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Abstract

Game theory provides us with a set of important methodologies for the study of
group decisions as well as negotiation processes. Cooperative game theory is a
subfield of game theory that focuses on interactions in which involved parties
have the power to make binding agreements. Many group decision and negotia-
tion processes (such as legal arbitrations) fall into this category, and as such, they
have been central in the development of cooperative game theory. Particularly, an
area of cooperative game theory, called bargaining theory, focuses on bilateral
negotiations as well as negotiation processes where coalition formation is not a

This is a revised version of the chapter “Cooperative Game Theory Approaches to Negotiation”
which was published in the first edition of this handbook.

Ö. Kıbrıs (*)
Faculty of Arts and Social Sciences, Sabanci University, Istanbul, Turkey
e-mail: ozgur@sabanciuniv.edu

© Springer Nature Switzerland AG 2021
D. M. Kilgour, C. Eden (eds.), Handbook of Group Decision and Negotiation,
https://doi.org/10.1007/978-3-030-49629-6_10

545

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49629-6_10&domain=pdf
mailto:ozgur@sabanciuniv.edu
https://doi.org/10.1007/978-3-030-49629-6_10#DOI


central concern. The object of study in bargaining theory is a (bargaining) rule,
which provides a solution to each bargaining problem (or in other words,
negotiation). Studies on bargaining theory employ the axiomatic method to
evaluate bargaining rules. This chapter reviews and summarizes several such
studies. After a discussion of the bargaining model, we present the important
bargaining rules in the literature (including the Nash bargaining rule), as well as
the central axioms that characterize them. Next, we discuss strategic issues related
to cooperative bargaining, such as the Nash program, implementation of
bargaining rules, and games of manipulating bargaining rules. We conclude
with a discussion of the recent literature on ordinal bargaining rules.

Keywords

Negotiation · Game theory · Cooperative · Nash bargaining solution · Pareto-
optimal · Bargaining theory · Axiom · Ordinal bargaining

Introduction

Negotiation is an important aspect of social, economic, and political life. People
negotiate at home, at work, at the marketplace; they observe their team, political
party, country negotiating with others; and sometimes, they are asked to arbitrate
negotiations among others. Thus, it is no surprise that researchers from a wide range
of disciplines have studied negotiation processes.

In this chapter, we present an overview of how negotiation and group decision
processes are modeled and analyzed in cooperative game theory.1 This area of
research, typically referred to as cooperative bargaining theory, originated in a
seminal paper by Nash (1950). There, Nash provided a way of modeling negotiation
processes and applied an axiomatic methodology to analyze such models. In what
follows, we will discuss Nash’s work in detail, particularly in application to the
following example.

Example 1 (An Accession Negotiation) The European Union, E, and a candidate
country, C, are negotiating on the tariff rate that C will impose on its imports from E
during C’s accession process to the European Union. In case of disagreement, C will
continue to impose the status-quo tariff rate on import goods from E and the accession
process will be terminated, that is, C will not be joining the European Union.

1Cooperative game theory analyzes interactions where agents can make binding agreements and it
inquires how cooperative opportunities faced by alternative coalitions of agents shape the final
agreement reached. Cooperative games do not specify how the agents interact or the mechanism
through which their interaction leads to alternative outcomes of the game (and in this sense, they are
different than noncooperative games). Instead, as will be exemplified in this chapter, they present a
reduced form representation of all possible agreements that can be reached by some coalition.
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Nash’s (1950) approach to modeling negotiation processes such as Example 1 is
as follows. First, the researcher identifies the set of all alternative agreements.2

(Among them, the negotiators must choose by unanimous agreement, that is, each
negotiator has the right to reject a proposed agreement.) Second, the researcher
determines the implications of disagreement. In our example, disagreement leads
to the prevalence of the status-quo tariff rate coupled with the fact that C will not be
joining the European Union. Third, the researcher determines how each negotiator
values alternative agreements, as well as the disagreement outcome. Formally, for
each negotiator, a payoff function that represents its preferences are constructed. In
the above example, this amounts to an empirical analysis that evaluates the value of
each potential agreement for the European Union and the candidate country. Finally,
using the obtained payoff functions, the negotiation is reconstructed in the payoff
space. That is, each possible outcome is represented with a payoff profile that the
negotiating parties receive from it. The feasible payoff set is the set of all payoff
profiles resulting from an agreement (i.e., it is the image of the set of agreements
under the players’ payoff functions), and the disagreement point is the payoff
profile obtained in case of disagreement. Via this transformation, the researcher
reduces the negotiation process into a set of payoff profiles and a payoff vector
representing disagreement. It is this object in the payoff space that is called a
(cooperative) bargaining problem in cooperative game theory. For a typical
bargaining problem, please see Fig. 1.

The object of study in cooperative bargaining theory is a (bargaining) rule. It
maps each bargaining problem to a payoff profile in the feasible payoff set. For
example, the Nash bargaining rule (Nash 1950) chooses, for each bargaining
problem, the payoff profile that maximizes the product of the bargainers’ gains
with respect to their disagreement payoffs.

There are two alternative interpretations of a bargaining rule. According to the
first interpretation, which is proposed by Nash (1950), a bargaining rule describes,
for each bargaining problem, the outcome that will be obtained as result of the
interaction between the bargainers. According to Nash (1950), a rule is thus a
positive construct and should be evaluated on the basis of how well a description
of real-life negotiations it provides. The second interpretation of a bargaining rule is
alternatively normative. According to this interpretation, a bargaining rule pro-
duces, for each bargaining problem, a prescription to the bargainers (very much
like an arbitrator). It should thus be evaluated on the basis of how useful it is to the
negotiators in obtaining desirable agreements.

Studies on cooperative bargaining theory employ the axiomatic method to eval-
uate bargaining rules. (A similar methodology is used for social choice and fair
division problems, as discussed in chapter ▶ “The Notion of Fair Division in
Negotiations” of this handbook.) An axiom is simply a property of a bargaining
rule. For example, one of the best-known axioms, Pareto optimality, requires that the

2This set contains all agreements that are physically available to the negotiators, including those that
are “unreasonable” according to the negotiators’ preferences.
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bargaining rule choose a Pareto optimal agreement.3 Researchers analyze implica-
tions of axioms that they believe to be “desirable.” According to the positive
interpretation of bargaining rules, a “desirable” axiom describes a common property
of a relevant class of real-life negotiation processes. For example, Nash (1950)
promotes the Pareto optimality axiom on the basis that the negotiators, being rational
agents, will try to maximize their payoffs from the negotiation outcome and thus,
will not terminate the negotiations at an agreement that is not optimal. According to
the normative interpretation of a bargaining rule, an axiom is a normatively appeal-
ing property which we as a society would like arbitrations to a relevant class of
negotiations to satisfy. Note that the Pareto optimality axiom can also be promoted
on this basis.

It is important to note that an axiom need not be desirable in every application of
the theory to real-life negotiations. Different applications might call for different
axioms.

A typical study on cooperative bargaining theory considers a set of axioms,
motivated by a particular application, and identifies the class of bargaining rules
that satisfy them. An example is Nash (1950) which shows that the Nash bargaining
rule uniquely satisfies a list of axioms including Pareto optimality. In the section
“Bargaining Rules and Axioms,” we discuss several such studies in detail.

As will be detailed in the section “The Bargaining Model,” Nash’s (1950) model
analyzes situations where the bargainers have access to lotteries on a fixed and
publicly known set of alternatives. It is also assumed that the bargainers’ von
Neumann-Morgenstern preferences are publicly known.While most of the following
literature works on Nash’s standard model, there also are many studies that analyze
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Fig. 1 The horizontal (respectively, vertical) axis represents the payoffs of Agent 1 (Agent 2). On
the left: a strictly d-comprehensive bargaining problem. On the right: a weakly d-comprehensive
bargaining problem, the individually rational set, the Pareto set (part of the north-east boundary
between p2 and p3) and the weak Pareto set (part of the north-east boundary between p1 and p3)

3As will be formally introduced later, an agreement is Pareto optimal if there is no alternative
agreement that makes an agent better-off without hurting any other agent.
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the implications of dropping some of these assumptions. For example, in the section
“Ordinal Bargaining,” we discuss the recent literature on ordinal bargaining which
analyzes cases where the agents do not necessarily have access to lotteries or do not
have von Neumann-Morgenstern preferences.

It is important to mention that two negotiation processes who happen to have
the same feasible payoff set and disagreement point are considered to be the same
bargaining problem in Nash’s (1950) model and thus, they have the same
solution, independent of which bargaining rule is being used and how distinct
the two negotiations are physically. This is sometimes referred to as the welfar-
ism axiom and it has been a point of criticism of cooperative game theory. It
should be noted that all the bargaining rules that we review in this chapter satisfy
this property.

The chapter is organized as follows. In the section “The Bargaining Model,” we
present the bargaining model of Nash (1950). In the section “Bargaining Rules and
Axioms,” we present the main bargaining rules and axioms in the literature. In the
section “Strategic Considerations,” we discuss strategic issues related to cooperative
bargaining, such as the Nash program, implementation, and games of manipulating
bargaining rules (for more on strategic issues, see chapter ▶ “Non-cooperative
Bargaining Theory” of this handbook). Finally, we present the more recent literature
on ordinal bargaining in the section “Ordinal Bargaining.”

For earlier surveys of cooperative bargaining theory, please see Peters (1992) and
Thomson (1994), and the literature cited therein. These studies contain more detailed
accounts of the earlier literature which we have summarized in the section
“Bargaining Rules and Axioms.” For a more recent treatment of distributive
bargaining, see Binmore and Eguia (2017).

In the sections “Strategic Considerations” and “Ordinal Bargaining,”we present a
selection of the more recent contributions to cooperative bargaining theory, not
covered by earlier surveys. Due to space limitations, we left out some important
branches of the recent literature. For nonconvex bargaining problems, see Herrero
(1989) or Zhou (1997) and the related literature. For bargaining problems with
incomplete information, see De Clippel and Minelli (2004), as well as a literature
review by Forges and Serrano (2013). For rationalizability of bargaining rules, see
Peters and Wakker (1991) and the following literature. For extensions of the Nash
model that focus on the implications of disagreement, see Kıbrıs and Tapk (2010,
2011) and the literature cited therein. For “semi-cooperative solutions” to noncoop-
erative games, see Kalai and Kalai (2013) and the related literature. Finally, a more
recent literature focuses on the empirical content of the Nash bargaining rule, as well
as its applications (e.g., see Chiappori et al. (2012)).

Bargaining problems are cooperative games (called nontransferable utility
games) where it is assumed that only the grand coalition or individual agents can
affect the final agreement. This is without loss of generality for two-agent negotia-
tions which are the most common type. However, for negotiations among three or
more agents, the effect of coalitions on the final outcome might also be important.
For more on this discussion, please see Bennett (1997) and Kıbrıs (2004b), and the
literature cited therein.
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The Bargaining Model

Consider a group of negotiators N = {1,...,n}. (While most real-life negotiations are
bilateral, that is N = {1,2}, we do not restrict ourselves to this case.) A cooperative
bargaining problem for the group N consists of a set, S, of payoff profiles (i.e., payoff
vectors) resulting from every possible agreement and a payoff profile, d, resulting
from the disagreement outcome. It is therefore defined on the space of all payoff
profiles, namely the n-dimensional Euclidian space ℝN. Formally, the feasible
payoff set S is a subset of ℝN and the disagreement point d is a vector in ℝN

. In
what follows, we will refer to each x � S as an alternative (agreement).

There is an important asymmetry between an alternative x � S and the disagree-
ment point d. For the negotiations to end at x, unanimous agreement of the bargainers
is required. On the other hand, each agent can unilaterally induce d by simply
disagreeing with the others.

The pair (S, d ) is called a (cooperative bargaining) problem (Fig. 1, left) and is
typically assumed to satisfy the following properties4:

(i) S is convex, closed, and bounded.
(ii) d � S and there is x � S such that x > d.
(iii) S is d-comprehensive (i.e., d ≦ y ≦ x and x � S imply y � S).

Let B be the set of all cooperative bargaining problems.
Convexity of Smeans that (i) the agents are able to reach agreements that are lotteries

on other agreements and (ii) each agent’s preferences on lotteries satisfy the von
Neumann-Morgenstern axioms and thus, can be represented by an expected utility
function. For example, consider a couple negotiating on whether to go to the park or to
the movies on Sunday. The convexity assumption means that they could choose to agree
to take a coin toss on the issue (or agree to condition their action on the Sunday weather),
and that each agent’s payoff from the coin toss is the average of his payoffs from the park
and the movies. Boundedness of S means that the agents’ payoff functions are bounded
(i.e., no agreement can give them an infinite payoff).Closedness of Smeans that the set of
physical agreements is closed and the agents’ payoff functions are continuous.

In the section “Ordinal Bargaining,” we will extend the basic model to allow
situations where the bargainers do not have access to lotteries and they do not
necessarily have von Neumann-Morgenstern preferences.

The assumption d � Smeans that the agents are able to agree to disagree and induce the
disagreement outcome. Existence of an x � S such that x > d rules out degenerate
problems where no agreement can make all agents better-off than the disagreement
outcome. Finally,d-comprehensivenessof Smeans that utility is freely disposable above d.5

4We use the following vector inequalities x≧ y for each i � N, xi ≧ yi; x≧ y and x 6¼ y; and x> y if
for each i � N, xi > yi.
5A stronger assumption called full comprehensiveness additionally requires utility to be freely
disposable below d.
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Two concepts play an important role in the analysis of a bargaining problem (S, d).
The first is the Pareto optimality of an agreement: it means that the bargainers can not
all benefit from switching to an alternative agreement. Formally, thePareto set of (S, d)
is defined as P(S, d )= {x � S | y� x) y =2 S} and theWeak Pareto set of (S, d ) is
defined as WP(S, d ) = {x � S | y > x ) y =2 S}. The second concept, individual
rationality, is based on the fact that each agent can unilaterally induce disagreement.
Thus, it requires that each bargainer prefer an agreement to disagreement. Formally,
the individually rational set is I(S, d ) = {x � S| x ≧ d}. Like Pareto optimality,
individual rationality is desirable as both a positive and a normative property. On
Fig. 1, right, we present the sets of Pareto optimal and individually rational
alternatives.

We will occasionally consider a subclass Bsc of bargaining problems B that satisfy
a stronger property than d-comprehensiveness: the problem (S, d ) is strictly d-
comprehensive if d ≦ y ≦ x and x � S imply y � S and y =2 WP (S, d ) (please see
Fig. 1; the left problem is strictly d-comprehensive while the right one is not).

We will next present examples of modeling the accession negotiation of
Example 1.

Example 2 (Modeling the Accession Negotiation) The set of bargainers is N= {E,C}.
Let T = [0,1] be the set of all tariff rates. As noted in the section “Introduction,” the
bargainers’ payoffs from alternative agreements (as well as disagreement) need to be
determined by an empirical study which (not surprisingly) we will not carry out here.
However, we will next present four alternative scenarios for these payoff functions, UC

and UE. In each scenario, we assume for simplicity that each bargainer i) receives a
zero payoff in case of disagreement and (ii) prefers accession with any tariff rate to
disagreement. Due to (ii), the individually rational set coincides with the feasible payoff
set of the resulting bargaining problem in each scenario.

In the first scenario, both bargainers’ payoffs are linear in the tax rate. (Thus,
both are risk-neutral.6)

Scenario 1. LetUE(t) = 1 � t and UC(t) = t
In the second scenario, we change the candidate’s payoff to be a strictly concave

function. (Compared to Scenario 1, C is now more risk-averse than E.)

Scenario 2. Let UE(t) = 1 � t and UC tð Þ ¼ t
1
2

In the third scenario, E’s payoff is also changed to be a strictly concave function.
(Now, both bargainers have the same level of risk-aversion.)

Scenario 3. Let UE tð Þ ¼ 1� tð Þ12 and UC tð Þ ¼ t
1
2

In the fourth scenario, both bargainers have linear payoff functions. That is, they
are both risk-neutral. But, differently from Scenario 1, now E’s marginal gain from a
change in the tariff rate is twice that of C.

Scenario 4. Let UE(t) = 2(1 � t) and UC(t) = t

6A decision-maker is risk-neutral if he is indifferent between each lottery and the lottery’s expected
(sure) return.
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The resulting feasible payoff set and the disagreement point for each scenario is
constructed in Fig. 2.

Since both bargainers prefer accession of C to its rejection from the European
Union, the Pareto set under all scenarios corresponds to those payoff profiles that
result from accession with probability 1. The feasible payoff set is constructed by
taking convex combinations of the Pareto optimal alternatives with the disagreement
point. Thus, they represent payoff profiles of lotteries, including those between an
accession agreement and disagreement.

Bargaining Rules and Axioms

A (bargaining) rule F : B ! ℝn assigns each bargaining problem S, dð Þ�B to a
feasible payoff profile F(S, d ) � S. As discussed in the section “Introduction,”
F can be interpreted as either (i) a description of the negotiation process the
agents in consideration are involved in (the positive interpretation) or (ii) a
prescription to the negotiators as a “good” compromise (the normative
interpretation).

In this section, we present examples of bargaining rules and discuss the main
axioms that they satisfy. We also discuss these rules’ choices for the four scenarios of
Example 2.
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Fig. 2 The Accession Game: Scenario 1 (top left), Scenario 2 (top right), Scenario 3 (bottom left),
and Scenario 4 (bottom right)
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The Nash Rule

The first and the best-known example of a bargaining rule is by Nash (1950). The
Nash rule chooses, for each bargaining problem S, dð Þ�B the individually rational
alternative that maximizes the product of the agents’ gains from disagreement
(please see Fig. 3, left):

N S, dð Þ ¼ arg max

x� I S,dð Þ

Yn
i¼1

xi � dið Þ:

Let us first check the Nash solutions to the accession negotiations of Example 2.

Example 3 (Nash solution to the accession negotiations) For each of the four
scenarios discussed in Example 2, the Nash rule proposes the following payoff
profiles (the first payoff number is for E and the second is for C). For Scenario 1,
N S1, d1
� � ¼ 1

2
, 1
2

� �
. This payoff profile is obtained when the bargainers agree on

accession at a tariff rate t1 ¼ 1
2
: For Scenario 2, N S2, d2

� � ¼ 2
3
, 1ffiffi

3
p

� �
, obtained at

accession and the tariff rate t2 ¼ 1
3
: For Scenario 3, N S3, d3

� � ¼ 1ffiffi
2

p , 1ffiffi
2

p
� �

,

obtained at accession and the tariff rate t3 ¼ 1
2
: For Scenario 4, N S4, d4

� � ¼
1, 1

2

� �
, obtained at accession and the tariff rate t4 ¼ 1

2
:

In Example 3, as C becomes more risk averse from Scenario 1 to Scenario 2, the
Nash solution changes in a way to benefit E (since the tariff rate decreases from 1

2
to 1

3
).

This is a general feature of the Nash bargaining rule: the Nash bargaining payoff of an
agent increases as his opponent becomes more risk-averse (Kihlstrom et al. 1981).

�

�

u2

u1

•d

S • N(S, d)

�

�

u2

u1

•d

S

•a(S, d)•

•

•
K(S, d)

Fig. 3 The Nash (left) and the Kalai-Smorodinsky (right) solutions to a typical problem
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Nash (1950) proposes four axioms and shows that his rule satisfies them. These
axioms later play a central role in the literature. We will introduce them next.

The first axiom requires that the rule always choose a Pareto optimal alternative.
Formally, a rule F is Pareto optimal if for each problem S, dð Þ�B, F(S, d ) � P
(S, d ). As discussed in the section “Introduction,” it is commonly agreed in the
literature that negotiations result in a Pareto optimal alternative. Thus, most axiom-
atic analyses focus on Pareto optimal rules. In Example 3, Pareto optimality is
satisfied since all four negotiations result in the accession of the candidate to the
European Union.7

The second axiom, called anonymity, guarantees that the identity of the bar-
gainers do not affect the outcome of negotiation. It requires that permuting the
agents’ payoff information in a bargaining problem should result in the same
permutation of the original agreement. To formally introduce this axiom, let Π be
the set of all permutations on N, π : N!N. For x � ℝN, let π(x) = (xπ(i))i�N and for
S � ℝN, let π(S) = {π(x)| x � S}. Then, a rule F is anonymous if for each π � Π, F
(π(S), π(d ))= π(F(S, d )). Note that anonymity applies to cases where the bargainers
have “equal bargaining power.”

It is common practice in the literature to replace anonymity with a weaker axiom
which requires that if a problem is symmetric (in the sense that all of its permutations
result in the original problem), then its solution should be symmetric as well.
Formally, a rule F is symmetric if for each π � Π, π(S) = S and π(d ) = d implies
F1(S, d )=...=Fn(S, d ). Note that the bargaining problems under Scenarios 1 and 3
are symmetric. Therefore, their Nash solutions are also symmetric.

The third axiom is based on the fact that a von Neumann-Morgenstern type
preference relation can be represented with infinitely many payoff functions (that
are positive affine transformations of each other) and the particular functions chosen
to represent the problem should not affect the bargaining outcome. Formally, letΛ be
the set of all λ = (λ1, . . ., λn) where each λi : ℝ! ℝ is a positive affine function.8 Let
λ(S) = {λ(x)| x � S}. Then, a rule F is scale invariant if for each S, dð Þ�B and
λ � Λ, F(λ(S), λ(d))= λ(F(S, d)). Note that in the accession negotiations, Scenario 4
is obtained from Scenario 1 by multiplying UE by 2, which is a positive affine
transformation. Thus, the Nash solutions to the two scenarios are related the same
way (and the resulting tariff rates are identical).

The final axiom of Nash (1950) concerns the following case. Suppose the bargainers
facing a bargaining problem (S, d) agree on an alternative x. However, they later realize
that the actual feasible set T is smaller than S. Nash requires that if the original
agreement is feasible in the smaller feasible set, x � T, then the bargainers should
stick with it. Formally, a rule F is contraction independent if for each
S, dð Þ, T, dð Þ�B such that T � S, F(S, d) � T implies F(T, d) = F(S, d). Nash

7This is Pareto optimal since both bargainers prefer accession to rejection. What they disagree on is
the tariff rate.
8A function λi :ℝ!ℝ is positive affine if there is a,b � ℝwith a> 0 such that for each x � ℝ, λi(x)
= ax+b.
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(1950) and some of the following literature alternatively calls this axiom independence
of irrelevant alternatives (IIA). However, the presumed irrelevance of alternatives in
the choice of an agreement (as suggested by this name) is a topic of controversy in the
literature. In fact, it is this controversy that motivates the bargaining rule of Kalai and
Smorodinsky (1975) as will be discussed in the next subsection.

Nash (1950) shows that his bargaining rule uniquely satisfies these four axioms.
We will next prove this result for two-agent problems.

Theorem 4 (Nash 1950) A bargaining rule satisfies Pareto optimality, symmetry,
scale invariance, and contraction independence if and only if it is the Nash rule.

Proof It is left to the reader to check that the Nash rule satisfies the given axioms.
Conversely, let F be a rule that satisfies them. Let S, dð Þ�B and N(S, d )=x. We
would like to show that F(S, d )=x.

By scale invariance of both rules, it is without loss of generality to assume that
d=(0,0) and x=(1,1).9 Then, by definition of N, the set P(S, d ) has slope �1 at x.
Also, by boundedness of S, there is z � ℝN such that for each x � S, x≧ z. Now let
T = {y � ℝN| �Nyi ≦�N xi and y ≧ z}. Then, S � T and T, dð Þ�B is a symmetric
problem. Thus, by symmetry and Pareto optimality of F, F(T, d ) = x. This, by
contraction independence of F, implies F(S, d ) = x, the desired conclusion. ■

It is useful to note that the following class of weighted Nash rules uniquely satisfy
all of Nash’s axioms except symmetry. These rules extend the Nash bargaining rule
to cases where agents differ in their “bargaining power.” Formally, let p = ( p1,...,pn)
� 0,1]N satisfy �Npi = 1. Each pi is interpreted as the bargaining power of Agent i.
Then the p-weighted Nash bargaining rule is defined as

Np S, dð Þ ¼ arg max
x� I S,dð Þ

Yn
i¼1

xi � dið Þpi :

The symmetric Nash bargaining rule assigns equal weights to all agents, that is,
p ¼ 1

n , . . . ,
1
n

� �
.

The literature contains several other characterizations of the Nash bargaining rule.
For example, see Peters (1986), Dagan et al. (2002), Anbarci and Sun (2011, 2013),
and Rachmilevitch (2015).

The Kalai-Smorodinsky Rule

The Kalai-Smorodinsky rule (Raiffa 1953; Kalai and Smorodinsky 1975) makes use
of each agent’s aspiration payoff, that is, the maximum payoff an agent can get at an

9Any (S, d) can be “normalized” into such a problem by choosing λi xið Þ ¼ xi�di
Ni S, dð Þ�di

for each i � N.
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individually rational agreement. Formally, given a problem S, dð Þ�B , the aspira-
tion payoff of Agent i is ai S, dð Þ ¼ argmax x� I S,dð Þxi : The vector a S, dð Þ ¼ ai S, dð Þð Þni¼1

is called the aspiration point.
The Kalai-Smorodinsky rule, K, chooses the maximum individually rational

payoff profile at which each agent’s payoff gain from disagreement has the same
proportion to his aspiration payoff’s gain from disagreement (please see Fig. 3,
right). Formally,

K S, dð Þ ¼ arg max
x� I S, dð Þ

min
i� 1, ..., nf g

xi � di
ai S, dð Þ � di

� �
:

Geometrically, K(S, d ) is the intersection of the line segment [d, a(S, d )] and the
northeast boundary of S.

Example 5 (Kalai-Smorodinsky solution to the accession negotiations) For each of
the four scenarios discussed in Example 2, the Kalai-Smorodinsky rule proposes the
following payoff profiles (the first payoff number is for E and the second is for C).
For Scenario 1, K S1, d1

� � ¼ 1
2
, 1
2

� �
: This payoff profile is obtained when the

bargainers agree on accession at a tariff rate t1 ¼ 1
2
: For Scenario 2, K

(S2, d2) = (0.62,0.62), obtained at accession and the tariff rate t2 = 0.38. For

Scenario 3, K S3, d3
� � ¼ 1ffiffi

2
p , 1ffiffi

2
p

� �
, obtained at accession and the tariff rate t3 ¼ 1

2
:

For Scenario 4, K S4, d4
� � ¼ 1, 1

2

� �
, obtained at accession and the tariff rate t4 ¼ 1

2
:

In Example 5, as C becomes more risk averse from Scenario 1 to Scenario 2, the
Kalai-Smorodinsky solution changes in a way to benefit E (since the tariff rate
decreases from 1

2
to 0.38). This is a general feature of the Kalai-Smorodinsky

bargaining rule: the Kalai-Smorodinsky bargaining payoff of an agent increases as
his opponent becomes more risk-averse (Kihlstrom et al. 1981).

As can be observed in Example 5, the Kalai-Smorodinsky rule is Pareto optimal
for all two-agent problems. With more agents, however, it satisfies a weaker prop-
erty: a rule F is weakly Pareto optimal if for each problem S, dð Þ�B, F(S,
d ) � WP(S, d ). Example 5 also demonstrates that the Kalai-Smorodinsky rule is
symmetric and scale invariant. Due to weak Pareto optimality and symmetry, the
Kalai-Smorodinsky solutions to (S1, d1) and (S3, d3) are equal to the Nash solutions.
Due to scale invariance, the two rules also coincide on (S4, d4). For the problem (S2,
d2), however, the two rules behave differently: the Kalai-Smorodinsky rule chooses
equal payoffs for the agents while the Nash rule favors E.

The Kalai-Smorodinsky rule violates Nash’s contraction independence axiom.
Kalai and Smorodinsky (1975) criticize this axiom and propose to replace it with a
monotonicity notion which requires that an expansion of the feasible payoff set
(and thus an increase in the cooperative opportunities) should benefit an agent if it
does not affect his opponents’ aspiration payoffs. Formally, a rule F satisfies
individual monotonicity if for each S, dð Þ, T, dð Þ�B and i � N, if S � T and
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aj(S, d ) = aj(T, d ) for each j 6¼ i, then Fi(S, d ) ≦ Fi(T, d ). The Nash rule violates
this axiom.

Kalai and Smorodinsky (1975) present the following characterization of the
Kalai-Smorodinsky rule. We will next prove this result for two-agent problems.

Theorem 6 (Kalai and Smorodinsky 1975) A bargaining rule satisfies Pareto
optimality, symmetry, scale invariance, and individual monotonicity if and only if
it is the Kalai-Smorodinsky rule.

Proof It is left to the reader to check that the Kalai-Smorodinsky rule satisfies the
given axioms. Conversely, let F be a rule that satisfies them. Let (S, d ) � ℬ and K(S,
d ) = x. We would like to show that F(S, d ) = x.

By scale invariance of both rules, it is without loss of generality to assume that d=
(0,0) and a(S, d) = (1,1).10 Then, by definition of K, x1=x2. Now let T = conv{x, d,
(1,0),(0,1)}. Then, T � S and T, dð Þ�B is a symmetric problem. Thus, by symmetry
and Pareto optimality of F, F(T, d) = x. Since T � S, x � P(S, d), and a(S, d) = a(T,
d), individual monotonicity implies that F(S, d)=x, the desired conclusion. ■

Roth (1979) notes that the above characterization continues to hold under a weaker
monotonicity axiom which only considers expansions of the feasible set at which the
problem’s aspiration point remains unchanged. Formally, a rule F satisfies restricted
monotonicity if for each (S, d), (T, d) � ℬ and i � N, if S� T and a(S, d)= a(T, d)
then F(S, d)≦ F(T, d).The Nash rule violates this weaker monotonicity axiom as well.

The literature contains several other characterizations of the Kalai-Smorodinsky
bargaining rule. For example, see Dubra (2001) and Karos et al. (2018).

The Egalitarian Rule

The Egalitarian rule, E, (Kalai 1977) chooses for each problem S, dð Þ�B the
maximum individually rational payoff profile that gives each agent an equal gain
from his disagreement payoff (please see Fig. 4, left). Formally, for each S, dð Þ�B,

E S, dð Þ ¼ arg max
x� I S,dð Þ

min
i� 1,...,nf g

xi � dið Þ
� �

:

Geometrically, E(S, d ) is the intersection of the boundary of S and the half line
that starts at d and passes through d + (1,...,1).

Example 7 (Egalitarian solution to the accession negotiations) For each of the four
scenarios discussed in Example 2, the Egalitarian rule proposes the following payoff

10Any (S, d) can be “normalized” into such a problem by choosing λi xið Þ ¼ xi�di
ai S, dð Þ�di

for each i � N.
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profiles (the first payoff number is for E and the second is for C). For Scenario 1,
E S1, d1
� � ¼ 1

2
, 1
2

� �
: This payoff profile is obtained when the bargainers agree on

accession at a tariff rate t1 ¼ 1
2
:For Scenario 2, E(S2,d2)= (0.62, 0.62), obtained at

accession and the tariff rate t2 = 0.38. For Scenario 3, E S3, d3
� � ¼ 1ffiffi

2
p , 1ffiffi

2
p

� �
,

obtained at accession and the tariff rate t3 ¼ 1
2
: For Scenario 4, E S4, d4

� � ¼ 2
3
, 2
3

� �
,

obtained at accession and the tariff rate t4 ¼ 2
3
:

The Egalitarian rule satisfies Pareto optimality only on the class of strictly d-
comprehensive problems BSC. On B, it only satisfies weak Pareto optimality.11

As observed in Example 7, the Egalitarian rule is weakly Pareto optimal and
symmetric. Due to these two axioms, the Egalitarian solutions to (S1,d1) and (S3,d3)
are equal to the Nash and Kalai-Smorodinsky solutions. Also, since the aspiration
point of problem (S2,d2) is symmetric, a(S, d ) = (1,1), the Egalitarian and the Kalai-
Smorodinsky rules pick the same solution.

Unlike the Nash and the Kalai-Smorodinsky rules, the Egalitarian rule violates
scale invariance. This can be observed in Example 7 by comparing the Egalitarian
solutions to (S1,d1) and (S4,d4).12 The Egalitarian rule however satisfies the follow-
ing weaker axiom: a rule F satisfies translation invariant if for each S, dð Þ�B and
z � ℝN, F(S + {z}, d + z) = F(S, d ) + z.13

�

�

u2

u1

•d

S

45o

• E(S, d)

• U(S, d)

�

�

u2

u1

•d

S

Fig. 4 The Egalitarian (left) and the Utilitarian (right) solutions to a typical problem

11On problems that are not d-comprehensive, the Egalitarian rule can also violate weak Pareto
optimality.
12For a scale invariant rule, (S1,d1) and (S4,d4) are alternative representations of the same physical
problem. (Specifically, E’s payoff function has been multiplied by 2 and thus, still represents the
same preferences.) For the Egalitarian rule, however, these two problems (and player E’s) are
distinct. Since it seeks to equate absolute payoff gains from disagreement, the Egalitarian rule treats
agents’ payoffs to be comparable to each other. As a result, it treats payoff functions as more than
mere representations of preferences.
13This property is weaker than scale invariance because, for an agent i, every translation xi + zi is a
positive affine transformation λi(xi) = 1xi + zi.
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On the other hand, the Egalitarian rule satisfies a very strong monotonicity axiom
which requires that an agent never loose in result of an expansion of the feasible
payoff set. Formally, a rule F satisfies strong monotonicity if for each
S, dð Þ, T, dð Þ�B, if S � T, then F(S, d ) ≦ F(T, d ). This property is violated by
the Kalai-Smorodinsky rule since this rule is sensitive to changes in the problem’s
aspiration point. The Nash rule violates this property since it violates the weaker
individual monotonicity property.

The following characterization of the Egalitarian rule follows from Kalai (1977).
We present it for two-agent problems.

Theorem 8 (Kalai 1977) A bargaining rule satisfies weak Pareto optimality, sym-
metry, translation invariance, and strong monotonicity if and only if it is the
Egalitarian rule.

Proof It is left to the reader to check that the Egalitarian rule satisfies the given
axioms. Conversely, let F be a rule that satisfies them. Let S, dð Þ�B and E
(S, d ) = x. We would like to show that F(S, d ) = x.

By translation invariance of both rules, it is without loss of generality to assume
that d = (0,0).14 Then, by definition of E, x1 = x2. Now let T = conv{x, d,
(x1, 0), (0, x2)}. Then, T � S and T, dð Þ�B is a symmetric problem. Thus, by
symmetry and weak Pareto optimality of F, F(T, d ) = x. Since T � S, strong
monotonicity then implies F(S, d ) ≧ x.

Case 1: x � P(S, d ). Then F(S, d )� x implies F(S, d ) =2 S. Thus, F(S, d )= x, the
desired conclusion.

Case 2: x � WP(S, d ). Suppose Fi(S, d ) > xi for some i � N. Let δ > 0 be such
that xi + δ< Fi(S, d ), let x0 = x + (δ, δ), x00 ¼ di, x0�i

� �
and S0 = conv{x0, x00, S}. Then

E(S0, d ) = x0 � P(S0, d ) and by Case 1, F(S0, d ) = x0. Since S � S0, by strong
monotonicity, F(S0, d ) = x0 ≧ F(S, d ). Particularly, xi + δ≧ Fi(S, d ), a contradiction.
Thus, F(S, d ) = x. ■

The literature contains several other characterizations of the Egalitarian
bargaining rule. For example, see Chun and Thomson (1990), Myerson (1981),
Peters (1986), Anbarci and Sun (2011, 2013), Rachmilevitch (2011), and Karos et al.
(2018).

Other Rules

In this section, we will present some of the other well-known rules in the literature.
The first is the Utilitarian rule which chooses for each bargaining problem

S, dð Þ�B the alternatives that maximize the sum of the agents’ payoffs (please see
Fig. 4, right):

14Any (S, d ) can be “normalized” into such a problem by choosing λi(xi) = xi�di for each i � N.
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U S, dð Þ ¼ argmax
x� S

Xn
i¼1

xi:

The Utilitarian rule is not necessarily single-valued, except when the feasible set
is strictly convex. However, it is possible to define single-valued refinements (such
as choosing the midpoint of the set of maximizers). Also, the Utilitarian solution to
(S, d ) is independent of d. Thus, the Utilitarian rule violates individual rationality.
Restricting the choice to be from the individually rational set remedies this problem.
Finally, the Utilitarian rule violates scale invariance. However, a variation which
maximizes a weighted sum of utilities satisfies the property (e.g., see Dhillon and
Mertens 1999).

The Utilitarian rule is Pareto optimal, anonymous contraction independent, and
translation invariant even though it violates restricted monotonicity. For more on
this rule, see Myerson (1981) and Thomson (1981). Blackorby et al. (1994) intro-
duce a class of Generalized Gini rules that are mixtures of the Utilitarian and the
Egalitarian rules.

The second rule represents extreme cases where one agent has all the “bargaining
power.” The Dictatorial rule for Agent i chooses the alternative that maximizes
Agent i’s payoff among those at which the remaining agents receive their disagree-
ment payoffs (please see Fig. 5, right):

Di S, dð Þ ¼ arg max
x� I S, dð Þ
s:t:x�i¼d�i

xi:

This rule is only weakly Pareto optimal, though on strictly d-comprehensive
problems it is Pareto optimal. The following rule does not suffer from this problem:
the Serial Dictatorial rule is defined with respect to a fixed order of agents and it first
maximizes the payoff of the first ordered agent, then among the maximizers,
maximizes the payoff of the second and so on.

Both the dictatorial and serial dictatorial rule violate symmetry (and thus ano-
nymity). Otherwise, they are very well-behaved. Both rules are scale invariant. In
fact, they satisfy an even stronger property, ordinal invariance, that we introduce and
discuss in the section “Ordinal Bargaining.” These rules also satisfy contraction
independence and strong monotonicity (and thus, all weaker monotonicity
properties).

The next class of rules, introduced by Yu (1973), is based on minimizing a
measure of the distance between the agreement and the problem’s aspiration point
(defined in the subsection “The Kalai-Smorodinsky Rule”). Formally, for p �
(1,1), the Yu rule associated with p is

Yp S, dð Þ ¼ argmax
x� S

Xn
i¼1

ai S, dð Þ � xij jp
 !1

p

:
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The Yu rules are Pareto optimal, anonymous, and individually monotonic. How-
ever, they violate contraction independence, strong monotonicity, and scale
invariance.

The final two rules are defined for two-agent problems. They both are based on the
idea of equalizing somemeasure of the agents’ sacrifices with respect to their aspiration
payoffs. The first, Equal Area rule, EA, chooses the Pareto optimal alternative at
which the area of the set of better individually rational alternatives for Agent 1 is equal
to that of Agent 2 (please see Fig. 5, left). This rule violates contraction independence
but satisfies anonymity, scale invariance, and an “area monotonicity” axiom (e.g., see
Calvo and Peters 2000). The second rule is by Perles and Maschler (1981). For
problems (S, d) whose Pareto set P(S, d) is polygonal, the Perles-Maschler rule,
PM, chooses the limit of the following sequence. (The Perles-Maschler solution to any
other problem (S, d) is obtained as the limit of Perles-Maschler solutions to a sequence
of polygonal problems that converge to (S, d)). Let x0 = D2(S, d) and y0 = D1(S, d).
For each k � ℕ, let xk, yk � P(S, d) be such that (i) xk1≦yk1, (ii) [x

k�1, xk] � P(S, d),
(iii) [yk�1, yk] � P(S, d), (iv) xk�1

1 � xk1
� �

xk�1
2 � xk2

� �		 		 ¼ yk�1
1 � yk1

� �
yk�1
2 � yk2

� �		 		,
and xk�1

1 � xk1
� �

xk�1
2 � xk2

� �		 		 is maximized (please see Fig. 5, right). The Perles-
Maschler rule is Pareto optimal, anonymous, and scale invariant. It, however, is not
contraction independent or restricted monotonic. For extending this rule to more than
two agents, see Calvo and Gutiérrez (1994) and the literature cited therein.

Strategic Considerations

As noted in the section “Introduction,” Nash (1950) interprets a bargaining rule as a
description of a (noncooperative) negotiation process between rational agents. Nash
(1953) furthers this interpretation and proposes what is later known as the Nash
program: to relate choices made by cooperative bargaining rules to equilibrium
outcomes of underlying noncooperative games. Nash argues that “the two

�

�

u2

u1

•d

S
• EA(S, d)

•
y0 = D1(S, d)

•D2(S, d) = x0

•x1A

B

• y1

D

•x
2 = y2 = PM(S, d)

C

�

�

u2

u1•d

S

Fig. 5 The Equal Area solution to a typical problem equates the two shaded areas (left); the Perles-
Maschler solution to a polygonal problem is the limit of the sequences {xk} and {yk} which are
constructed in such a way that (i) x0 = D2 (S, d ), y0 = D1(S, d ) are the two Dictatorial solutions and
(ii) the areas A, B, C, and D are maximal and they satisfy A = D and B = C
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approaches to the (bargaining) problem, via the (noncooperative) negotiation model
or via the axioms, are complementary; each helps to justify and clarify the other.”

Nash (1953) presents the first example of the Nash program. Given a bargaining
problem (S, d ), he proposes a two-agent noncooperative Demand Game in which
each player i simultaneously declares a payoff number si. If the declared payoff
profile is feasible (i.e., s � S), players receive their demands. Otherwise, the players
receive their disagreement payoffs with a probability p and their demands with the
remaining probability. Nash shows that, as p converges 1, the equilibrium of the
Demand Game converges to the Nash solution to (S, d ).

Van Damme (1986) considers a related noncooperative game where, given a
bargaining problem (S, d ), each agent simultaneously declares a bargaining rule.15 If
the solutions proposed by the two rules conflict, the feasible payoff set is contracted
in a way that an agent cannot receive more than the payoff he asks for himself. The
two rules are now applied to this contracted problem and if they conflict again, the
feasible set is once more contracted. Van Damme (1986) shows that for a large class
of rules, the limit of this process is well-defined and the unique Nash equilibrium of
this noncooperative game is both agents declaring the Nash bargaining rule.

Another well-known contribution to the Nash program is by Binmore et al.
(1986) who relate the Nash bargaining rule to equilibrium outcomes of the following
game. The Alternating Offers Game (Rubinstein 1982) is an infinite horizon
sequential move game to allocate one unit of a perfectly divisible good between
two agents. The players alternate in each period to act as “proposer” and
“responder.” Each period contains two sequential moves: the proposer proposes an
allocation and the responder either accepts or rejects it. The game ends when a
proposal is accepted. Rubinstein (1982) shows that the Alternating Offers Game has
a unique subgame perfect Nash equilibrium in which the first proposal, determined
as a function of the players’ discount factors, is accepted. Binmore et al. (1986) show
that, as the players’ discount factors converge to 1 (i.e., as they become more
patient), the equilibrium payoff profile converges to the Nash bargaining solution
to the associated cooperative bargaining game. For more recent work on the Nash
program, see Anbarci and Boyd (2011), Abreu and Pearce (2015), Binmore and
Eguia (2017), and Karagözoğlu and Rachmilevitch (2018).

Another strategic issue arises from that fact that each negotiator, by mis-
representing his private information (e.g., about his preferences, degree of risk
aversion, etc.), might be able to change the bargaining outcome in his favor.
Understanding the “real” outcome of a bargaining rule then requires taking this
kind of strategic behavior into account. A standard technique for this is to embed the
original problem into a noncooperative game (in which agents strategically “distort”
their private information) and to analyze its equilibrium outcomes. This is demon-
strated in the following example.

15Thus, as in Nash (1953), each agent demands a payoff. But now, they have to rationalize it as part
of a solution proposed by an “acceptable” bargaining rule.
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Example 9 (A noncooperative game of manipulating the Nash rule) Suppose that
agents C and E in Example 2 have private information about their true payoff
functions and that they play a noncooperative game where they strategically declare
this information to an arbitrator who uses the Nash rule. Using the four scenarios of

Example 2, fix the strategy set of C as t, t
1
2

n o
and the strategy set of E as

1� t, 1� tð Þ12, 2 1� tð Þ
n o

: The resulting tariff rate is determined by the Nash

bargaining rule calculated in Example 3 except for the profile t, 1� tð Þ12
� �

. The

following table summarizes, for each strategy profile, the resulting tariff rate.

C \ E 1− t (1− t)
1
2 2 (1− t)

t 0.5 0.66 0.5
t
1
2 0.33 0.5 0.33

Note that this is a competitive game: C is better-off and E is worse-off in response
to an increase in the tariff rate t. Also note that, for C, declaring t strictly dominates

declaring t
1
2 (that is, he gains from acting less risk-averse). Similarly, for E, declaring

(1�t) strictly dominates declaring 1� tð Þ12 and, since the Nash bargaining rule is
scale invariant, declaring (1�t) and 2(1�t) are equivalent. The game has two
equivalent dominant strategy equilibria: (t,1�t) and (t,2(1�t)) where both players
act to be risk-neutral.

In some cases, such as Example 9, it is natural to assume that the agents’ ordinal
preferences are publicly known. (In the example, it is common knowledge that C
prefers higher tariff rates and E prefers lower tariff rates.) Then, manipulation can
only take place through misrepresentation of cardinal utility information (such as the
degree of risk-aversion). In two-agent bargaining with the Nash or the Kalai-
Smorodinsky rules, an agent’s utility increases if his opponent is replaced with
another that has the same preferences but a more concave utility function (Kihlstrom
et al. 1981). On allocation problems, this result implies that an agent can increase his
payoff by declaring a less concave utility function (i.e., acting to be less risk-averse).
For the Nash bargaining rule, it is a dominant strategy for each agent to declare the
least concave representation of his preferences. For a single good, the equilibrium
outcome is equal division.

If ordinal preferences are not publicly known, however, their misrepresentation
can also be used for manipulation. The resulting game does not have dominant
strategy equilibria. Nevertheless, for a large class of two-agent bargaining rules
applied to allocation problems, the set of allocations obtained at Nash equilibria in
which agents declare linear utilities is equal to the set of “constrained” Walrasian
allocations from equal division with respect to the agents’ true utilities (Sobel 1981,
2001; Gómez 2006). Under a mild restriction on preferences, a similar result holds
for pure exchange and public good economies with an arbitrary number of agents
and for all Pareto optimal and individually rational bargaining rules (Kıbrıs 2002).
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Ordinal Bargaining

Nash (1950) and most of the following literature restricts the analysis to bargaining
processes that take place on lotteries and assumes that the bargainers’ preferences on
lotteries satisfy the von Neumann-Morgenstern assumptions (thus, they are repre-
sentable by expected utility functions). This assumption has two important conse-
quences. First, in a bargaining problem (S, d ), the feasible payoff set S is then
convex. Second, the scale invariance axiom of Nash (1950) is sufficient to ensure the
invariance of the physical bargaining outcome with respect to the particular utility
representation chosen.

In this section, we drop these assumptions and analyze bargaining in ordinal
environments, where the agents’ complete, transitive, and continuous preferences
do not have to be of von Neumann-Morgenstern type. For ordinal environments, (i)
the payoff set S is allowed to be nonconvex and (ii) scale invariance needs to be
replaced with the following stronger axiom.16 Formally, let Φ be the set of all ϕ =
(ϕ1,...,ϕn) where each ϕi :ℝ!ℝ is an increasing function. Let ϕ(S)= {ϕ(x)| x � S}.
Then, a rule F is ordinal invariant if for each (S, d ) � ℬ and ϕ � Φ, F(ϕ(S),
ϕ(d ))= ϕ(F(S, d )). Note that every ordinal invariant rule is also scale invariant but
not vice versa.

If there are a finite number of alternatives, many ordinal invariant rules exist
(e.g., see Kıbrıs and Sertel 2007). With an infinite number of alternatives, however,
ordinal invariance is a very demanding property. Shapley (1969) shows that for two-
agent problems, only dictatorial bargaining rules and the rule that always chooses
disagreement satisfy this property. This result is due to the fact that the Pareto
optimal set of every two-agent problem can be mapped to itself via a nontrivial
increasing transformation ϕ = (ϕ1,ϕ2). In the following example, we demonstrate
the argument for a particular bargaining problem.

Example 10 Consider the problem (S1, d1) in Scenario 1 of Example 2
(represented in Fig. 2, upper left). Note that the Pareto set of (S1, d1) satisfies uC

+ uE = 1. Let ϕC uCð Þ ¼ u
1
2

C and ϕE uEð Þ ¼ 1� 1� uEð Þ12 and note that
ϕC(uC) + ϕE(uE) = 1. Thus, the Pareto set of the transformed problem
(ϕ(S1), ϕ(d1)) is the same as (S1, d1). In fact, S1 = ϕ(S1) and d1 = ϕ(d1). To
summarize, ϕ maps (S1, d1) to itself via a nontrivial transformation of the agents’
utilities. Now let F be some ordinally invariant bargaining rule. Since the two
problems are identical, F(ϕ(S1), ϕ(d1)) = F(S1, d1). Since F is ordinally invariant,
however, we also have F(ϕ(S1), ϕ(d1))= ϕ(F(S1, d1)). For both requirements to be
satisfied, we need ϕ(F(S1, d1)) = F(S1, d1). Only three payoff profiles in (S1, d1)
satisfy this property: (0,0), (1,0), and (0,1). Note that they are the disagreement
point and the two dictatorial solutions, respectively. So, F should coincide with
either one of these rules on (S1, d1).

16This is due to the following fact. Two utility functions represent the same complete and transitive
preference relation if and only if one is an increasing transformation of the other.
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The construction of Example 10 is not possible for more than two agents (Sprumont
2000). For three agents, Shubik (1982) presents an ordinally invariant and strongly
individually rational bargaining rule which we will refer to as the Shapley-Shubik
rule.17 The Shapley-Shubik solution to a problem (S, d) is defined as the limit of the
following sequence. Let p0 = d and for each k � {1,...}, let pk � ℝ3 be the unique
point that satisfies

pk�1
1 , pk2, p

k
3

� �
�P S, dð Þ, pk1, p

k�1
2 , pk3

� �
�P S, dð Þ, and pk1, p

k
2, p

k�1
3

� �
�P S, dð Þ:

The Shapley-Shubik solution is then Sh S, dð Þ¼ lim k!1pk : The construction of the
sequence {pk} is demonstrated in Fig. 6.

Kıbrıs (2004a) shows that the Shapley-Shubik rule uniquely satisfies Pareto
optimality, symmetry, ordinal invariance, and a weak monotonicity property. Kıbrıs
(2012) shows that it is possible to replace monotonicity in this characterization with
a weak contraction independence property. Samet and Safra (2005) propose

�

�
�

�
�

�
�

�
�

�
�

�
��

u1

u2

u3

•
p2

• (p
1
1, p

1
2, p

0
3)

•(p01, p12, p13)

•
(p11, p02, p13)

•p1

• (p11, p22, p23)

•
(p21, p12, p23)

•
•
p0

Fig. 6 The Shapley-Shubik solution to (S, d ) is the limit of the sequence {pk}

17There is no reference on the origin of this rule in Shubik (1982). However, Thomson attributes it
to Shapley. Furthermore, Roth (1979) (pp. 72–73) mentions a three-agent ordinal bargaining rule
proposed by Shapley and Shubik (1974, Rand Corporation, R-904/4) which, considering the
scarcity of ordinal rules in the literature, is most probably the same bargaining rule.
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generalizations of the Shapley-Shubik rule to an arbitrary number of agents. Vidal-
Puga (2015) analyzes a noncooperative game whose subgame perfect Nash equilib-
rium coincides with the Shapley-Shubik rule.

The literature following Shapley (1969) also analyze the implications of weak-
ening the ordinal invariance requirement on two-agent bargaining rules. Myerson
(1977) and Roth (1979) show that such weakenings and some basic properties
characterize Egalitarian type rules. Calvo and Peters (2005) analyze problems
where there are both ordinal and cardinal players. There is also a body of literature
which demonstrates that in alternative approaches to modeling bargaining problems,
ordinality can be recovered (e.g., see Rubinstein et al. 1992; O’Neill et al 2004;
Kıbrıs 2004b). Finally, there is a body of literature that allows nonconvex bargaining
problems but does not explicitly focus on ordinality (e.g., see Herrero (1989), Zhou
(1997), and the following literature).

Conclusion

In the last 60 years, a very large literature on cooperative bargaining formed around
the seminal work of Nash (1950). In this chapter, we tried to summarize it, first
focusing on some of the early results that helped shape the literature, and then
presenting a selection of more recent studies that extend Nash’s original analysis.
An overview of these results suggests an abundance of both axioms and rules. We
would like to emphasize that this richness comes out of the fact that bargaining
theory is relevant for and applicable to a large number and wide variety of real-life
situations including, but not limited to, international treaties, corporate deals, labor
disputes, pre-trial negotiations in lawsuits, decision-making as a committee, or the
everyday bargaining that we go through when buying a car or a house. Each one of
these applications bring out new ideas on what the properties of a good solution
should be and thus, lead to the creation of new axioms. It is our opinion that there are
many more of these ideas to be explored in the future.

Cross-References

▶Group Decisions: Choosing a Winner by Voting
▶Group Decisions: Choosing Multiple Winners by Voting
▶Non-cooperative Bargaining Theory
▶ Sharing Profit and Risk in a Partnership
▶The Notion of Fair Division in Negotiations
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