
Building Reputation in a War of Attrition Game:

Hawkish or Dovish Stance?∗
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Abstract

This paper examines a two-player war of attrition game in continuous-time,

where (1) fighting (i.e., escalating the conflict) is costless for a player unless he

quits, (2) at any point in time, each player can attack to his opponent and finalize

the game with a costly war, (3) there is two-sided uncertainty regarding the players’

resolve, and (4) each player can choose his tone/stance (either hawkish or dovish)

at the beginning of the game, which affects his quitting cost. The results imply

that choosing hawkish (dovish) regime is optimal if and only if the benefit-cost ratio

of the dispute is sufficiently high (low). If hawkish tone is going to give a player

upper hand in a dispute, then choosing a more aggressive tone does not increase his

payoff. However, choosing a more dovish tone increases a player’s payoff whenever

dovish regime is optimal.
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In politics... never retreat, never retract... never admit a mistake.

Napoleon Bonaparte

1. Introduction

The current paper generalizes the results of Ozyurt (2014) and extends its workhorse

war of attrition model by adding an initial stage where the players can endogenously

choose their escalation cost parameters. What is novel about the game is that (1) esca-

lating the conflict (i.e., fighting) is costless for a player provided that he never retreats,

(2) at any point in time, each player can choose one of three possible actions; escalate

(wait), back down (quit), and attack, (3) there is two-sided uncertainty regarding the

players’ commitment (i.e., resolve), and finally (4) each player can choose his stance,

tone, or regime (either hawkish or dovish) at the beginning of the game, which affects the

cost he will suffer when he quits. Sending strong public threats to the opponent, pledging

himself to a certain course of action or to some bold, future act can be interpreted as

choosing hawkish tone in a dispute because these actions raise public’s expectation, and

so cause bigger embarrassment in case of a failure of meeting these expectations.1

An international dispute between two states and a labor dispute between a firm and

a union are two examples that would fit to the setup provided above. Mimicking the

resolved type by escalating the dispute is potentially a costly action for a rational player

because quitting after escalating the dispute for a while is costly. Attacking is also a costly

action. However, both of these actions have signaling values, and so, they may provide a

leverage to a player during the war of attrition game. A player can build his reputation

by mimicking the resolved type. Higher reputation for resolve intimidates the rival and

forces him to play a (mixed) strategy in which he quits with a greater probability. Clearly,

a player’s ex ante payoff increases as his opponent quits with a greater probability. On

the other hand, the threat of a costly war introduces some sort of deadline effect on

reputation building. A rational player does not quit beyond time, at which his escalation

costs exceed his war cost, and so, low war cost or greater sensitivity to escalation costs

implies a shorter deadline. By escalating the conflict, a rational player signals that he

is committed to attack (with a positive probability) at some time after his deadline if

the game ever reaches to this time. Therefore, if a player’s deadline is shorter and if he

escalates the dispute, then his rival will have to build his reputation faster, which means

that his rival will play a strategy such that he quits with a greater probability.

By choosing his regime, a player can control how fast he can build his reputation on

his resolve and how short his deadline for attacking will be. Dovish stance gives the abil-

1Leaders make use of this mechanism infrequently (Snyder and Borghard 2011, Trachtenberg 2012).
For example, the United Kingdom made very mild threats to Iran during the Abadan Crisis of 1951
(dovish stance) but issued serious warnings to Argentina during the Falkland Islands crisis in 1982.
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ity of building reputation at a faster rate.2 Hawkish regime, on the other hand, shortens

the players’ deadline for attacking. Therefore, a rational player will either choose the

dovish regime and build his reputation faster or the hawkish regime and commit to a

shorter deadline. Our results show that choosing the hawkish regime (and so committing

to a shorter deadline) is optimal when the benefit-cost ratio of the dispute is sufficiently

high. Otherwise, choosing the dovish regime (i.e., building reputation at a faster rate)

is optimal. These results were speculated in Ozyurt (2014), but formally proved in the

current paper. In addition, the current results show that having more hawkish tone never

benefits a player if hawkish regime is already the optimal one. However, choosing more

dovish tone increases a player’s payoff whenever the dovish regime is optimal. Further-

more, hawkish tone may be advantageous in a dispute only if the players have the option

of finishing the dispute with a costly war, such as starting a combat in international

disputes or strike in labor disputes.

War of attrition game is first proposed by Maynard Smith (1974) and is useful for

the study of a wide variety of conflict situations.3 This paper is primarily related to the

reputation and bargaining literature initiated by Myerson (1991). Myerson investigates

the impacts of one-sided reputation building on bilateral negotiations. Abreu and Gul

(2000), Kambe (1999), Compte and Jehiel (2002), Atakan and Ekmekci (2014), and

Ozyurt (2014, 2015) consider two-sided versions of it. The structure of the war of attrition

game in this paper is similar to the one studied in Fearon (1994). However, there are two

fundamental differences between the two: Fearon assumes that (1) players are known to

be flexible, but there is some uncertainty regarding the players’ war costs, and (2) the

players’ escalation costs are exogenous.

Ozyurt (2014) is the most related work to the current paper. It challenges conven-

tional wisdom—in international relations literature—that the ability of generating higher

escalation (i.e., audience) costs is an advantage for a leader of a state. In particular,

Ozyurt (2014) shows that lower escalation costs may give a player upper hand in a crisis

depending on (1) the benefit-cost ratio of the dispute, (2) initial probability of resolve,

and (3) how fast states generate escalation costs with time. The current paper takes a

2Note that given his strategy, a player’s reputation at time t is the conditional probability that this
player is the resolved type, conditional on the event that the player has not yet quit prior to time t.
Choosing the dovish stance yields smaller growth rate for the cost of quitting. Thus, a player who chooses
the dovish stance can optimally play a strategy in which he quits at a greater rate, and so builds his
reputation faster.

3Examples in the literature range from patent races (Fudenberg et al., 1983) to bargaining (Ordover
and Rubinstein, 1982; Osborne, 1985; Chatterjee and Samuelson, 1987) to public good provision Bliss
and Nalebuff (1984), and price wars and exit in oligopolistic markets (Ghemawat and Nalebuff, 1985;
Fudenberg and Tirole, 1986). Hendricks et al. (1988) present a very general analysis of the war of attrition
game with complete information. Bishop et al. (1978), Riley (1980), Milgrom and Weber (1985), Nalebuff
and Riley (1985), Ponsati and Sakovics (1995), and Bulow and Klemperer (1999) present analysis of the
war of attrition game with incomplete information.
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step further, generalizes the results of Ozyurt (2014) for a larger class of escalation cost

functions, and extends its workhorse model by adding an initial stage where the players

can endogenously choose their escalation cost parameters. This extension allows the pos-

sibility of studying not only the optimal type (hawkish vs. dovish) but also the optimal

intensity of regime choice in a dispute.

Section 2 explains the details of the three-stage, infinite-horizon, continuous-time war

of attrition game. Section 3 characterizes the third-stage equilibrium strategies. Section

4 presents the main results: I study four particular examples and examine how players’

regime choices change with the characteristics of the dispute. Finally, Section 5 concludes.

2. The War of Attrition Game

Timing: Two players, 1 and 2, are in dispute over a prize worth vi > 0 for each

player i ∈ {1, 2}. The dispute (war of attrition game) is a three-stage infinite-horizon,

continuous-time game. All stages start and the first two stages end at time 0. In stage

1, players simultaneously choose and announce their messages, regimes, or tones mi ∈
{h, d} := M for i = 1, 2. Each player can choose either the hawkish (h) or the dovish (d)

regime.

A player knows that he will never be forced to commit to a hardline policy, but is

uncertain about his opponent. Therefore, each player believes that nature sends one of

two messages {r, f} to his opponent in stage 2. A player who receives the message r,

resolved, is constrained to follow a hardline policy; he never quits and never attacks. If

a player receives the message f , flexible, then he will continue to play the game with

no commitment. The players share the same belief that player i receives the message

r with probability zi where zi ∈ (0, 1). Therefore, the probability of being resolved is

independent of the chosen messages.

Upon the beginning of the third stage (still at time 0), the players begin to play a

war of attrition game, where at all times t ≥ 0 before the dispute ends, each player can

choose to escalate (wait), quit (back down), or attack. The dispute ends when one or

both players attack or quit.

Payoffs: If either player attacks before the other quits, then the dispute ends with

“war” and each player i receives the (net expected) payoff −wi < 0. It indicates all the

risks and gains resulting from war. The case −wi < 0 indicates that staying away from

the dispute is more desirable for a player than attacking once the player is involved in

it. If player i picks message mi ∈ M and quits at time t ≥ 0 before the other quits or

attacks, then its opponent j receives the prize while player i suffers escalation costs equal
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to cmi
i (t), a continuous and strictly increasing function of the amount of escalation. I

assume that 0 ≤ cmi
i (t), cmi

i (0) < vi, and cdi (t) ≤ chi (t) for all i and t. The last condition

implies that the hawkish stance leads to a (weakly) higher escalation costs.

If one player chooses to attack at time t and the other chooses to quit or attack at the

same time, then both flexible players receive their war payoffs −wi. However, if both quit

at time t, then flexible player i receives vi
2
− cmi

i (t) given that i’s regime choice was mi

in the first stage. These particular assumptions are not crucial because in equilibrium,

simultaneous concessions or attacks occur with probability 0. Finally, if players escalate

the conflict indefinitely, each flexible player gets a payoff that is strictly less than his war

payoff.4 Call this war of attrition game where all the parameters are common knowledge

G.

Strategies: The only source of uncertainty is the players’ actual types, which matters

only in the third stage of the game. In the first stage, all players are flexible (rational) in

the sense that they choose their strategies, given their beliefs, to maximize their expected

payoffs. At the beginning of the game each player knows that his future self will be flexible.

However, each player is uncertain about his opponent’s future self: following the second

stage, the opponent is either flexible or resolved.

The strategy of the resolved type is simple: never quit and never attack during the

war of attrition game. Resolved types’ payoffs are ignored because they are redundant

for the analysis. What motivates and interests the subsequent analyses are the optimal

(i.e., equilibrium) strategies of the flexible types. Equilibrium strategies of the third stage

of the game are in mixed strategies, and so they are intricate objects. For pedagogical

reasons, I first present what pure strategies may look like and the payoffs that they

correspond to. Then I provide the general description for the strategies and payoffs.

A pure strategy for player i in the third stage of the gameG is a tuple
(
Qi(m̄), Ai(m̄)

)
∈

R2
+ for each (m1,m2) := m̄ ∈ M , where Qi(m̄) and Ai(m̄) denote the times at which

player i quits and attacks, respectively. Therefore, the strategies of the resolved type of

player i are Qi(m̄) = Ai(m̄) = ∞. Suppose that players choose (m1,m2) = m̄ ∈ M in

stage 1 and players i and j, for i, j = 1, 2 and j 6= i, are flexible.

• If Ai(m̄) ≤ min{Aj(m̄), Qi(m̄), Qj(m̄)}, then the payoffs to players i and j are

−wi < 0 and −wj < 0, respectively.

4Flexible players’ payoff at time infinity would be interpreted as payoff of “perpetual conflict avoid-
ance.” By neglecting to address high-conflict situations, avoiders risk allowing problems to fester out of
their control. By assuming that flexible players’ payoffs of perpetual conflict avoidance are worse than
their war payoff, we ensure that the flexible players are confrontational. That is, the flexible players
prefer confrontation even if the conflict may end badly for them.
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• If Qi(m̄) < min{Ai(m̄), Aj(m̄), Qj(m̄)}, then the payoffs to players i and j are

−cmi
i (Qi(m̄)) < 0 and vj > 0, respectively.

• If Qi(m̄) = Qj(m̄) < min{Ai(m̄), Aj(m̄)}, then the payoffs to players i and j are
vi
2
− cmi

i (Qi(m̄)) and
vj
2
− cmj

j (Qj(m̄)), respectively.

• If Qi(m̄) = Qj(m̄) = Ai(m̄) = Aj(m̄) = ∞, then the payoffs to players i and j are

some −M ∈ R−, where max{wi, wj} < M .

More formally, a mixed strategy of flexible player i in the first stage is a function

µi : M → [0, 1], where µi(m) denotes the probability that flexible player i chooses the

message m ∈M . Note that µi(h) + µi(d) = 1 for i = 1, 2.

Player i’s third stage (mixed) strategy,
{
Qm̄

i , A
m̄
i

}
m̄∈M2 , has two parts. For each

message profile m̄ = (m1,m2) ∈ M2, a right-continuous distribution function Qm̄
i (t) :

R+ ∪ {∞} → [0, 1] represents the probability that player i quits by time t (inclusive).

Similarly, for each message profile m̄, a continuous distribution function Am̄
i (t) : R+ ∪

{∞} → [0, 1] represents the probability that player i attacks by time t (inclusive). If

player i’s strategy, following the message profile m̄, is Qm̄
i (t), then flexible player i’s

strategy is Qm̄
i (t)/(1 − zi) because the resolved type never quits. The same arguments

hold for Am̄
i (t). Note that Qm̄

i (t) +Am̄
i (t) ≤ 1 for all 0 ≤ t and limt→∞A

m̄
i (t) ≤ 1− zi for

all i and m̄.

Given a strategy profile σ = 〈µi, {Qm̄
i , A

m̄
i }m̄∈M2〉2i=1, in the subgame following the

message realization m̄, flexible player i’s expected payoff of quitting at time t is

U q
i (t, σ, m̄) = viQ

m̄
j (t)− wiA

m̄
j (t) +

[
1−Qm̄

j (t)− Am̄
j (t)

]
[−cmi

i (t)]

+
(vi

2
− cmi

i (t)
) [
Qm̄

j (t)−Qm̄
j (t−)

]
, (1)

with Qm̄
j (t−) = limy↑tQ

m̄
j (y). Similarly, flexible player i’s expected payoff of attacking at

time t is

Ua
i (t, σ, m̄) = viQ

m̄
j (t)− wi[1−Qm̄

j (t)]. (2)

Therefore, flexible player i’s expected payoff in the subgame following the message real-

ization m̄ is

Ui(σ, m̄) =

∫
t∈[0,∞)

U q
i (t, σ, m̄)

1− zi
dQi(t) +

∫
t∈[0,∞)

Ua
i (t, σ, m̄)

1− zi
dAi(t) (3)

Finally, flexible player i’s expected payoff in the game is

Ui(σ) =
∑

m̄∈M2

µ(m̄)Ui(σ, m̄) (4)

where for all m̄ = (m1,m2) ∈M2, µ(m̄) = µ1(m1)µ2(m2).
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Discussion

Escalation costs can be interpreted as the players’ opportunity costs of quitting. That

is, it is the total value of the opportunities that are missed or not used effectively by

backing down from the hardline policy. Public commitments that players make during a

dispute are expected to serve an agenda the players may form. This agenda may include

items that are not directly related to the prize (e.g., increasing audiences’ support and

the likelihood of winning upcoming elections, building reputation for future negotiations,

discouraging potential rivals, and preventing future disputes etc.). Therefore, a player’s

expected value of following a hardline policy may increase with time because as time

passes, the player is more likely to convince his audiences about his resolve, and per-

suaded audiences would increase the likelihood of the successful execution of his agenda.

As a result, if the expected benefit of following the hardline policy increases in time, then

the opportunity cost of backing down is expected to increase in time as well. Alterna-

tively, escalation costs may represent a player’s psychological disutility—due to social

disapproval or embarrassment—of quitting.5

A player may commit not to back down in a dispute for reasons other than the

prospects of the dispute. For example, a leader may be resolved because of his firm

belief that backing down, and thus giving up for the prize, is simply a decision that

will not be ratified by his supporters. Therefore, the positive priors (i.e., zi’s) can be

interpreted as the players’ initial beliefs on the existence of such motives that may force

their opponents to be resolved. Resolved types closely resemble the commitment types

that are first defined by Myerson (1991) (r-insisting types) and studied further by Abreu

and Gul (2000) and Kambe (1999). These strategy types are first used in games by Kreps

and Wilson (1982) and Milgrom and Roberts (1982), where commitments are modeled

as behavioral types that exist in society so that rational players can mimic them if it

is optimal to do so. In a bilateral negotiation, commitment types always demand a

particular share and accept an offer if and only if it weakly exceeds that share.6

5The increasing cost of escalation is a widely used concept in international relations literature, which
is known as audience costs. This concept is first proposed by Fearon (1994). Audience costs may
occur if the leader of a state makes public threats or promises but fails to carry through on them.
In the international relations literature, there is a considerable amount of discussion concerning micro
foundations of audience costs. For instance, a leader that backs down from a public commitment may
suffer audience costs because the leader is less likely to be reelected (Smith 1998), has violated national
honor (Fearon 1994), or has lost his reputation and the credibility of his rhetoric (Sartori 2002, Guisinger
and Smith 2002).

6Abreu and Sethi (2003) support the existence of commitment types from an evolutionary perspective
and show that if players incur a cost of rationality, even if it is very small, the absence of such types is
not compatible with evolutionary stability in a bargaining environment.
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3. Equilibrium for the Third Stage of the War of Attrition Game

Because most of the arguments in this section are direct generalization of the analysis

of Ozyurt (2014), readers are advised to refer to this paper for a more detailed discussion.

All the proofs are deferred to Appendix.

Lemma 1. If a strategy profile σ = 〈µi, {Qm̄
i , A

m̄
i }m̄∈M2〉2i=1 constitutes a sequential equi-

librium of the game G, then for each m̄ = (m1,m2) ∈ M2, there exists a finite number

t∗m̄ > 0 such that, for i = 1, 2, the following conditions hold:

1. Qm̄
i (t) = 1− [1−Qm̄

i (0)][vj+c
mj
j (0)]

vj+c
mj
j (t)

for all t ≤ t∗m̄,

2. Qm̄
1 (0)Qm̄

2 (0) = 0,

3. Qm̄
i (t∗m̄) = 1− zi if t∗m̄ satisfies cmi

i (t∗m̄) < wi,

4. cmi
i (t∗m̄) ≤ wi, and

5. Am̄
i (t) = 0 for all t < t∗m̄ and limk→∞A

m̄
i (k) = 1− zi −Qm̄

i (t∗m̄).

In equilibrium, if player i believes that j will never quit after time t and cmi
i (t) < wi,

then flexible player i will immediately quit at that time. There are two critical thresholds

beyond which j never quits; the time that player j’s reputation reaches 1 and the time

that j’s escalation costs reaches his war cost wj. Let κm̄j satisfy cj(κ
m̄
j ) = wj and τ m̄j

solve Qm̄
j (τ m̄j ) = 1− zj. Thus, player i never backs down after time tm̄j = min

{
κm̄j , τ

m̄
j

}
.

Similar arguments hold for player j. If tm̄1 < tm̄2 holds and the dispute escalates until

time tm̄1 , then flexible player 2 ends the game at this time for sure because he knows that

player 1 will never quit beyond this point. As a result, the war of attrition game will end

no later than time t∗m̄ = min{tm̄1 , tm̄2 }. The next result formally proves these arguments.

Lemma 2. If a strategy profile σ = 〈µi, {Qm̄
i , A

m̄
i }m̄∈M2〉2i=1 constitutes a sequential equi-

librium of the war of attrition game G, then for any m̄ ∈ M2 and i, j ∈ {1, 2} with

i 6= j,

1. flexible player i never quits after time tm̄j = min
{
κm̄j , τ

m̄
j

}
, where

i. κm̄j solves c
mj

j (κm̄j ) = wj, and

ii. τ m̄j solves cmi
i (τ m̄j ) =

vi(1−zj)+c
mi
i (0)

zj
, and

2. the game G ends by time t∗m̄ = min{tm̄1 , tm̄2 }.
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Lemma 3. Suppose that a strategy profile σ = 〈µi, {Qm̄
i , A

m̄
i }m̄∈M2〉2i=1 constitutes a se-

quential equilibrium of the war of attrition game G. For any m̄ = (m1,m2) ∈ M2, if

tm̄i > tm̄j , then

Qm̄
j (t) = 1− vi + cmi

i (0)

vi + cmi
i (t)

and Qm̄
i (t) = 1−

[1−Qm̄
i (0)][vj + c

mj

j (0)]

vj + c
mj

j (t)
,

where

Qm̄
i (0) = 1−

zi(vj + c
mj

j (tm̄j ))

vj + c
mj

j (0)

Definition 1. For any strategy profile σ = 〈µi, {Qm̄
i , A

m̄
i }m̄∈M2〉2i=1 that constitutes a

sequential equilibrium of the war of attrition game G, player i is called

(i) advantaged in the subgame following m̄ if Qm̄
j (0) is strictly positive, and

(ii) advantaged in equilibrium σ if he is advantaged on the equilibrium path, that

is, he is advantaged in all the subgames following all m̄’s that are on the equilibrium

path.

We know from Lemma 1 that in equilibrium, the equality Qm̄
1 (0)Qm̄

2 (0) = 0 must hold

for any m̄ ∈M2. Therefore, if tm̄i > tm̄j holds, then player i (and only player i) quits with

a positive probability at time 0 in the subgame following m̄. Thus, at most one player

can be advantaged in equilibrium. The following result immediately follows from the last

arguments.

Corollary 1. In any sequential equilibrium of the war of attrition game G, player i is

advantaged in the subgame following m̄ if and only if the parameters of the game satisfy

tm̄j > tm̄i .

4. Type (Hawkish vs. Dovish) and Intensity of the Tone

This section aims to understand when the players prefer to choose the hawkish or the

dovish stance and in what extent. For a sharper presentation of the underlying dynamics,

I will analyze various variations of the war of attrition game with additional structure on

the parameters.

Suppose that a strategy profile σ = 〈µi, {Qm̄
i , A

m̄
i }m̄∈M2〉2i=1 constitutes a sequential

equilibrium of the war of attrition game G. For any message profile m̄, players’ strategies

entail quitting at any time before t∗m̄. Therefore, player i’s expected payoff of quitting at

any time t where 0 < t ≤ t∗m̄ has a fixed value, and thus player i’s expected payoff in the

subgame following the message realization m̄ must be equal to this fixed value.
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More formally, we see by Eq. (1) and Lemma 1 that for any small ε > 0, flexible

player i’s expected payoff of quitting at any time t ≤ t∗m̄ is

U q
i (t, σ, m̄) = viQ

m̄
j (ε)− wiA

m̄
j (ε) + [−cmi

i (ε)]
[
1−Qm̄

j (ε)− Am̄
j (ε)

]
+
[vi

2
− cmi

i (ε)
]

[Qm̄
j (ε)−Qm̄

j (ε−)]

= viQ
m̄
j (ε)− cmi

i (ε)[1−Qm̄
j (ε)].

Taking ε→ 0 thus yields

U q
i (t, σ, m̄) = viQ

m̄
j (0)− cmi

i (0)[1−Qm̄
j (0)] (5)

Similarly, we see by Eq. (1) and Lemma 1 that player i’s expected payoff of quitting at

time t∗m̄ is equal to

U q
i (t∗m̄, σ, m̄) = viQ

m̄
j (t∗m̄)− cmi

i (t∗m̄)[1−Qm̄
j (t∗m̄)],

and one can easily check that it’s value is equal to Eq. (5). Finally, Eq. (2) and Lemma

1 imply that player i’s expected payoff of attacking at any time t ≥ t∗m̄ is

Ua
i (t∗m̄, σ, m̄) = viQ

m̄
j (t∗m̄)− wi[1−Qm̄

j (t∗m̄)].

By the fourth condition of Lemma 1, we have cmi
i (t∗m̄) ≤ wi. That is, for any t ≤

t∗m̄, Ua
i (t, σ, m̄) ≤ U q

i (t, σ, m̄). Thus, flexible player i’s expected payoff in the subgame

following the message realization m̄ is given by Eq. (5).

For the rest of this section, I will consider linear escalation costs functions. In par-

ticular, for any message m ∈ M and player i, I suppose that cmi (t) = cmi t with cmi > 0.

Therefore, flexible player i’s continuation payoff, following the subgame where message

profile is m̄, is simply

U m̄
i = viQ

m̄
j (0),

which is equal to vi

[
1− zj

(
1 + cit

∗
m̄

vi

)]
when player i is advantaged in the subgame

following m̄, or 0 otherwise. We know from Corollary 1 that player i is advantaged

in the subgame following m̄ if and only if tm̄i < tm̄j . According to Lemma 2, for any

m̄ = (m1,m2) ∈M2, the war of attrition game ends at time t∗m̄ = min{tm̄1 , tm̄2 }, where

tm̄1 = min

{
w1

cm1
1

,
v2(1− z1)

z1c
m2
2

}
, tm̄2 = min

{
w2

cm2
2

,
v1(1− z2)

z2c
m1
1

}
.
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4.1. One-Sided Communication Under the Absence of War

Let the game G1 be the same as the game G with only two differences: (1) in the

first stage, only player 1 can choose his stance and (2) in the third stage, players cannot

choose to attack. Furthermore, I suppose that cd1 < c2 < ch1 . Therefore, the game G1 will

end at time t∗m = min{tm1 , tm2 }, where tm1 = v2(1−z1)
z1c2

and tm2 = v1(1−z2)
z2cm1

.

Moreover, player 1’s expected payoff is

Um
1 = v1

[
1− z2

(
1 +

v2(1− z1)

v1z1

cm1
c2

)]
(6)

if player 1 is advantaged in the subgame following m (i.e., tm1 < tm2 ). Note that Um
1 is

a decreasing function of cm1 , and so player 1 can increase his game payoff by choosing

a message that generates smaller escalation costs. Clearly, if player 1 can never be

advantaged (i.e., tm2 ≤ tm1 for all m ∈ M), then player 1’s equilibrium payoff will be 0

regardless of his message.

Proposition 1. If cd1 <
(

v1z1(1−z2)
v2z2(1−z1)

)
c2, then there exists a unique sequential equilibrium

of the game G1. In this equilibrium, player 1 is advantaged and chooses the dovish regime

in the first stage.

If two players are similar in the sense that vi = v and zi = z for i = 1, 2, then the above

inequality would become cd1 < c2, which is automatically satisfied by our assumption.

Therefore, we could conclude that if two players are playing the war of attrition game

under the absence of war and if only player 1 can choose his regime, then player 1 prefers

to choose the dovish regime such that he keeps his escalation costs minimal.

4.2. One-Sided Communication Under the Shadow of War

Let G2 be the same as the game G with only one difference: in the first stage, only

player 1 can choose his regime. Similar to the previous section, I will continue to assume

that cd1 < c2 < ch1 . Furthermore, let vi = v, wi = w, and zi = z hold for each i. According

to Lemma 2, the equilibrium horizon of the game is a function of the players’ war cost w.

In particular, for each m ∈ M , the game G2 will end at time t∗m = min{tm1 , tm2 }, where

tm1 = min
{

w
cm1
, v(1−z)

zc2

}
and tm2 = min

{
w
c2
, v(1−z)

zcm1

}
. As a result, in equilibrium, player 1

should choose the hawkish regime when the benefit-cost ratio of the game is higher than

the relative likelihood of a player being the resolved type. The next result formally proves

this point.

Proposition 2. If z
1−z < v

w
, then there exists a unique sequential equilibrium of the

game G2, in which player 1 is advantaged and choosing the hawkish regime in the first

11



stage. However, if the reverse of this inequality holds, then there is a unique sequential

equilibrium of the game G2, in which player 1 is advantaged but choosing the dovish regime

in the first stage.

If only player 1 has had the option of attacking, and so player 2 can never attack, then

there would exist a unique equilibrium where player 1 was advantaged and choosing the

dovish regime when v
w
< z

1−z . However, there would exist a continuum of equilibrium— in

all of which player 1 is advantaged—when z
1−z <

v
w

because player 1 would be indifferent

between the dovish and the hawkish regimes.

These two subsections show that player 1, who is the only player that can choose his

escalation costs in the game, is the advantaged player in equilibrium, and this conclusion

is correct whether or not players have the option to attack. However, the advantaged

player’s regime varies depending on the benefit-cost ratio of the dispute and the relative

likelihood of a player being the resolved type.

4.3. Two-Sided Communication

In this section, I consider the war of attrition game G, where both players can choose

a regime. For sharper results, I will suppose that cd2 < cd1 < ch2 < ch1 , vi = v, wi = w, and

zi = z for each i.

Proposition 3. If z
1−z <

v
w

, then in any sequential equilibrium of the game G, player 1

1. is advantaged and choosing the hawkish regime in the first stage, and

2. attacks (at some time after w
ch1

) with probability v
v+w
− z.

However, if v
w
< z

1−z , then in any sequential equilibrium of the game G, player 2 is

advantaged and choosing the dovish regime in the first stage.

4.4. Continuous Message Space and Intensity

Similar to the previous section, I suppose that both players can choose escalation

costs coefficients (ci), and vi = v, wi = w, and zi = z hold for each i. Furthermore,

I suppose that message space is continuous, and so for i = 1, 2, ci ∈ [cmin, cmax] with

0 < cmin < cmax < ∞. The lower (or the upper) bound represents the most dovish

(hawkish) tone a player can pick.

Proposition 4. Suppose that cj ∈ [cmin, cmax] for j ∈ {1, 2}. Then the best response

correspondence for the flexible type of player i ∈ {1, 2} with i 6= j is

BRi(cj) =



(cj, c
max], if cj < cmax and z

1+z
< v

w
,

[cmin, cmax], if cj = cmax and z
1+z

< v
w
,

{cmin}, if cmin < cj and z
1+z

> v
w

[cmin, cmax], if cmin = cj and z
1+z

> v
w
.

12



Therefore, more dovish tone increases a player’s payoff as long as the dovish regime

is optimal and the opponent has not chosen the most dovish regime cmin. On the other

hand, a more hawkish tone never benefits a player if it is the optimal regime for the

player. Nevertheless, in all sequential equilibrium of the war of attrition game G, at least

one of the players will certainly choose the most hawkish regime cmax whenever z
1+z

< v
w

.

5. Concluding Remarks

This paper examines a two-player war of attrition game in continuous-time. A player

can build his reputation by mimicking the resolved type and escalating the dispute.

Higher reputation for resolve intimidates the rival and forces him to play a mixed strategy

in which he quits with a greater probability. By choosing his regime at the beginning

of the game, players can control how fast they will build their reputation. The dovish

regime gives the ability of building reputation at a faster rate. The threat of a costly

war introduces some sort of deadline effect for reputation building. A flexible player does

not quit beyond a time at which his escalation costs exceed his war cost. Therefore, by

choosing the hawkish regime, players commit to attack with a positive probability after

this time, and so to a shorter time horizon for reputation building.

Our results show that choosing the hawkish regime (and so imposing a shorter dead-

line) is optimal when the benefit-cost ratio of the dispute is higher than the relative

likelihood of a player being the resolved type. Otherwise, choosing the dovish regime

(i.e., building reputation at a faster rate) is the optimal action. These results were specu-

lated in Ozyurt (2014), but formally proved in the current paper. In addition, the current

paper shows that having more hawkish tone never benefits a player if hawkish regime is

already the optimal one. However, choosing more dovish tone increases a player’s payoff

when the dovish regime is optimal. Furthermore, hawkish tone is not advantageous in a

dispute if the players do not have the option of finishing the dispute with a costly war.

Although a linear functional form for the escalation costs is an important restriction, it

does not alter the qualitative nature of our results.

Appendix

Proof of Lemma 1 . Let σ = 〈µi, {Qm̄
i , A

m̄
i }m̄∈M2〉2i=1 be a sequential equilibrium of the

game G. For any m̄ ∈ M2 and i ∈ {1, 2}, let κm̄i = inf{t ≥ 0|Qm̄
i (t) = limk→∞Q

m̄
i (k)}. The

optimality of equilibrium implies that player i does not quit beyond time t, satisfying ci(t) = wi.

Therefore, κm̄i is finite. The proofs of the following arguments (i)− (v) directly follow from the

proof of Proposition 1 in Ozyurt (2014). Therefore, I skip the details.

(i) κm̄1 = κm̄2 : A flexible player does not delay quitting once he knows that his opponent will

never quit.
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(ii) If Qm̄
i jumps at t, then Qm̄

j is constant at some ε-neighborhood of t.

(iii) If Qm̄
i is constant between (t′, t′′), then so is Qm̄

j .

(iv) There is no interval (t′, t′′) with t′′ < κm̄1 on which Qm̄
1 and Qm̄

2 are constant.

(v) If t′ < t′′ < κm̄1 , then Qm̄
i (t′) < Qm̄

i (t′′) for i = 1, 2.

From (i) − (v), it follows that Qm̄
1 and Qm̄

2 must be continuous and strictly increasing on

[0, t∗m̄], where t∗m̄ = κm̄1 = κm̄2 . That is, flexible players are indifferent between quitting at time

t < t∗m̄ and waiting for an infinitesimal period ∆ and then quit at time t + ∆ < t∗m̄. But

then, player i must be quitting with a constant hazard rate λi =
c′j(t)

vj+cj(t) , and thus Qm̄
i (t) =

1− [1−Qm̄
i (0)][vj+c

mj
j (0)]

vj+c
mj
j (t)

for all t ≤ t∗. By (ii), both Qm̄
1 (0) and Qm̄

2 (0) cannot be positive, implying

that Qm̄
1 (0)Qm̄

2 (0) = 0.

Because Qm̄
i is strictly increasing on [0, t∗m̄], it must be the case that ci(t

∗
m̄) ≤ wi for each

i. Therefore, Am̄
i (t) = 0 for all t < t∗m̄. Since escalating forever is costlier than attacking and

Qm̄
i (t)+Am̄

i (t) ≤ 1−zi for all t ≥ 0, we must have limk→∞A
m̄
i (k) = 1−zi−Qm̄

i (t∗m̄) for i = 1, 2.

Finally, probability that player i quits by time t∗m̄ conditional on the event that he chooses mj

is less than (or equal to) 1, implying that Qm̄
i (t∗) ≤ 1− zi.

Finally, since a flexible player will not delay quitting once he knows his opponent will never

quit, and will not attack before time t∗m̄, we can conclude that Qm̄
i (t∗) = 1 − zi for i = 1, 2 if

t∗m̄ satisfies cmi
i (t∗m̄) < wi. However, when cmi

i (t∗m̄) = wi, player i will be indifferent between

quitting at time t∗m̄ and attacking at (or after) time t∗m̄. Therefore, we must have Qm̄
i (t∗) < 1−zi

if cmi
i (t∗m̄) = wi.

Proof of Lemma 2 . The discussions that follow Lemma 1 prove the first part (i.e., 1), so I will

not repeat them here. Regarding the equality in 1− ii, note that τ m̄j solves Qm̄
j (τ m̄j ) = 1− zj

under the assumption Qm̄
j (0) = 0. Moreover, those discussions already prove that the game will

end no later than t∗m̄. I will complete the proof by showing that the game G will continue until

time t∗m̄ with a positive probability. Suppose that the game ends prior to time t̂ with certainty,

where t̂ < t∗m̄. According to the equilibrium strategies given by Lemma 1, Qm̄
i (0) > 0 must

hold for i = 1, 2 because otherwise the condition Qm̄
i (t̂) = 1 − zi will not hold for each i (note

that if t̂ < tm̄i , then ci(t̂) < wi). However, having Qm̄
1 (0) > 0 and Qm̄

2 (0) > 0 simultaneously

contradicts the optimality of the equilibrium (recall the condition 2 of Lemma 1). Hence, in

equilibrium, given that flexible players randomize the timing of quitting, escalation continues

until time t∗m̄ with some positive probability and stops at this time with certainty.

Proof of Lemma 3 . Since tm̄i > tm̄j , we have t∗m̄ = tm̄j . Therefore, τ m̄i , κ
m̄
i > t∗m̄. Recall that

τ m̄i is the time satisfying Qm̄
i (τ m̄i ) = 1 − zi if Qm̄

i (0) = 0. Since the game ends before time τ m̄i

and κm̄i > t∗m̄ holds, we must have Qm̄
i (t∗m̄) = 1 − zi. Hence, we have Qm̄

i (0) > 0. According

to the second condition of Lemma 1, we should also have Qm̄
1 (0)Qm̄

2 (0) = 0. The last condition

with Qm̄
i (0) > 0 implies that Qm̄

j (0) = 0. However, Qm̄
j (0) = 0 implies Qm̄

j (t) = 1 − vi+c
mi
i (0)

vi+c
mi
i (t)

.
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Moreover, since Qm̄
i (tm̄j ) = 1− [1−Qm̄

i (0)][vj+c
mj
j (0)]

vj+c
mj
j (tm̄j )

= 1− zi, we have Qi(0) = 1− zi(vj+c
mj
j (tm̄j ))

vj+c
mj
j (0)

.

This completes the proof.

Proof of Proposition 1 . Consider the following strategies: In the first stage, player 1 chooses

the dovish regime with probability 1 (i.e., µ1(d) = 1). In the second stage, following the

dovish regime, players’ strategies are given by Lemma 3, that is, Qd
1(t) = 1 − v2

v2+c2t
and

Qd
2(t) = 1− [1−Qd

2(0)]v1

v1+cd1t
for all t ≤ t∗d = v2(1−z1)

z1c2
, where Qd

2(0) = 1− z2(v1+cd1t
∗
d)

v1
. Similarly, Lemma

3 characterizes the players’ equilibrium strategies for the third stage when player 1 chooses the

hawkish regime in the first period.

Given Qm
j , flexible player i is indifferent between quitting at time t′ and waiting for some

time and then quitting at time t′′, where 0 ≤ t′ < t′′ ≤ t∗m, where m ∈ M . Hence, any mixed

strategy on the support [0, t∗m], in particular, Qm
i is optimal for player i. Finally, because player

1’s payoff decreases with cm1 , µ1(d) = 1 is also optimal. Hence, these strategies indeed form

equilibrium. Uniqueness of the equilibrium is implied by the fact that the payoff of player 1 is

strictly higher under dovish regime (see Eq. (6)) and by the third stage equilibrium strategies

that are characterized in Section 3.

Proof of Proposition 2 . Similar to the strategies given in the proof of Proposition 1, Lemma

1-3 characterize the equilibrium strategies of the third stage of the game G2. In order to find

player 1’s first stage equilibrium strategy, consider first the case where player 1 chooses the

dovish regime. In this case, td1 = min
{

w
cd1
, v(1−z)

c2z

}
and td2 = min

{
w
c2
, v(1−z)

cd1z

}
. First note that

w
c2
< w

cd1
and v(1−z)

c2z
< v(1−z)

cd1z
. Therefore, according to Corollary 1, if z

1−z <
v
w , then player 2 is

advantaged. If the inequality is reversed, then player 1 is advantaged.

On the other hand, if player 1 chooses the hawkish regime, then th1 = min
{

w
ch1
, v(1−z)

c2z

}
and

th2 = min
{

w
c2
,
v(1−z)

ch1 z

}
. Since w

ch1
< w

c2
and v(1−z)

ch1 z
< v(1−z)

c2z
, Corollary 1 implies that player 1 is

advantaged if and only if w
ch1
< v(1−z)

ch1 z
, equivalently if and only if z

1−z <
v
w .

Thus, if z
1−z <

v
w , then player 1’s optimal strategy is to choose the hawkish regime, and if

v
w < z

1−z , then player 1’s optimal strategy is to choose the dovish regime. Finally, the uniqueness

is implied by player 1’s first stage strategies and by the the third stage equilibrium strategies

that are characterized in Section 3.

Proof of Proposition 3 . The equilibrium strategies in the third stage of the game are already

characterized in Section 3. Recall that for any m̄ = (m1,m2) ∈ M2, the war of attrition game

ends at time t∗m̄ = min{tm̄1 , tm̄2 }, where tm̄1 = min
{

w1

c
m1
1

, v2(1−z1)

z1c
m2
2

}
and tm̄2 = min

{
w2

c
m2
2

, v1(1−z2)

z2c
m1
1

}
.

In order to characterize the first stage equilibrium strategies, we need to consider four cases.

Case 1: Both players choose the dovish regime: Since w
cd1
< w

cd2
and v(1−z)

cd1z
< v(1−z)

cd2z
, we have

(i) t∗dd = w
cd1

(i.e., player 1 is advantaged) whenever w
cd1
< v(1−z)

cd1z
, which is equivalent to

z
1−z <

v
w , and

(i) t∗dd = v(1−z)

cd1z
(i.e., player 2 is advantaged) whenever v(1−z)

cd1z
< w

cd1
(i.e., v

w < z
1−z ).
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Case 2: Player 1 and 2 choose the hawkish and the dovish regime, respectively : Since w
ch1
< w

cd2
and

v(1−z)

ch1 z
< v(1−z)

cd2z
, we have

(i) t∗hd = w
ch1

(i.e., player 1 is advantaged) whenever w
ch1
< v(1−z)

ch1 z
(i.e., z

1−z <
v
w ), and

(i) t∗hd = v(1−z)

ch1 z
(i.e., player 2 is advantaged) whenever v(1−z)

ch1 z
< w

ch1
(i.e., v

w < z
1−z ).

Case 3: Player 1 and 2 choose the dovish and the hawkish regime, respectively : Since w
ch2
< w

cd1
and

v(1−z)

ch2 z
< v(1−z)

cd1z
, we have

(i) t∗dh = w
ch2

(i.e., player 2 is advantaged) whenever w
ch2
< v(1−z)

ch2 z
(i.e., z

1−z <
v
w ), and

(i) t∗dh = v(1−z)

ch2 z
(i.e., player 1 is advantaged) whenever v(1−z)

ch2 z
< w

ch2
(i.e., v

w < z
1−z ).

Case 4: Both players choose the hawkish regime: Since w
ch1
< w

ch2
and v(1−z)

ch1 z
< v(1−z)

ch2 z
, we have

(i) t∗hh = w
ch1

(i.e., player 1 is advantaged) whenever w
ch1
< v(1−z)

ch1 z
(i.e., z

1−z <
v
w ), and

(i) t∗hh = v(1−z)

ch1 z
(i.e., player 2 is advantaged) whenever v(1−z)

ch1 z
< w

ch1
(i.e., v

w < z
1−z ).

First suppose that z
1−z < v

w . When player 1 chooses the dovish regime, player 2’s best

response is to choose hawkish regime (by cases 1 and 3). However, when player 2 takes the

hawkish regime, player 1’s best response is to choose the hawkish regime as well (by cases 3 and

4). Hence, if benefit-cost ratio of the dispute exceeds the relative likelihood of a player being

the resolved type, then there exists no sequential equilibrium in which player 1 takes a dovish

regime. However, when player 1 takes a hawkish regime, player 2 is indifferent between the

hawkish and dovish messages simply because player 1 is advantaged in either case (see cases 2

and 4). Because hawkish regime is a best response for player 1 and the game ends at time w/ch1

regardless of player 2’s regime, we can conclude that there is a continuum of equilibrium, in which

player 1 is advantaged and choosing the hawkish regime, and the horizon of the game is w/ch1 .

By Lemma 1, the probability of attacking is limk→∞A
hh
1 (k) = 1− z −Qhh

1 (w/ch1) = v
v+w − z.

Now suppose that v
w < z

1−z . When player 2 chooses the hawkish message, player 1’s best

response is to choose the dovish message (by cases 3 and 4). However, when 1 chooses the dovish

regime, player 2’s best response is to choose the dovish regime, not the hawkish regime (by cases

1 and 3). Hence, if the relative likelihood of a player being the resolved type exceeds the benefit-

cost ratio of the dispute, then there exists no sequential equilibrium in which player 2 takes a

hawkish regime. However, when player 2 chooses the dovish regime, both dovish and hawkish

messages are best response for player 1 (by cases 1 and 2) because player 2 is advantaged in each

case, and thus, player 1’s payoff is 0. Because the dovish regime is a best response for player

2 regardless of player 1’s regime, we can conclude that there is a continuum of equilibrium, in

which player 2 is advantaged and choosing the dovish regime. In these equilibria, the game ends

at times c(1−z)

cd1z
and c(1−z)

ch1 z
, when player 1’s realized message is d and h, respectively. Therefore,

in all equilibria, both players’ reputations simultaneously converge to one at the end of the

game, so that no player attacks with a positive probability.
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Proof of Proposition 4 . Suppose that cmin < cj < cmax. Proposition 3 implies that if z
1+z <

v
w , then player i can be advantaged by choosing a hawkish tone ci such that cj < ci. In that

case, the horizon of the game (t∗) is equal to w
ci

(see the proof of Proposition 3). By substituting

this value in player i’s payoff function Ui = v
[
1− z

(
1 + cit

∗

v

)]
we get Ui = v

[
1− z

(
1 + w

v

)]
,

which is independent of ci. Thus, player i’s expected payoff does not chance with ci as long as

cj < ci.

On the other hand, if z
1+z > v

w , then player i can be advantaged by choosing a dovish

regime ci such that ci < cj . In this case, the horizon of the game (t∗) is equal to v(1−z)
cjz

(see

the proof of Proposition 3). By substituting this value in player i’s payoff function we get

Ui = v
[
1− z

(
1 + ci(1−z)

cjz

)]
, which decreases with ci. Thus, player i’s best response to cj is

picking the most dovish tone that is less than cj , which is cmin. Verifying the cases where cj

takes the boundary values is very similar, and so omitted.
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