U_{\text {Hingis }}\left(\pi_{S}, C C\right)=100-62
$$

ery Useful Proposition:

If a player is playing a mixed strategy as a best response and if he assigns positive probability to two his actions (say A and B then his expected payoffs from these two actions are equal

roof:

Suppose his expected payoff from A was larger than B
(note that his current payoff is a weighted average of these)
Then he can transfer some probability (i.e. weight) from B to A and acrease his payoff

But this means, his original strategy was not a best response, a ontradiction. So, the expected payoffs of A and B must be equal. ${ }_{38}$

Use this proposition to develop a faster way of finding equilibrium Dixit and Skeath call it: "leave the opponent indifferent" method

		HINGIS		
		DL	CC	q-Mix
SELES	DL	50	80	$50 q+80(1-q)$
	CC	90	20	$90 q+20(1-q)$
	p-Mix	$50 p+90(1-p)$	$80 p+20(1-p)$	

Conterintuitive change in mixture probabilities

Hingis' payoffs from DL has increased: will her q choice increase?

		HINGIS		
		DL	CC	q-Mix
SELES	DL	30	80	$30 q+80(1-q)$
	CC	90	20	$90 q+20(1-q)$
	p-Mix	$30 p+90(1-p)$	$80 p+20(1-p)$	

		DEAN		
		Swerve	Straight	$q-\mathrm{Mix}$
JAMES	Swerve	0, 0	-1, 1	$\begin{gathered} -(1-q)=q-1 \\ (1-q) \end{gathered}$
	Straight	$1,-1$	-2, -2	$\begin{aligned} q-2(1-q) & =3 q-2, \\ -q-2(1-q) & =q-2 \end{aligned}$
	$p-\mathrm{Mix}$	$\begin{gathered} 1-p \\ -(1-p)=p-1 \end{gathered}$	$\begin{aligned} -p-2(1-p) & =p-2 \\ p-2(1-p) & =3 p-2 \end{aligned}$	

Observe 1:

A pure strategy Nash equilibrium of a game in pure strategies, after mixed strategies are allowed,
continues to be an equilibrium
They are now mixed strategy equilibria where agents choose very simple (degenerate) mixed strategies (i.e., play this action with probability 1 and play everything else with probability 0)

Observe 2:

A Nash equilibrium in mixed strategies where each agent plays a pure strategy with probability one,
after mixed strategies are dropped,
continues to be an equilibrium in pure strategies.

		HUMANITIES FACULTY		
		Lab	Theater	q-Mix
SCIENCE FACULTY	Lab	2,1	0,0	$2 q, q$
	Theater	0,0	1,2	$1-q, 2(1-q)$
	p-Mix	$2 p, p$	$1-p, 2(1-p)$	

$\begin{gathered}\text { Science's } \\ \text { Payoff }\end{gathered}$
$\begin{gathered}\text { Sciences } \\ \text { choose } \\ \text { Theater and Lab }\end{gathered}$
0

