## POSITIVE POLITICAL THEORY

- SOME IMPORTANT THEOREMS
- GAME THEORY IN POLITICAL SCIENCE


## Mirror mirror on the wall

## which is the fairest of them all ?????

Galatasaray<br>Fenerbahce<br>Besiktas

Turkcell
Telsim
Aria

DSP DP CHP DTP AKP MHP XYZ

## Strategy and Voting

- implications of strategic behavior on voting situations
- different voting procedures:
different outcomes
which voting procedure to choose
- how to manipulate the outcome through strategic voting


## Model

A: a set of alternatives that you have to choose from
Ex: political parties
candidates for a committee
social projects (where to spend the tax money?)
N : a set of voters
each voter has an individual ranking of the alternatives
i.e. first best, second best, third best, etc.

Denoted by a binary relation, P
a Pb means a is ranked higher than b
P is transitive: if aPb and bPc ,
then $\quad \mathrm{aPc}$

How will the people in N choose from the alternatives in A ? They vote. (But how?)

## Voting rules and procedures

## When there are two alternatives

Majority rule:
the alternative with the majority of votes (i.e. > 50\%) wins
Ex: vote between Fenerbahce and Besiktas

## When there are more alternatives

A. Binary methods (pairwise voting):
majority voting between pairs of alternatives in a given order

1. Condorcet method (Jean Antoine Nicholas Caritat)

Condorcet winner : beats everything else in majority voting
2. Amendment procedure (when there is a status-quo alternative)

First, vote between a and $\mathrm{b} \quad$ ( $\mathrm{a}, \mathrm{b}$ two new proposals)
then, vote between the winner and c
(c status-quo)
B. Plurative methods:

## Voting on all the alternatives at once !

1. Plurality rule

The alternative with the most number of votes wins
Ex: voting between Gsaray, Fbahce, and Besiktas

## 2. Borda count

Each agent ranks alternatives Ex: a P b P c

Points assigned a gets $3, b$ gets $2, \mathrm{c}$ gets 1
Add up points, highest wins
Ex: Eurovision song contest (not exactly?), biri bizi gözetliyor
B. Plurative methods:

Voting on all the alternatives at once !
3. Approval voting

Each voter chooses the alternatives that she approves
The alternative with the highest approval votes wins or
can choose a set by setting a threshold
Ex: Gsaray, Fbahce, Besiktas (which ones do you approve?)
C. Mixed Methods:

Mixtures of the previous two types!

1. Majority runoff

Each voter chooses one alternative that she wants chosen
If an alternative is the majority winner, it wins
otherwise, majority voting between the first and the second.

## 2. Voting in rounds

Use a single vote or a ranking (e.g. Borda) in each round
At the end of each round, eliminate the worst-performing alt.
C. Mixed Methods:

Mixtures of the previous two types!
3. Proportional representation

When choosing a set of alternatives
(e.g. senators)

The chosen set must mirror the voters' votes
Ex: If votes are $\quad 40 \%$ AKP, $35 \%$ CHP, $25 \%$ DP the parliament is $40 \% \mathrm{AKP}, 35 \% \mathrm{CHP}, 25 \% \mathrm{DP}$
4. Single transferable vote (Hare procedure)

Voters declare ranking and vote for the highest ranked alt.
Bottom alternatives eliminated: their votes are transferred

## Can choose any one of these rules for your society

The outcome will depend on the voting procedure used
Can choose one strategically

## Also: can manipulate each

## Voting Paradoxes

Some voting procedures lead to curious outcomes

## Condorcet Paradox: (with majority voting)

What is the social ranking between alternatives $\mathbf{G}, \mathbf{A}$, and $\mathbf{L}$ ?

| LEFT | CENTER | RIGHT |
| :---: | :---: | :---: |
| Generous | Average | Limited |
| Average | Limited | Generous |
| Limited | Generous | Average |

$\mathbf{G}$ beats $\mathbf{A}$ beats $\mathbf{L}$ beats $\mathbf{G}$
An intransitive ranking
(with majority voting)
(each voter has transitive ranking)

Who is the winner?

Reversal Paradox (with the Borda rule):
Sportswriters trying choose among Ibrahim Kutluay, Mirsad Turkcan, Hidayet Turkoglu, and Kerem Tunceri

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MT | IK | MT | HT | IK | IK | HT |
| HT | MT | HT | KT | MT | MT | KT |
| KT | HT | KT | IK | HT | HT | IK |
| IK | KT | IK | MT | KT | KT | MT |

## Apply the Borda rule

Hidayet gets 20 points (he wins the award)
Ibrahim gets 19 points
Mirsad gets 19 points
Kerem gets 13 points

They discover Kerem can not be a candidate because ...?

Should this effect who wins the award?

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MT | IK | MT | HT | IK | IK | HT |
| HT | MT | HT | IK | MT | MT | IK |
| IK | HT | IK | MT | HT | HT | MT |

Ibrahim: 15 points (the new winner)
Mirsad: 14 points
Hidayet: 13 points

Agenda paradox (binary voting procedures):
The chair decides the order of voting (i.e. sets the agenda) she can get any outcome she wants

| LEFT | CENTER | RIGHT |
| :---: | :--- | :--- |
| Generous | Average | Limited |
| Average | Limited | Generous |
| Limited | Generous | Average |

$\mathbf{G}$ beats $\mathbf{A}$ beats $\mathbf{L}$ beats $\mathbf{G}$
(with majority voting)
Ex: (chair LEFT) L and A $\Rightarrow>$ A $\quad \mathrm{G}$ and $\mathrm{A}=>\mathrm{G}$
The real game is setting the agenda (or choosing the chair)

## Change the voting method, change the outcome:

strategically choosing the voting method
Ex: 100 voters, 40 voters A P B P C

$$
25 \text { voters B P C P A }
$$

35 voters C P B P A
Plurality rule :
A wins
Borda rule :
B wins ( 225 points) (C 195 points, A 180 points)
Majority runoff:
C wins (A and C move to second round)

## Evaluating vote aggregation methods

Preference aggregation method: individual rankings $=>$ social ranking

Arrow's theorem:
If a preference aggregation method satisfies these:

1. All alternatives must be ranked: complete
2. The ranking must be transitive: transitive
3. If everybody ranks a higher than $\mathbf{b}$, social ranking does the same:

Pareto condition
4. Social ranking of $\mathbf{a}$ and $\mathbf{b}$ doesn't depend on how people rank other alternatives: independence of irrelevant alternatives

Then it is dictatorial !!!

Very strong result, very famous, Arrow's Ph.D. thesis
Ex: Borda violates independence of irrelevant alternatives
Other criteria:
Condorcet: if there is a Condorcet winner, it should be selected Non-manipulability: by lying about your ranking, you can't get an alternative you like more to be chosen

Gibbard-Satterthwaite Theorem:
All nondictatorial voting methods are manipulable

What happens when people manipulate the voting outcome?

## Strategic Voting

Games in which
or vote for an alternative they don't rank at top

Plurality rule:
Two major candidates and a spoiler (divides the votes) say spoiler is your top choice vote for him?

Spoilers usually get less votes than they would under honesty
Ex: Britain (two major parties in the parliament)
Proportional rule:
Does not have this problem Ex: Italy
More parties in the parliament (but smaller parties)
Less decisive government, better for minorities

## If second-round is between A and G: truthful voting

(a) A versus $G$ election

## Right votes

for $A$ :

for G :


## If second-round is between L and G : truthful voting

(b) $L$ versus $G$ election

Right votes


## The first-round: strategic voting

## Right votes

## or A:



## for L:



NOTE: Chair will realize this and choose the agenda accordingly

## first-round: L against G

Borda rule:
how can you manipulate it
rank the most powerful adversary to your top choice as last
everybody does the same: prisoners’ dilemma

## What about games in which the candidates act strategically?

Each candidate's payoff is the number of votes she gets.

Ex: Politicians strategically choosing their political position

## Median voter theorem

One dimensional policy space
Ex: from left to right or government's budget for education


## Each voter has single-peaked preferences

A voter's payoff function


The game: 1.2 candidates simultaneously choose their policies
2. Voters vote (majority voting)

NOTE: with 2 candidates, voting honestly is the best

NOTE: the voters' top choices are distributed on the policy space


Iedian: the midpoint(s) of a distribution
$\min .50 \%$ of the points to the left and $\min 50 \%$ of the points to the right
Median voter: the voter whose top choice is the median of the distribution of the top choices

## Median voter theorem:

Both candidates will place themselves on
the top choice of the median voter

## Discrete political spectrum (9 million voters)



|  |  | EX-ACTOR |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | FL | L | C | R | FR |
| $\begin{gathered} \text { EX- } \\ \text { GOVERNOR } \end{gathered}$ | FL | 4.5, 4.5 | 1, 8 | 2, 7 | 3, 6 | 4.5, 4.5 |
|  | L | 8, 1 | 4.5, 4.5 | 3, 6 | 4.5, 4.5 | 6, 3 |
|  | C | 7, 2 | 6, 3 | 4.5, 4.5 | 6, 3 | 7, 2 |
|  | R | 6, 3 | 4.5, 4.5 | 3, 6 | 4.5, 4.5 | 8, 1 |
|  | FR | 4.5, 4.5 | 3, 6 | 2, 7 | 1, 8 | 4.5, 4.5 |

Discrete political spectrum with asymmetric dist. (9 million voters)


|  | EX-ACTOR |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | FL | L | C | R | FR |  |
| EX- <br> GOVERNOR | FL | $4.5,4.5$ | 1,8 | 3,6 | 5,4 | $5.5,3.5$ |
|  | L | 8,1 | $4.5,4.5$ | 5,4 | $5.5,3.5$ | 6,3 |
|  | C | 6,3 | 4,5 | $4.5,4.5$ | 6,3 | $6.5,2.5$ |
|  | R | 4,5 | $3.5,5.5$ | 3,6 | $4.5,4.5$ | 7,2 |
|  | FR | $3.5,5.5$ | 3,6 | $2.5,6.5$ | 2,7 | $4.5,4.5$ |

Same conclusion with a continuous distribution of voters
histogram
distribution function
Ex: uniform distribution
normal distribution

The value of the function at a given policy:
the number of people who ranks that policy first
i.e. their peaks are at that policy

No payoff table
solve it on the graph
(a) Uniform distribution

(b) Normal distribution


| A | B | C |
| :---: | :---: | :---: |
| Philosophy | Anthropology | Geology |
| Geology | Philosophy | Anthropology |
| Anthropology | Geology | Philosophy |


| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| :---: | :---: | :---: | :---: |
| A | A | B | C |
| B | B | C | B |
| C | C | A | A |


| RANKING | GROUPS (AND THEIR SIZES) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{I}(18)$ | $\mathrm{II}(12)$ | $\mathrm{III}(10)$ | $\mathrm{IV}(9)$ | $\mathrm{V}(4)$ | $\mathrm{VI}(2)$ |
| 1 | T | C | B | K | H | H |
| 2 | K | H | C | B | C | B |
| 3 | H | K | H | H | K | K |
| 4 | B | B | K | C | B | C |
| 5 | C | T | T | T | T | T |

