MIXED STRATEGIES

when there are

MORE THAN TWO ACTIONS

The best response analysis gets complicated

Get help from the concept of domination

Given a strategic form game with mixed strategies

$$
G=\left(N,\left(\Pi\left(S_{1}\right), \ldots, \Pi\left(S_{n}\right)\right),\left(U_{1}, \ldots, U_{n}\right)\right)
$$

for an Agent i, π_{i} strictly dominates π_{i}^{\prime} if

1. for every strategy profile

$$
\pi_{-i}=\left(\pi_{1}, \ldots, \pi_{i-1}, \pi_{i+1}, \ldots, \pi_{n}\right)
$$

of the agents other than i,

$$
U_{i}\left(\pi_{i}, \pi_{-i}\right)>U_{i}\left(\pi_{i}^{\prime}, \pi_{-i}\right)
$$

Given a strategic form game with mixed strategies

$$
G=\left(N,\left(\Pi\left(S_{1}\right), \ldots, \Pi\left(S_{n}\right)\right),\left(U_{1}, \ldots, U_{n}\right)\right)
$$

Agent i 's pure strategy s_{i} is strictly dominated if
he has a mixed strategy that strictly dominates it, that is,

- There is a mixed strategy π_{i} of agent i such that for every strategy profile

$$
\pi_{-i}=\left(\pi_{1}, \ldots, \pi_{i-1}, \pi_{i+1}, \ldots, \pi_{n}\right)
$$

of the agents other than i,

$$
u_{i}\left(\pi_{i}, \pi_{-i}\right)>u_{i}\left(s_{i}, \pi_{-i}\right)
$$

A pure strategy that is not dominated by pure strategies can be strictly dominated by a mixed strategy:

		HINGIS		
		DL	CC	q-Mix
SELES	DL	50	80	$50 q+80(1-q)$
	CC	100	40	$100 q+40(1-q)$
	Lob	40	100	$40 q+100(1-q)$
	$p-M i x$	$50 p_{1}+100 p_{2}$ $+40\left(1-p_{1}-p_{2}\right)$	$80 p_{1}+40 p_{2}$ $+100\left(1-p_{1}-p_{2}\right)$	

Strictly dominated strategies are never played.
Using this knowledge, you can eliminate some pure strategies.
The simplified game:

		HINGIS		
		DL	CC	q-Mix
SELES	CC	100	40	$100 q+40(1-q)$
	Lob	40	100	$40 q+100(1-q)$
	p-Mix	$100 p_{2}+40\left(1-p_{2}\right)$	$40 p_{2}+100\left(1-p_{2}\right)$	

Weak Domination

Does not really help.
Players can assign positive probability to weakly dominated actions and still play a best response.

What if there is no domination?

ery Useful Proposition:

If a player is playing a mixed strategy as a best response
and if he assigns positive probability to two his actions (say A and B then his expected payoffs from these two actions are equal

		HINGIS		
		DL	CC	q-Mix
SELES	DL	50	80	$50 q+80(1-q)$
	CC	90	20	$90 q+20(1-q)$
	Lob	70	60	$70 q+60(1-q)$
	$p-M i x$	$50 p_{1}+90 p_{2}$ $+70\left(1-p_{1}-p_{2}\right)$	$80 p_{1}+20 p_{2}$ $+60\left(1-p_{1}-p_{2}\right)$	

Seles' best responses to different q choices of Hingis:
gainst $q<0.5 \quad$ Seles plays DL

$$
p_{1}=1 \quad p_{2}=0
$$

gainst $q=0.5 \quad$ Seles mixes DL and Lob any p_{1} in $[0,1] p_{2}=0$
gainst $0.5<q<0.667$
Seles plays Lob

$$
p_{1}=0 \quad p_{2}=0
$$

gainst $q=0.667 \quad$ Seles mixes CC and Lob $\quad p_{1}=0$ any p_{2} in $[0,1$
gainst $q>0.667 \quad$ Seles plays CC

$$
p_{1}=0 \quad p_{2}=1
$$

Claims:

In a Nash equilibrium, Hingis does NOT play

1. $q<0.5$
then Seles plays DL, then Hingis plays DL, contradiction
2. $0.5<q<0.667$
then Seles plays Lob, then Hingis plays CC, contradiction
3. $q=0.667$
then Seles mixes Lob and CC, then Hingis plays CC, contradiction
4. $q>0.667$
then Seles plays CC, then Hingis plays CC, contradiction

When $q=0.5$:

		HINGIS		
		DL	CC	$q-M i x$
SELES	DL	50	80	$50 q+80(1-q)$
	Lob	70	60	$70 q+60(1-q)$
	p-Mix	$50 p_{1}+70\left(1-p_{1}\right)$	$80 p_{1}+60\left(1-p_{1}\right)$	

Nash equilibrium: $q=0.5, p_{2}=0, p_{1}=?$

100 minus Hingis' payoffs from DL and CC (as a function of p_{1})

		HINGIS		
		DL	CC	q-Mix
SELES	DL	50	80	$50 q+80(1-q)$
	CC	90	20	$90 q+20(1-q)$
	Lob	70	50	$70 q+50(1-q)$
	p-Mix	$50 p_{1}+90 p_{2}$ $+70\left(1-p_{1}-p_{2}\right)$	$80 p_{1}+20 p_{2}$ $+50\left(1-p_{1}-p_{2}\right)$	

Question: Is Lob weakly dominated?

eles' best responses to different q choices of Hingis:

Seles plays DL

$$
p_{1}=1 \quad p_{2}=0
$$

Seles mixes DL, CC and Lob any $p_{1} p_{2}$ in $[0,1]$

Seles plays CC

$$
p_{1}=0 \quad p_{2}=1
$$

Claims:

In a Nash equilibrium, Hingis does NOT play

1. $q<0.6$
then Seles plays DL, then Hingis plays DL, contradiction
2. $q>0.6$
then Seles plays CC, then Hingis plays CC, contradiction

How to make $q=0.6$ part of an equilibrium?
Seles must choose a mixed strategy such that Hingis will receive the same payoff from DL and CC

How to make $q=0.6$ part of an equilibrium?
Seles must choose a mixed strategy such that Hingis will receive the same payoff from DL and CC

For this, solve
$50 \mathrm{p}_{1}+90 \mathrm{p}_{2}+70\left(1-\mathrm{p}_{1}-\mathrm{p}_{2}\right)=80 \mathrm{p}_{1}+20 \mathrm{p}_{2}+50\left(1-\mathrm{p}_{1}-\mathrm{p}_{2}\right)$
=>

$$
50 \mathrm{p}_{2}+20=50 \mathrm{p}_{1} \quad \Rightarrow \quad p_{2}=p_{1}-0.4
$$

Now remember that

$$
p_{2}+p_{1}<=1
$$

The mixed strategy Nash equilibria are

$$
\left(\left(p_{1}, p_{2}, 1-p_{1}-p_{2}\right),(0.6,0.4)\right)
$$

p_{1} is between 0.4 and 0.7 and

$$
p_{2}=p_{1}-0.4
$$

NOTE: Even though there is an infinite number of equilibria, the resulting payoff profile is unique: $(62,38)$

A 3x3 game:

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	Mixed
\mathbf{U}	5,9	3,7	4,14	$4+q_{1}-q_{2}$ $14-5 q_{1}-7 q$
\mathbf{M}	4,3	6,4	4,5	$4+2 q_{2}$ $5-2 q_{1}-q_{2}$
\mathbf{D}	3,4	4,6	5,1	$5-2 q_{1}-q_{2}$ $1+3 q_{1}+5 q_{2}$
Mixed	$3+2 p_{1}+p_{2}$ $4+5 p_{1}-p_{2}$	$4-p_{1}+2 p_{2}$ $6+p_{1}-2 p_{2}$	$5-p_{1}-p_{2}$ $1+13 p_{1}+4 p_{2}$	22

1. Is there a pure strategy equilibrium? No
2. Is there a mixed equilibrium where all pure strategies are assigned positive probabilities? That is, where

$$
\begin{array}{llll}
p_{1}>0 & p_{2}>0 & 1-p_{1}-p_{2}>0 \\
q_{1}>0 & q_{2}>0 & 1-q_{1}-q_{2}>0
\end{array}
$$

$p_{1}>0 \quad p_{2}>0 \quad 1-p_{1}-p_{2}>0 \quad$ implies (by our proposition)

$$
\begin{array}{ll}
4+q_{1}-q_{2}=4+2 q_{2} \\
4+q_{1}-q_{2}=5-2 q_{1}-q_{2}
\end{array}
$$

Solving this, one gets $\quad q_{1}=1 / 3 \quad$ and $\quad q_{2}=1 / 9$

The proposition tells us that if Column's q-mix is not this one, Row can't play a mixed strategy of the above kind as a best response.

That is, if there is an equilibrium where Row plays a mixed strategy that satisfies $p_{1}>0 \quad p_{2}>0 \quad 1-p_{1}-p_{2}>0$, then in that equilibrium Col must play $q_{1}=1 / 3$ and $q_{2}=1 / 9$.

$$
\begin{gathered}
q_{1}>0 \quad q_{2}>0 \quad 1-q_{1}-q_{2}>0 \quad \text { implies (by our proposition) } \\
4+5 p_{1}-p_{2}=6+p_{1}-2 p_{2} \\
4+5 p_{1}-p_{2}=1+13 p_{1}+4 p_{2}
\end{gathered} \quad \text { and } \quad \text { a }
$$

Solving this, one gets $\quad p_{1}=7 / 12$ and $p_{2}=-1 / 3$

This is a contradiction. So there is no equilibrium in which Col
plays a mixed strategy where $q_{1}>0 \quad q_{2}>0 \quad 1-q_{1}-q_{2}>0$

What about a mixed strategy where

$$
1-q_{1}-q_{2}=0 \text { but } q_{1}>0 \text { and } q_{2}>0 \text { ? }
$$

Then

$$
\begin{aligned}
& 4+5 p_{1}-p_{2}=6+p_{1}-2 p_{2} \\
& 4+5 p_{1}-p_{2}>1+13 p_{1}+4 p_{2}
\end{aligned}
$$

This can be rewritten as

$$
\begin{aligned}
& p_{2}=2-4 p_{1} \quad \text { and } \\
& p_{2}<3 / 5-8 / 5 p_{1}
\end{aligned}
$$

No p_{1} and p_{2} value simultaneously satisfies these conditions.
So there is no equilibrium where $1-q_{1}-q_{2}=0$ but $q_{1}>0$ and $q_{2}>0$

What about a mixed strategy where

$$
q_{2}=0 \text { but } \mathrm{q}_{1}>0 \text { and } 1-\mathrm{q}_{1}-\mathrm{q}_{2}>0 ?
$$

Then

$$
\begin{aligned}
& 4+5 p_{1}-p_{2}=1+13 p_{1}+4 p_{2} \\
& 4+5 p_{1}-p_{2}>6+p_{1}-2 p_{2}
\end{aligned}
$$

This can be rewritten as

$$
\begin{aligned}
& p_{2}>2-4 p_{1} \quad \text { and } \\
& p_{2}=3 / 5-8 / 5 p_{1}
\end{aligned}
$$

No p_{1} and p_{2} value simultaneously satisfies these conditions.
So there is no equilibrium where $q_{2}=0$ but $q_{1}>0$ and $1-q_{1}-q_{2}>0$

What about a mixed strategy where

$$
q_{1}=0 \text { but } q_{2}>0 \text { and } l-q_{1}-q_{2}>0 \text { ? }
$$

Then

$$
\begin{aligned}
& 4+5 p_{1}-p_{2}<6+p_{1}-2 p_{2} \\
& 6+p_{1}-2 p_{2}=1+13 p_{1}+4 p_{2}
\end{aligned}
$$

and

This can be rewritten as

$$
\begin{array}{ll}
p_{2}<2-4 p_{1} & \text { and } \\
p_{2}=5 / 6-2 p_{1}
\end{array}
$$

Any p_{1} and p_{2} value such that

$$
0 \leq p_{1} \leq 5 / 12 \quad \text { and } \quad p_{2}=5 / 6-2 p_{1}
$$

satisfies this condition.

If Col chooses $q_{1}=0$ but $q_{2}>0$ and $1-q_{1}-q_{2}>0$

Then for Row, U is a dominated strategy.
Thus, in equilibrium, $p_{1}=0$.
Since $p_{2}=5 / 6-2 p_{1} \quad$, this implies $p_{2}=5 / 6$.

This means, Row is assigning a positive probability to both M and D .
For this to be part of an equilibrium, our proposition says

$$
4+2 q_{2}=5-2 q_{1}-q_{2}=5-q_{2}
$$

Solving, we get $q_{2}=1 / 3$.

So the equilibrium is as follows:

$$
((0,5 / 6,1 / 6) \quad, \quad(0,1 / 3,2 / 3))
$$

Collective Action Games

$$
+
$$

Games with a very large number of players

COLLECTIVE ACTION GAMES

- Social problems concerning collective action
- multiple-person games with too many players
- unsatisfactory outcomes
- social interest vs. private incentives

Societies usually have problems in implementing outcomes that are considered to be good for everybody.

Helping the poor
Planting trees and not burning them later
Keeping the environment clean
Obeying the traffic laws

A Simple Example

- Two farmers: need an irrigation project
- it is a pure public good (nonexcludable and nonrival)
like national defense compare it to a private good (like a sandwich)
- who is going to build it?
- Strategies: participate or shirk
- b_{1} and $c_{1}:$ benefit and cost of project when $\mathbf{1}$ person builds
- b_{2} and c_{2} : benefit and cost of project when $\mathbf{2}$ persons build

What is an individual's payoff?
The benefit minus the cost (if she participated)

or

The benefit (if she shirked)

What is the best for the society?
The outcome that maximizes
the sum of individual payoffs
Why sum? (utilitarianism)
Why utilitarianism? Because the Dixit-Skeath book uses it.

What is the best for the society?

- Pareto optimality (Vilfredo Pareto)

An outcome is Pareto-optimal if there is no alternative outcome which gives all agents an at least as high payoff and some agents a higher payoff

- Egalitarianism (John Rawls)
The Egalitarian-optimal outcome maximizes the smallest payoff in the society
- Utilitarianism (John Stuart Mill)
The Utilitarian-optimal outcome maximizes the total payoff in the society
b_{1} c_{1} General Case
$b_{2} \quad c_{2}$

		YOUR NEIGHBOR	
		Build	Not
YOU	Build	$b_{2}-c_{2}, b_{2}-c_{2}$	$b_{1}-c_{1}, b_{1}$
	Not	$b_{1}, b_{1}-c_{1}$	0,0

Utilitarian payoff: your payoff + your neighbor's payoff
Utilitarian optimum: maximizes the utilitarian payoff
Egalitarian payoff: minimum \{your payoff, your neighbor's payoff\}
Egalitarian optimum: maximizes the egalitarian payoff

$$
\begin{array}{ll}
b_{1}=6 & c_{1}=7 \\
b_{2}=8 & c_{2}=4
\end{array}
$$

Prisoners' Dilemma Game

		YOUR NEI GHBOR	
		Build	Not
YOU	Build	4,4	$-1,6$
	Not	$6,-1$	0,0

Utilitarian optimum: (Build,Build)
Egalitarian optimum: (Build,Build)
Pareto optima: (Build,Build), (Not, Build), (Build, Not)
Nash equilibrium: (Not, Not)

$$
\begin{array}{lll}
\mathrm{b}_{1}=6 & \mathrm{c}_{1}=7 & \text { Prisoners' Dilemma Game } \\
\mathrm{b}_{2}=6.3 & \mathrm{c}_{2}=4 &
\end{array}
$$

		YOUR NEIGHBOR	
		Build	Not
YOU	Build	$2.3,2.3$	$-1,6$
	Not	$6,-1$	0,0

Utilitarian optimum: (Build,Not) or (Not,Build)
Egalitarian optimum: (Build, Build)
Pareto optima: (Build,Build), (Not, Build), (Build, Not)
Nash equilibrium: (Not,Not)
$\mathrm{b}_{1}=6$
$\mathrm{c}_{1}=4$
$\mathrm{b}_{2}=8$
$\mathrm{c}_{2}=3$

Chicken Game

		YOUR NEIGHBOR	
		Build	
YOU	Build	5,5	
	Not	6,2	

Utilitarian optimum: (build,build)
Egalitarian optimum: (build,build)
Pareto optima: (Build,Build), (Not, Build), (Build, Not)
Nash equilibrium: (build,not) and (not,build)
$\mathrm{b}_{1}=3$
$\mathrm{c}_{1}=7$

Assurance Game

$\mathrm{b}_{2}=8$
$c_{2}=4$

		YOUR NEIGHBOR		
		Build		
YOU	Build	4,4		
			Not	

Utilitarian optimum: (build,build)
Egalitarian optimum: (build,build)
Pareto optima: (Build,Build)
Nash equilibrium: (build,build) and (not,not)

What about in a large group?

N agents for a public project
An agent's benefit if n people participates: $b(n)$
Cost of participating if n people participates: $c(n)$
Two strategies: Shirk or Participate
An agent's payoff depends on what the others are doing
If n people are participating:
payoff of a shirking agent:
payoff of a participating agent:

$$
\begin{aligned}
& \mathrm{s}(\mathrm{n})=\mathrm{b}(\mathrm{n}) \\
& \mathrm{p}(\mathrm{n})=\mathrm{b}(\mathrm{n})-\mathrm{c}(\mathrm{n})
\end{aligned}
$$

An agent compares $\mathrm{s}(\mathrm{n})$ and $\mathrm{p}(\mathrm{n}+1)$

Social payoff from n participants

$$
T(n)=n p(n)+(N-n) s(n)
$$

The marginal social gain from a one person increase in participants

$$
T(n+1)-T(n)=p(n+1)-s(n) \longrightarrow \begin{aligned}
& \text { Marginal private gain (the part } \\
& \text { that derives individual choice) }
\end{aligned}
$$

$$
+n(p(n+1)-p(n))
$$

$$
+(N-n-1)(s(n+1)-s(n))
$$

The route choice from home to work:
6000 drivers
Two routes from the suburbs to the city
Local route: always takes 45 minutes
Expressway: takes 15 minutes if there are not more than 2000 drivers
After that, increases 0.01 minutes with every additional driver

Want to

model it as a collective-action game
find Nash equilibria
find the social optimum

The route choice game:

Payoff: gain from traffic out of an hour

Shirkers' payoffs (from the local route)

$$
s(n)=15
$$

Participants' payoffs (from the expressway)

$$
p(n)= \begin{cases}45 & \text { if } n<=2000 \\ 45-0.01(n-2000) & \text { if } n>2000\end{cases}
$$

Nash equilibria: $n=4999,5000$

Finding the social optimum

$$
\begin{aligned}
& T(n)=n p(n)+(6000-n) s(n) \\
& T(n)= \begin{cases}n 45+(6000-n) 15 & \text { if } n<=2000 \\
n(45-0.01(n-2000))+(6000-n) 15 & \text { if } n>2000\end{cases} \\
& T(n)= \begin{cases}90000+30 n & \text { if } n<=2000 \\
90000+50 n-0.01 n^{2} & \text { if } n>2000\end{cases}
\end{aligned}
$$

$$
T^{\prime}(n)= \begin{cases}30 & \text { if } n<=2000 \\ 50-0.02 n & \text { if } n>2000\end{cases}
$$

$$
T^{\prime \prime}(n)=\left\{\begin{array}{cl}
0 & \text { if } n<=2000 \\
-0.02 & \text { if } n>2000
\end{array}\right.
$$

$$
50-0.02 n=0 \quad \Rightarrow \quad n=2500
$$

The differential version of marginal social gain:

$$
T^{\prime}(n)=p(n)-s(n) \quad \longrightarrow \begin{aligned}
& \text { Marginal private gain (the part } \\
& \text { that derives individual choice) }
\end{aligned}
$$

$$
+n p^{\prime}(n) \quad \longrightarrow \quad \text { Externality on participants }
$$

$$
+(N-n) s^{\prime}(n) \quad \longrightarrow \text { Externality on shirkers }
$$

