GAMES WITH SEQUENTIAL MOVES

- Chess, card games, bidding in some auctions, voting in some committees, entryexit models in industrial organization,...

Players take actions sequentially
When I am choosing my action, I know what people who acted before me has done

The Senate Race

-Two candidates running to represent Tuzla in the parliament.

- Gray: the incumbent senator the stronger one
- Green: the newcomer (from the Greens party) the weaker one

They play the following game:
First: Gray chooses whether to give ads or not

Second: Green chooses whether to stay in or out of the race

NOTE:
Green chooses between the actions in and out after she observes Gray's choice

Possible outcomes of the game are:
(No Ads, Out) (Ads,Out) (No Ads, In) (Ads, In)

To describe a game, we need to specify:

1. Players (agents)

Gray and Green

2. Strategies for each player
??????????????
3. Payoffs

Gray's ranking of the outcomes:
(No Ads, Out) (Ads, Out) (No Ads, In) (Ads, In)

Gray's payoffs (choose numbers that represent her ranking)

```
                                    4
3
2

\section*{To describe a game, we need to specify:}
1. Players (agents)

\section*{Gray and Green}
2. Strategies for each player
??????????????
3. Payoffs

Green's ranking of the outcomes:
(No Ads, In) (Ads, Out) (No Ads, Out) (Ads, In)
Green's payoffs (choose numbers that represent her ranking)


Is there a nice way to summarize this story in a figure ?????

\section*{YES!!!!!}

Use a game tree (a.k.a, the extensive form)

\section*{Game Tree:}

Made up of two things

\section*{1. Nodes there are two types of nodes}

Decision nodes nodes at which a player has to take an action

Terminal nodes
nodes at which there is no action to take they represent possible outcomes of the game

\section*{2. Branches}
they represent actions
they come out of decision nodes and connect nodes

\section*{The Game Tree in the Senate Race game:}

Made up of two things
1. Nodes

Decision nodes
Gray has a node in which he has to act between Ads and No
What about Green?
Terminal nodes
Each of (No Ads, Out) (Ads, Out) (No Ads, In) (Ads, In) is represented by a terminal node
2. Branches
"Ads" is a branch

\section*{NODES:}

GRAY, GREEN


\section*{NODES AND BRANCHES:}

\section*{GRAY, GREEN}

(a) Pruning at terminal nodes

Backward induction \(=\) Rollback technique

\author{
GRAY, GREEN
}

(b) Fully pruned tree

\section*{GRAY, GREEN}


The senate game: formal representation
\[
\mathrm{G}=\left(\mathrm{N}, \mathrm{~S}_{\text {gray }}, \mathrm{S}_{\text {green }}, \mathrm{u}_{\text {gray }}, \mathrm{u}_{\text {green }}\right)
\]
where
\(\mathrm{N}=\{\) Gray, Green \(\}\)
\(\mathrm{S}_{\text {gray }}=\{\) Ads, NoAds \(\}\)
\(\mathrm{S}_{\text {green }}=\{\) If Ads then In and if NoAds then In,
If Ads then In and if NoAds then Out,
If Ads then Out and if NoAds then In, If Ads then Out and if NoAds then Out \} and
\(\mathrm{u}_{\text {gray }}\) (Ads , If Ads then In and if NoAds then Out ) \(=1\)
\(\mathrm{u}_{\text {gray }}\) (Ads , If Ads then Out and if NoAds then In ) \(=3\)
\(\mathrm{u}_{\text {gray }}\) (Ads , If Ads then Out and if NoAds then Out ) \(=3\)
\(\mathrm{u}_{\text {gray }}(\) NoAds , If Ads then In and if NoAds then In \()=2\)
\(u_{\text {gray }}\) (NoAds, If Ads then In and if NoAds then Out \()=4\)
\(u_{\text {gray }}(\) NoAds , If Ads then Out and if NoAds then In \()=2\)
\(\mathrm{u}_{\text {gray }}(\) NoAds , If Ads then Out and if NoAds then Out \()=4\)

\section*{\(\mathrm{u}_{\text {green }}(\) Ads , If Ads then In and if NoAds then In ) \(\quad=1\)}
\(\mathrm{u}_{\text {green }}\) (Ads , If Ads then In and if NoAds then Out ) \(=1\)
\(\mathrm{u}_{\text {green }}\) (Ads, If Ads then Out and if NoAds then In ) = 3
\(u_{\text {green }}\) (Ads, If Ads then Out and if NoAds then Out ) \(=3\)
\(\mathrm{u}_{\text {green }}(\) NoAds , If Ads then In and if NoAds then In \()=4\)
\(\mathrm{u}_{\text {green }}(\) NoAds, If Ads then In and if NoAds then Out ) \(=2\)
\(\mathrm{u}_{\text {green }}(\) NoAds , If Ads then Out and if NoAds then In ) \(=4\)
\(\mathrm{u}_{\text {green }}(\) NoAds , If Ads then Out and if NoAds then Out \()=2\)

A strategy profile is a list of strategies, one for each agent That is, one from \(\mathrm{S}_{\text {gray }}=\{\) Ads , NoAds \(\}\) and one from \(\mathrm{S}_{\text {green }}=\{\) If Ads then In and if NoAds then In, If Ads then In and if NoAds then Out, If Ads then Out and if NoAds then In, If Ads then Out and if NoAds then Out \}

Example:
( NoAds ; If Ads then Out and if NoAds then In )

A Nash equilibrium is a strategy profile with the property that no agent can increase her payoff by changing her strategy in the profile

\section*{More on this to come later}

The rollback (a.k.a. backward induction) technique gives you an equilibrium:
( Ads ; If Ads then Out and if NoAds then In )
To verify, we ask two questions:
1. Can Gray increase her payoff by changing from Ads to NoAds?
2. Can Green increase her payoff by changing from

If Ads then Out and if NoAds then In to any one of her other strategies?


\section*{First-mover advantage}

Second-mover advantage

\section*{GREEN, GRAY}


\section*{PAYOFFS}




Payoffs all shown as A, B

(a)



Sequential-move games

\section*{extensive form (i.e. the game tree). \\ rollback technique}

Simultaneous-move games
\[
\begin{aligned}
& \text { strategic form (i.e. the game table). } \\
& \text { dominant or dominated strategies, cell-by-cell, } \\
& \text { and minimax techniques }
\end{aligned}
\]

Next: analyse relationship between the two

\section*{WHY ???}

To be able to
1. relate the solution techniques used for the two types of games.
2. solve games that are mixtures of sequential and simultaneous moves.
(a) Extensive form of the Senate Race Game

\author{
GRAY, GREEN
}


This table represents an interaction different than the Senate Race game !


\section*{How to translate an extensive-form game into strategic-form?}
1. Determine the agents' strategies
a. What are the pure strategies of GRAY?
b. What are the pure strategies of GREEN?
3. Use these strategies to form the game table.
4. Determine the payoffs of each outcome from the original tree.
(b) Strategic form of the Senate Race Game
\begin{tabular}{|c|c|c|c|c|c|}
\cline { 2 - 6 } \multicolumn{2}{c|}{} & \multicolumn{4}{c|}{ GREEN } \\
\cline { 2 - 6 } \multicolumn{2}{c|}{} & In, In & In, Out & Out, In & Out, Out \\
\hline \multirow{3}{*}{ GRAY } & Ads & 1,1 & 1,1 & 3,3 & 3,3 \\
\cline { 2 - 6 } & No Ads & 2,4 & 4,2 & 2,4 & 4,2 \\
\hline
\end{tabular}

Applying rollback to the game tree gives us the strategy profile
( Ads ; (Ads=>Out, NoAds=>In ) )

This profile is a Nash equilibrium of the Senate Race game
(verify this claim by using the strategic form representation)
this is not a coincidence

Theorem: For every game, every strategy profile that is obtained by applying the rollback (a.k.a. backward induction) technique to the game tree is a Nash equilibrium of the game.

Checking the strategic form of the Senate Race game however gives us another Nash equilibrium
( NoAds ; (Ads=>In, NoAds=>In ) )

Thus

\section*{Theorem: The rollback technique does not give you all Nash equilibria of a game.}

\section*{Note that this new equilibrium is based on a noncredible threat}

Claim: every Nash equilibrium which is not obtained by the rollback technique is based on a noncredible threat.

Definition: Given an extensive form game and a decision node that is not part of an information set, the part of the game tree that follows from that decision node is called a subgame.

Note that every subgame of a game are themselves games and they have their own Nash equilibria.

Definition: A Nash equilibrium ( \(s_{1}, \ldots, s_{n}\) ) for the game \(G\) is called a subgame perfect Nash equilibrium of \(\mathbf{G}\) if for every subgame \(G^{\prime}\) of the game \(G\), the restriction of \(\left(s_{l}, \ldots, s_{n}\right)\) to \(G^{\prime}\) is a Nash equilibrium of \(G^{\prime}\).

\section*{The relation between}
subgame perfect Nash equilibria and the
rollback technique:

Theorem: Given an extensive form game \(G\), the strategy profile \(\left(s_{l}, \ldots, s_{n}\right)\) is a subgame perfect Nash equilibrium of \(G\) if and only if \(\left(s_{l}, \ldots, s_{n}\right)\) is obtained by the rollback technique.

Subgame perfect Nash equilibria are those Nash equilibria that are not based on noncredible threats.

The Theorem follows since the rollback technique does not allow noncredible threats.
(a) Strategic form
\begin{tabular}{|c|c|c|}
\cline { 3 - 4 } \multicolumn{2}{c|}{} & \multicolumn{2}{c|}{ JAPANESE NAVY } \\
\cline { 3 - 4 } \multicolumn{2}{c|}{} & North \\
\hline \multirow{3}{*}{ USAF } & North & 2 \\
\hline
\end{tabular}

How to translate a strategic-form game into extensive form?
1. Choose a player to be the first-mover, say USAF.
(He won't actually move first, doesn't matter who you choose)
2. Draw USAF's decision node and branches denoting its actions.
3. At the end of each branch, there will be a decision node for Japan
4. Draw branches denoting Japan's actions.
5. Write down the payoffs corresponding to each outcome.

In the story, Japan did not know which action USAF took.

\section*{How to denote this in the game tree?}

Use an information set:
it is a set of decision nodes (of a single player), the player can not observe which of these decision nodes the game has reached.

Information sets indicate incomplete information.
The player has to choose the same action in every decision node in the same information set.

NOTE: You can not apply the rollback technique when there are (non-singleton) information sets.
(b) Extensive form

USAF, JAPAN


\section*{A game with both sequential and simultaneous moves}

Two electronics firms: KUMQUAT and KIWIFRUIT
1. period: firms simultaneously choose their R\&D budgets this determines the quality of their products
2. period: firms simultaneously choose their prices this determines their sales and profits

How to write down the strategies available to these firms?
How to find the equilibria of this game?



\begin{tabular}{|c|c|c|c|}
\cline { 2 - 4 } \multicolumn{2}{c|}{} & \multicolumn{2}{c|}{ DEFENSE } \\
\cline { 2 - 4 } \multicolumn{2}{c|}{} & 10 & 20 \\
\hline \multirow{3}{*}{ OFFENSE } & 10 & \(4 / 5\) & 1 \\
\cline { 2 - 4 } & 20 & 1 & \(1 / 2\) \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|}
\cline { 3 - 4 } \multicolumn{2}{c|}{} & \multicolumn{2}{c|}{ DEFENSE } \\
\cline { 2 - 4 } \multicolumn{2}{c|}{} & 10 & 20 \\
\hline \multirow{3}{c|}{ OFFENSE } & 10 & \(4 / 5\) & 1 \\
\cline { 2 - 4 } & 20 & 1 & \(1 / 2\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\cline { 2 - 4 } \multicolumn{2}{c|}{} & \multicolumn{2}{c|}{ DEFENSE } \\
\cline { 2 - 4 } \multicolumn{2}{c|}{} & 10 & 20 \\
\hline \multirow{3}{c|}{ OFFENSE } & 10 & \(11 / 14\) & \(6 / 7\) \\
\cline { 2 - 4 } & 20 & 1 & \(3 / 4\) \\
\hline
\end{tabular}

\section*{Prisoners' Dilemma}



\section*{A twice-repeated prisoners' dilemma}

\section*{game}
1. Draw the game tree.
2. How many subgames does this game have?
3. What are the players' strategies?
4. Apply rollback to find all subgame perfect Nash equilibria.


\section*{Battle of the Sexes}


Other examples: two politicians determining position on an issue two merging firms choosing between PC and MAC


\section*{A twice-repeated battle-of-the-sexes}

\section*{game}
1. Draw the game tree.
2. How many subgames does this game have?
3. What are the players' strategies?
4. Apply rollback to find all subgame perfect Nash equilibria.


\section*{Sequential moves and infinitely many actions}
- Analyze the sequential versions of the following games.
- Relate your reasoning to the best-response analysis

\section*{The Sequential Price-setting Game Between Donna and Pierce}

\section*{Donna's Deep Dish: moves first and chooses \(\mathrm{P}_{\text {Donna }}\) Pierce's Pizza Pies: moves second and chooses \(P_{\text {Pierce }}\)}

Market surveys show that given the prices each sells (in 1000 pizzas per week):
\[
\begin{aligned}
& \mathrm{Q}_{\text {Donna }}=12-\mathrm{P}_{\text {Donna }}+0.5 \mathrm{P}_{\text {Pierce }} \\
& \mathrm{Q}_{\text {Pierce }}=12-\mathrm{P}_{\text {Pierce }}+0.5 \mathrm{P}_{\text {Donna }}
\end{aligned}
\]

Note: If Pierce increases his price, his sales go down and Donna's sales go up
- Cost of each pizza: 3 USD
- Pierce's profit (i.e. his payoff) (in 1000 USD) is then
\[
\begin{aligned}
Y_{\text {Pierce }} & =P_{\text {Pierce }} Q_{\text {Pierce }}-3 Q_{\text {Pierce }} \\
& =\left(P_{\text {Pierce }}-3\right) Q_{\text {Pierce }} \\
& =\left(P_{\text {Pierce }}-3\right)\left(12-P_{\text {Pierce }}+0.5 P_{\text {Donna }}\right) \\
& =\left(15+0.5 P_{\text {Donna }}\right) P_{\text {Pierce }}-P_{\text {Pierce }}^{2}-36-1.5 P_{\text {Donna }}
\end{aligned}
\]
- Given \(P_{\text {Donna }}\), Pierce will choose his price to maximize his payoff Taking the derivative of \(Y_{\text {Pierce }}\) with respect to \(P_{\text {Pierce }}\)
\[
\frac{d Y_{\text {Pierce }}}{d P_{\text {Pierce }}}=15+0.5 P_{\text {Donna }}-2 P_{\text {Pierce }}
\]

When \(Y_{\text {Pierce }}\) is maximized, this derivative is equal to 0
\[
\frac{d Y_{\text {Pierce }}}{d P_{\text {Pierce }}}=15+0.5 P_{\text {Donna }}-2 P_{\text {Pierce }}=0
\]

Solving for \(P_{\text {Pierce }}\) we have
\[
P_{\text {Pierce }}^{*}=\frac{15+0.5 P_{\text {Donna }}}{2}=7.5+0.25 P_{\text {Donna }}
\]

This is the best-response function of Pierce.
NOTE: We have to verify that what we found by equating the derivative to 0 is a maximum (it can also be a minimum or a saddle-point). For this, we must check if the second derivative at \(P_{\text {Pierce }}^{*}\) is negative:
\[
\frac{d^{2} Y_{\text {Pierce }}}{d P_{\text {Pierce }}^{2}}=-2
\]

So it's O.K.. We have maximized \(Y_{\text {Pierce }}\) at \(P_{\text {Pierce }}^{*}\) and therefore, we have a best-ersponse function.

\section*{What about Donna?}
- Donna knows that whatever price she chooses, Pierce will observe it and play a best response.
- So Donna's problem is to maximize her payoff when \(P_{\text {Pierce }}\) is given by the previous formula.

Donna's payoff function is
\[
\begin{aligned}
Y_{D} & =\left(15+\frac{1}{2} P_{p}\right) P_{D}-P_{D}^{2}-36-\frac{3}{2} P_{p} \\
& =\left(15+\frac{1}{2}\left(\frac{15}{2}+\frac{1}{4} P_{D}\right)\right) P_{D}-P_{D}^{2}-36-\frac{3}{2}\left(\frac{15}{2}+\frac{1}{4} P_{D}\right) \\
& =-\frac{7}{8} P_{D}^{2}+\frac{147}{8} P_{D}-\frac{189}{4}
\end{aligned}
\]

The first and the second derivatives are
\[
\begin{aligned}
\frac{\partial Y_{D}}{\partial P_{D}} & =\frac{147}{8}-\frac{7}{4} P_{D} \\
\frac{\partial^{2} Y_{D}}{\partial P_{D}^{2}} & =-\frac{7}{4}
\end{aligned}
\]

Thus, Donna's optimal price choice is
\[
P_{D}=\frac{147}{8} \frac{4}{7}=10.5
\]

Seeing this price, Pierce responds with
\[
P_{p}=\frac{15}{2}+\frac{1}{4} P_{D}=10.125
\]

In the simultaneous-move version of this game, we had calculated the Nas quilibrium
\[
(10,10) .
\]

That is, being the first mover gives Donna the upper hand. She can now charge a higher price.

\section*{Comparing the outcomes of sequential and simultaneous move interactions}

\section*{FRIEDA'S}

Urban
\begin{tabular}{|c|c|c|c|}
\cline { 3 - 4 } \multicolumn{2}{c|}{} & \multicolumn{2}{c|}{ BIG GIANT } \\
\cline { 2 - 4 } \multicolumn{2}{c|}{} & Urban & Rural \\
\hline \multirow{3}{*}{ TITAN } & Urban & \(5,5,7\) & \(5,2,5\) \\
\cline { 2 - 4 } & Rural & \(2,5,5\) & \(4,4, 子\) \\
\hline
\end{tabular}

Rural
\begin{tabular}{c|c|c|c|}
\cline { 3 - 4 } \multicolumn{2}{c|}{} & \multicolumn{2}{c|}{ BIG GIANT } \\
\cline { 3 - 4 } \multicolumn{2}{c|}{} & Urban & Rural \\
\hline \multirow{3}{*}{ TITAN } & Urban & \(5,5,2\) & \(8,4,4\) \\
\cline { 2 - 4 } & Rural & \(4,8,4\) & \(4,4,4\) \\
\hline
\end{tabular}

FRIEDA'S (Page player)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{Urban (U)} & \multicolumn{4}{|l|}{Rural (R)} \\
\hline & \multicolumn{4}{|c|}{GIANT (Column player)} & \multicolumn{4}{|c|}{GIANT (Column player)} \\
\hline \begin{tabular}{l}
TITAN \\
(Row player)
\end{tabular} & UU & UR & RU & RR & UU & UR & RU & RR \\
\hline 1: UUUU & 5,5,1 & 5,5,1 & 5,2,5 & 5,2,5 & 5,5,2 & 3,4,4 & 5,5,2 & 3,4,4 \\
\hline 2: UUUR & 5,5,1 & 5,5,1 & 5,2,5 & 5,2,5 & 5,5,2 & 4,4,4 & 5,5,2 & 4,4,4 \\
\hline 3: UURU & 5,5,1 & 5,5,1 & 5,2,5 & 5,2,5 & 4,3,4 & 3,4,4 & 4,3,4 & 3,4,4 \\
\hline 4: URUU & 5,5,1 & 5,5,1 & 4,4,3 & 4,4,3 & 5,5,2 & 3,4,4 & 5,5,2 & 3,4,4 \\
\hline 5: RUUU & 2,5,5 & 2,5,5 & 5,2,5 & 5,2,5 & 5,5,2 & 3,4,4 & 5,5,2 & 3,4,4 \\
\hline 6: UURR & 5,5,1 & 5,5,1 & 5,2,5 & 5,2,5 & 4,3,4 & 4,4,4 & 4,3,4 & 4,4,4 \\
\hline 7: URRU & 5,5,1 & 5,5,1 & 4,4,3 & 4,4,3 & 4,3,4 & 3,4,4 & 4,3,4 & 3,4,4 \\
\hline 8: RRUU & 2,5,5 & 2,5,5 & 4,4,3 & 4,4,3 & 5,5,2 & 3,4,4 & 5,5,2 & 3,4,4 \\
\hline 9: URUR & 5,5,1 & 5,5,1 & 4,4,3 & 4,4,3 & 5,5,2 & 4,4,4 & 5,5,2 & 4,4,4 \\
\hline 10: RURU & 2,5,5 & 2,5,5 & 5,2,5 & 5,2,5 & 4,3,4 & 3,4,4 & 4,3,4 & 3,4,4 \\
\hline 11: RUUR & 2,5,5 & 2,5,5 & 5,2,5 & 5,2,5 & 5,5,2 & 4,4,4 & 5,5,2 & 4,4,4 \\
\hline 12: URRR & 5,5,1 & 5,5,1 & 4,4,3 & 4,4,3 & 4,3,4 & 4,4,4 & 4,3,4 & 4,4,4 \\
\hline 13: RURR & 2,5,5 & 2,5,5 & 5,2,5 & 5,2,5 & 4,3,4 & 4,4,4 & 4,3,4 & 4,4,4 \\
\hline 14: RRUR & 2,5,5 & 2,5,5 & 4,4,3 & 4,4,3 & 5,5,2 & 4,4,4 & 5,5,2 & 4,4,4 \\
\hline 15: RRRU & 2,5,5 & 2,5,5 & 4,4,3 & 4,4,3 & 4,3,4 & 3,4,4 & 4,3,4 & 3,4,4 \\
\hline 16: RRRR & 2,5,5 & 2,5,5 & 4,4,3 & 4,4,3 & 4,3,4 & 4,4,4 & 4,3,4 & 4,4,4 \\
\hline
\end{tabular}
(a) Simultaneous play

(b) Sequential play—Husband moves first

\section*{HUSBAND, WIFE}

(c) Sequential play-Wife moves first

\author{
WIFE, HUSBAND
}

(a) Simultaneous play

(b) Sequential play—James moves first

(c) Sequential play-Dean moves first

\section*{DEAN, JAMES}

(a) Simultaneous play

(b) Sequential play-Seles moves first

\section*{SELES, HINGIS}

(c) Sequential play—Hingis moves first
```

