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1. Introduction

In episode 13 (season 6) of the famous TV series House M.D., the main story revolves around

the last eight hours of a critical negotiation between Lisa Cuddy (the dean of Medicine and

hospital administrator of the fictional Princeton-Plainsboro Teaching Hospital in New Jersey)

and a contract negotiator from Atlantic Net Insurance (the largest insurance company in the

area) to renew a contract. Dr. Cuddy and the contract negotiator have been arguing about the

contract for eight months, and that day, Dr. Cuddy lays it all on the line. When they meet at

8:30 a.m., Dr. Cuddy makes her final offer that she agrees to capitated care but wants a 12%

increase in rates. The contract negotiator refuses Dr. Cuddy’s offer immediately. Then she tells

him that this is the hospital’s final offer and he has until 3:00 p.m. to agree, or she will make

a public announcement that they are no longer accepting Atlantic Net. At noon, Dr. Cuddy

heads into the board meeting where the board makes it clear that her job is on the line if she

cannot renew the contract with Atlantic Net. Dr. Cuddy tracks down the CEO of Atlantic Net

at lunch and confronts him about the contract. He blows her off and tells her that her tactic

will not work. However, Dr. Cuddy does not back down. The negotiator from Atlantic Net

returns and offers an 8% increase as their final offer, and Dr. Cuddy declines and wants the full

12%. After a few stressful hours of waiting, the story ends with good news for Dr. Cuddy. The

negotiator revisits her just before 3:00 p.m. (the deadline) and tells her that the company has

agreed to her 12% proposal.

Negotiators commonly use “take it or leave it” offers as a final strategic maneuver in order

to push their rivals towards more acceptable terms (e.g., labor negotiations). It usually begins

with a milder threat such as “That is my final offer,” and if it does not work, it escalates to a

higher level: “Take this one or I am calling off the negotiation.” If the bargainers’ offers do not

get closer to each other after a lengthy delay, followed by offers and counteroffers, then the “take

it or leave it” offer could be an optimal strategy to speed things up. This paper is not interested

in explaining how negotiators come to this point at the first place, where they threaten each

other so vigorously. Instead, the focus is investigating the impacts of these bluffs on rational

negotiators’ equilibrium strategies and shares in a bilateral negotiation and examining a possible

case where the threatened negotiator can mitigate the impacts of these bluffs.

Intimidating the opponent with a threat of not making further concessions (i.e., commitment

threat) or of leaving the bargaining table (i.e., exit threat) would increase the equilibrium share

of a bargainer only if they are credible. In this paper, I follow a reputational approach for both

commitment and exit threats. For this purpose, I study a stylized four-stage infinite-horizon and

continuous-time bargaining game that is adapted from Kambe (1999). The novel twist is that one

of the agents announces a deadline for agreement. In particular, there are four defining features

of the model. First, two negotiators bargain over the division of a surplus; negotiators begin with

announcing their demands. Second, in case the demands are incompatible, negotiator 1 declares
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a deadline for agreement. Third, they face some small probability of becoming committed to

their demands, and for negotiator 1, to walking away at the self-imposed deadline. Fourth,

the negotiation phase adopts a war of attrition protocol. During the negotiation phase, each

agent knows his type (obstinate or flexible) but is unsure about the opponent’s true type. This

uncertainty provides incentives to the flexible negotiators to build reputation on their obstinacy,

affecting the flexible negotiators’ equilibrium play.

This exercise is important for two reasons. First, commitment and exit threats are studied

separately in the bargaining literature, but the current work is the first one that combines these

two. Second, allowing a negotiator to leave the bargaining table imposes an endogenous deadline

for reputation building that has not been studied in the bargaining and reputation literature

before.1 Exit-threat appears to be an important tactic in reality, but it is usually used together

with other threats (e.g., commitment) as a last resort. A weak negotiator, whose opponent has

strong bargaining power due to his ability to commit (e.g., reputational advantage), can make

his commitments less credible or likely to be effective by using exit-threat. This link has not

been explored in the literature, and the current study offers a mechanism to explain this link.

The analysis reveals that the key feature is that negotiator 1 chooses as early a deadline

as possible with the constraint that she must have sufficient time to build a reputation for

stubbornness ẑ1(t), which is increasing over time, so that negotiator 2 strictly prefers accepting

negotiator 1’s offer when the deadline K is reached rather than inducing an impasse without

a deal with probability ẑ1(K). Agreement is immediate because the negotiators forecast this

deadline strategy when choosing their bargaining postures and negotiator 2 adopts the greatest

just compatible posture. Thus, the existence of the endogenous deadline option for one of the

players has two main effects (vis-a-vis Kambe, 1999 and Abreu and Gul, 2000): (1) it renders

the deal unique and efficient, and (2) shifts the bargaining power towards (and thus increases

the share of) the player who can influence the deadline.

Kambe (1999) studies a simpler version of the current model, where none of the negotiators

has the option of using exit threat. He shows that there are multiple equilibrium outcomes, some

of which are inefficient. However, the set of equilibrium outcomes always contains an efficient

allocation, and the negotiators’ equilibrium demands get closer to this efficient allocation as

the negotiators’s commitment probabilities approach zero. For example, if the negotiators’ time

preferences and commitment probabilities are the same, then Kambe (1999) proves that each

negotiator demands the half of the surplus (i.e., 0.5) or something closer to that. This paper, on

1Compte and Jehiel (2002) consider a discrete-time bilateral bargaining problem in an Abreu-Gul setting
and explore the role of exogenous outside options. They show that if both agents’ outside options dominate
yielding to the commitment type, then there is no point in building a reputation for inflexibility, and the unique
equilibrium is again the Rubinstein (1982) outcome. Ozyurt (2015 a&b) study a three-player war of attrition
game in a competitive environment, where one of the players has the option of leaving his bargaining partner to
negotiate with the other. However, Ozyurt (2015 a&b) assumes that the negotiator—who goes back and forth
between his opponents—has no commitment for a specific deadline and is free to revisit his bargaining partners
as as much as he wants.
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the other hand, shows that negotiator 1 can improve his share and payoff approximately 40%

when each negotiator’s commitment probability is 0.1, and 27.6% when this probability is only

0.01.2

In equilibrium, conditional on that negotiators’ initial offers are incompatible, negotiator 1

always chooses the exit-time/deadline different from 0. The equilibrium value of the exit-time

(i.e., K) is a function of the following: both negotiators’ initial demands α1 and α2 (where

αi ∈ [0, 1] denotes negotiator i’s share of the surplus), the prior probability that negotiator 1

is the obstinate type (i.e., 1’s commitment probability), and negotiator 2’s time preferences. If

negotiator 2 is more patient, then the deadline is longer (i.e., K is bigger). On the other hand, as

negotiator 2 gets more impatient, then negotiator 1 chooses a shorter deadline. Put differently,

negotiator 1 applies more time pressure on her rival (by shortening the deadline) if her rival is

impatient.

Fixing the negotiators’ incompatible initial demands, a shorter deadline (i.e., smaller K)

increases negotiator 1’s expected payoff if the deadline is not too short. That is, the bigger the

time pressure negotiator 1 would impose on her rival, the earlier her rival would concede, and

thus, the more surplus (in ex-ante terms) negotiator 1 could extract. However, in equilibrium,

negotiator 1 never chooses a deadline so close to 0: This is true because (1) such an immediate

exit threat is credible only if negotiator 1’s initial demand (i.e., α1) is very close to 1− α2 (i.e.,

negotiator 1’s demand is almost compatible), and (2) negotiator 1 could increase her expected

payoff by choosing an extended deadline and a more aggressive demand. The bottom line is that

there is a trade-off between aggressiveness in demand and the length of a deadline in the exit

threat.

In equilibrium, negotiators never choose extreme demands. The exit threat always makes

agent 1 advantageous in the sense that if both agents’ time preferences and commitment proba-

bilities are the same, then negotiator 1’s equilibrium share is greater than negotiator 2’s. Equilib-

rium strategies, including the negotiators’ initial demands, are unique. This unique equilibrium

is efficient in the sense that negotiator 1 offers ᾱ1, which is a function of both negotiators’ com-

mitment probabilities and time preferences, and negotiator 2 offers 1 − ᾱ1 and ends the game

with no delay. The intuition behind this uniqueness result is as follows: First, if negotiator

1’s initial offer is less than or equal to ᾱ1, then negotiator 1 can always choose her deadline K

in such a way that she is the “strong” negotiator and her opponent is the “weak” negotiator

in the game. Being the strong negotiator in the game is more desirable than being the weak

negotiator. In equilibrium where the negotiators’ initial demands are α1 and α2, expected payoff

of the weak negotiator 2 is less than (or equal, if the demands are compatible) to 1−α1. Second,

given the negotiators’ equilibrium payoffs, negotiator 2’s best reply is to make a compatible offer

and to finish the game in the first stage. Finally, given the second negotiator’s best response,

2Please see example 1 in page 15.

4



the optimal strategy for the first negotiator is to make the highest offer possible, which is ᾱ1.3

Unlike Crawford (1982), Muthoo (1996), and Ellingsen and Miettinen (2008), rationalizing

the players’ commitment is not a concern for this paper. I take that mechanism as given and as-

sume that prior to their demand (and deadline) selections, the negotiators are uncertain whether

they will commit or not. Nevertheless, commitment is risky and costly for the negotiators be-

cause it involves a possibility of an impasse and 0 payoff. If the negotiators insure themselves

against the cost of commitment (e.g., through a pre-agreement that is signed privately with their

principals), then they may take higher risks with more aggressive demands/deadline. Insurance

can be a negotiator’s informational advantage (vis-a-vis his opponent) at the beginning of the

game about his future-self.

The second negotiator, who is not able to choose a deadline, can diminish the effects of

his rival’s exit threat by insuring himself against some of the utility loss he will suffer when

he commits to his demand. I will prove the results for a “partial-insurance” case where the

compensation amounts are minimal. However, various other insurance schemes would yield

the same results. Negotiator 2’s share and expected payoff are higher in the partial-insurance

case. The reason for this result is simple. When negotiator 2 is partially insured, he will be

protected against the risk of an impasse (and 0 payoff) in case he commits to his demand. As a

result of this, negotiator 2 will be able to make more aggressive initial demands, which partially

neutralizes the effects of negotiator 1’s exit threat. There are multiple equilibrium demands

when negotiators are partially insured. The upper bound for negotiator 1’s initial offers is ᾱ1.

That is, the efficient outcome of the no-insurance case is just one of the equilibrium outcomes

in the partial-insurance case; all the others are inefficient because the negotiators’ demands are

incompatible and there is some (probabilistic) delay in reaching agreement. In any equilibrium

under the partial-insurance case, where negotiators’ initial offers are α1 and α2, negotiator 2 is

always weak in the game, but his expected payoff is 1 − α1. Although negotiator 2’s expected

payoff in the game is exactly equal to what he can achieve by conceding to negotiator 1 right

away, the temptation of reaching a better deal (where negotiator 1 accepts α2 with some positive

probability) causes a delay in equilibrium. However, this temptation fades away when there is

no insurance.

Section 2 explains the details of the infinite-horizon bargaining game. Section 3 presents the

main results of the study. Section 4 considers the bargaining phase (i.e., the concession game)

and characterizes the concession strategies. Section 5 discusses some extensions, and Section 6

concludes and discusses the related literature.

3In any equilibrium, the first negotiator’s highest demand should be lower than ᾱ1 because if negotiator 1
ever offers α1 that is higher than ᾱ1, then negotiator 2 can deviate to a demand that is sufficiently close to but
higher than 1−α1 and make himself strong (with a payoff more than 1−α1) regardless of negotiator 1’s deadline
choice.
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2. Preliminaries

Two negotiators, 1 (she) and 2 (he), bargain over the division of a surplus. For i ∈ {1, 2},
negotiator i’s rate of time preference is ri. The bargaining game between the negotiators is

a four-stage infinite-horizon, continuous-time game. All stages start at time 0, and the first

three stages also end at time 0. In stage 1, negotiators simultaneously demand a share of the

surplus. Let αi ∈ [0, 1] denote negotiator i’s first-stage demand. If the negotiators’ demands

are compatible (i.e., α1 + α2 ≤ 1), then the game ends, and one of the two divisions of surplus

(α1, 1−α1) or (1−α2, α2) is implemented with a probability of 1/2 each. The bargaining game

continues to the second stage if the negotiators’ initial demands are incompatible. In stage 2,

after observing his opponent’s demand, negotiator 1 announces a particular time K ∈ [0,∞) as

the deadline for the game.

In stage 3, nature independently and privately sends one of two messages, c or d, to each

negotiator. Negotiators commit to their demands and negotiator 1 leaves the bargaining game at

time K if they receive the message c. Each negotiator i receives the message c with probability

zi ∈ (0, 1). However, if a negotiator receives the message d, “don’t commit,” he will continue

to play the game with no commitment to his initial demand and deadline. Once the third

stage is finalized, each negotiator knows his own type (either flexible or obstinate), but not the

opponent’s true type. The initial priors (i.e., z1 and z2) are common knowledge. Therefore,

similar to that in Section 4 of Crawford (1982), Kambe (1999), Wolitzky (2012), and Ellingsen

and Miettinen (2014), the probability of obstinacy is independent of the chosen demands, and

for player 1, of the chosen deadline. No discounting applies before time t = 0.

Upon the beginning of stage 4 (still at time 0), negotiators immediately begin to play the

following continuous-time concession game: At any given time t ≥ 0, a negotiator either accepts

his opponent’s initial demand or waits for his concession. Concession of a negotiator marks the

completion of the game. Negotiator 2 can never leave the bargaining table. However, negotiator

1—whether she is flexible or not—can leave the game at any time t ≥ 0. The deadline K

is not binding for the flexible players. That is, the game may continue forever if the flexible

negotiator 1 never leaves the bargaining game. Since the game is in continuous time, there occurs

some measure-theoretic pathologies associated with the behaviors of negotiator 1’s flexible and

obstinate (committed) types, and I resolve this in the manner introduced by Abreu and Pearce

(2007) and later used by Abreu, Pearce and Stacchetti (2012). In particular, for any t ≥ 0,

corresponding to the “conventional time” t, I suppose two logically consecutive stages t1 and t2

of time t. No discounting applies between these “two stages.” A negotiator can concede to his

opponent at both stages t1 and t2. However, negotiator 1 can leave the bargaining table only at

time t1.

If a flexible negotiator leaves the bargaining table, then he receives the outside option of 0.

If agreement is never reached, the negotiators also receive 0. Both negotiators are risk neutral.
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If the game finishes at time t ≥ 0 with negotiator i’s concession, then the payoffs to negotiators

i and j are (1− αj)e−rit and αje
−rjt, respectively.4 Flexible negotiators maximize the expected

discounted values of their shares. The entire structure of the game is common knowledge among

the negotiators. I denote this infinite-horizon, continuous-time bargaining game by G.

There are examples of negotiations between fiduciaries or agents (e.g., lawyers, union leaders,

sports agents, political leaders) and not between the principals themselves, where the preferences

of the principals and their delegates may or may not diverge in the course of a settlement.

Therefore, one can naturally construe the bargaining game G and the third stage from this

perspective. When a negotiator (agent) receives the message d, he may follow a strategy in

which he waits until some time t ≤ K and concedes at this time if the game has not ended

yet. However, when a negotiator receives the message c, he will be constrained to wait until

time K and receive the payoff of 0 if his rival has also received the message c. Therefore, in

equilibrium, the expected payoff of a negotiator when he receives the message c is strictly less

than his expected payoff when he receives the message d.

If the negotiators are somehow insured against the payoff loss of commitment, then the

negotiators may be inclined to take higher risks by making more aggressive demands in the first

stage. Insurance can be thought of a valuable outside option or a side payment directly paid

by a third party; for example, the principals. Alternatively, insurance can be the negotiators’

informational advantage at the beginning of the game about their future-selves. For example,

the nature’s move in the third stage would be interpreted as the third party’s (i.e., principals’)

move that determine whether their agents will commit for the rest of the bargaining game or

not. Thus, a privately signed pre-agreement between a negotiator and his principal, ensuring

that the principal will not force the agent to commit, could work as an insurance. An important

question naturally arises when an effective insurance exists: which negotiator will benefit from

such an insurance? This is investigated in the second part of Section 3.

The Information Structure and Obstinate Types: The only source of uncertainty in

the game is the negotiators’ actual types, and it matters only in the fourth stage of the game.

In the first two stages, all negotiators choose their strategies, given their beliefs, to maximize

their expected payoffs, and this is common knowledge. However, following the third stage, a

negotiator is either flexible or obstinate. As is standard in the literature, the obstinate types

never back down from their demands. In addition to this, the obstinate type of negotiator 1

leaves the bargaining game at time K (in particular, at stage K1) that negotiator 1 announced

in stage 1.

4In case of simultaneous concession, one of the two divisions of surplus, (α1, 1 − α1) or (1 − α2, α2), is
implemented with the probability of 1/2 each.
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Strategies of the Flexible (Rational) Negotiators: In stage 1, a strategy for negotiator

i is a pure action αi ∈ [0, 1]. Since the subsequent analysis is quite involved, I restrict the

negotiators to play pure strategies in stage 1. Given the negotiators’ demand selections, a

strategy for negotiator 1 in stage 2 is also a pure action K ∈ [0,∞). Although K depends on

α1 and α2, this connection is omitted for notational simplicity.

In the war of attrition phase (i.e., in stage 4), a strategy for negotiator i is a right-continuous

distribution function Fi : [0,∞) → [0, 1], representing the probability of flexible negotiator i

conceding to negotiator j by time t (inclusive). Once again, Fi depends on α1, α2, and K, but I

will omit this relation for notational simplicity. Let Bi : [0,∞)→ [0, 1−zi] denote the probability

of negotiator i conceding to negotiator j by time t (inclusive). That is, Bi indicates negotiator

j’s belief about i accepting αj and finishing the concession game prior to time t. Therefore, we

have Bi(t) = Fi(t)(1− zi).

Note that flexible negotiator 1 receives the payoff of 0 if she leaves the bargaining table.

Hence, it is never optimal for her to leave the bargaining game. For this reason, I ignore flexible

negotiator 1’s exit strategies. Suppose that negotiators’ strategies are α1, α2, and K in the first

two stages and F1 and F2 in the fourth stage. Therefore, given that negotiator i receives message

d in stage 3, flexible negotiator i’s expected payoff of conceding to negotiator j at time t is

Ud
i (t, Fj) ≡ αi

∫
y<t

e−riydBj(y) +
1

2
(1 + αi − αj)[Bj(t)−Bj(t

−)]e−rit

+ (1− αj)[1−Bj(t)]e
−rit, (1)

with Bj(t
−) = (1− zj) limy↑t Fj(y). Moreover, given that negotiator i receives the message c in

the third stage, obstinate negotiator i’s expected payoff in the fourth stage is5

U c
i (Fj) = αi

∫
y∈[0,∞)

e−riydBj(y). (2)

Therefore, negotiator i’s expected payoff in the game is6

Ui(Fi, Fj) = (1− zi)
∫
y∈[0,∞)

Ud
i (y, Fj)dFi(y) + zi U

c
i (Fj). (3)

5Note that
∫
y∈[0,∞)

e−riydBj(y) = Bj(0) +
∫∞
0
e−riydBj(y).

6The payoffs presented in (1) and (2) are calculated at the beginning of stage 4, that is after the nature’s
move. However, the payoff in (3) is calculated before the nature’s move.
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A Benchmark Result

Kambe (1999) considers a simpler version of the current model, where none of the negotiators

can exit the game and announce an exit time. Therefore, the negotiators’ concession game

strategies are as given by Abreu and Gul (2000). Kambe shows that the immediate settlement

(x∗1, x
∗
2) is an equilibrium outcome, where7

x∗i =
rj log zj

ri log zi + rj log zj
.

Therefore, if the negotiators are identical, then x∗i = 0.5 for each i is an equilibrium outcome.

There are other (inefficient) equilibrium outcomes where each negotiator demands a share that

is not too far from 0.5.

3. Main Results

I describe flexible negotiator i’s behavior in the concession game by a probability distribution

over concession times, Fi(t) = Pr(flexible i will quit prior to t), where we allow Fi(0) > 0, so i

may concede immediately with positive probability. Let λi(t) be flexible negotiator i’s instan-

taneous concession (or hazard) rate at time t conditional on that no negotiator has conceded

before this time. That is, λi(t) = dBi(t)/dt
1−Bi(t) = (1−zi)dFi(t)/dt

1−(1−zi)Fi(t) . Here we look for an equilibrium where

flexible negotiator j mixes between accepting αi and waiting.8 Therefore, flexible j is indifferent

between conceding at time t and waiting for an infinitesimal period ∆ and then conceding at

time t+ ∆ < K, where K is negotiator 1’s deadline announcement in stage 2, if and only if

(1− αi)e−rjt = αje
−rjtλi(t)∆ + [1− λi(t)∆](1− αi)e−rj(t+∆),

where λi(t)∆ is the probability that i concedes during the interval ∆. Solving this equation for

λi(t) and taking its limit as ∆ approaches 0 yields

λi(t) =
rj(1− αi)
α1 + α2 − 1

.

Integrating up the hazard rate gives

Fi(t) =
1

1− zi
− ci

1− zi
e−λit,

7Kambe claims that there are multiple equilibria and negotiator i’s equilibrium demands are in an ε neigh-
borhood of x∗i , where ε is a factor of the probability that both negotiators are obstinate (i.e., z1z2). However, he
does not provide a formal statement or a proof.

8In the next section, I formally prove that there is no pure strategy equilibrium of the concession game (see
Propositions 2 and 3).
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where ci = 1− Fi(0).

Therefore, if negotiator 1 chooses K > 0, negotiators’ equilibrium strategies are somewhat

constrained by the fixed hazard rates λ1 and λ2. Different values of K > 0 will change the

horizon of the game G, beyond which no negotiator will concede. Thus, the equilibrium values

of F1(0) and F2(0) will change with K.

A weak negotiator, whose opponent has strong bargaining power due to his ability to commit,

can make his commitments less credible or likely to be effective by using exit-threat. This link

is explored in this study. To understand the mechanism that explains this link, suppose for

now that the negotiators have identical demands and time preferences (i.e., αi = α > 1/2

and ri = r for i = 1, 2), but negotiator 2 has a reputational advantage (i.e., z2 > z1). In

equilibrium, the negotiators’ concession game strategies, F1(t) and F2(t), must be continuous

and increasing functions of t with a uniquely determined hazard (growth) rate λ = r(1−α)
2α−1

as

briefly discussed above. Concession game strategies may have jumps only at t = 0, but we must

have F1(0)× F2(0) = 0. That is, in equilibrium, both negotiators cannot concede with positive

probabilities at t = 0 because j would always want to wait for some small ε > 0 amount of

time in order to enjoy the discrete chance of i quitting. However, the identity of the negotiator

who concedes with a positive probability at t = 0 is critical for players’ equilibrium payoffs. If

negotiator j concedes with a positive probability at time 0 (i.e., Fj(0) > 0), then negotiator i’s

payoff is strictly positive (i.e., negotiator i is strong), and his opponent’s (i.e., negotiator j’s)

game payoff is strictly smaller than i’s payoff. For this reason, we call negotiator j as the weak

negotiator. Finally, given the flexible negotiator i’s strategy, his reputation at time t (conditional

on that the game has not yet finished) is given by the Bayes’ rule as

ẑi(t) =
zi

zi + (1− zi)(1− Fi(t))
.

These claims are standard results in the bargaining and reputation literature.

t

1

z2

τ2
z1 τ1

ẑ2(t)

ẑ1(t)

Figure: 1a

t

1

z2

τ2

ẑ∗1(0)

τ1

ẑ∗2(t) = ẑ∗1(t)

Figure: 1b

z1

Now suppose that negotiator 1 cannot pick a deadline, and so we are in the world of Kambe
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(1999) or Abreu and Gul (2000). The negotiators’ reputation functions ẑ∗1(t) and ẑ∗2(t) in equi-

librium must look like those in Figure 1b. That is, negotiator 1 must concede at time 0 with a

positive probability, and so the value of her reputation function at time 0 (i.e., ẑ∗1(0)) is strictly

higher than z1, and she is the weak negotiator in the game.

The intuition for this result is simple: Suppose for a contradiction that none of the negotiators

concede at time 0. In that case, the negotiators’ reputation functions must look like those in

Figure 1a. Because z2 > z1 and both players’ reputations grow at the same rate, negotiator

2’s reputation must reach one earlier. Let τi denote the time at which negotiator i’s reputation

reach one. Negotiator 1 should not continue to concede (or delay her concession) beyond time

τ2 as in ẑ1(t) because she learns at this time that her opponent is obstinate, contradicting with

the optimality of equilibrium. The same logic applies to the case where negotiator 2 concedes

at time 0. Thus, since both negotiators cannot concede at the same time, equilibrium strategies

should yield reputation functions as those presented in Figure 1b.

Now, I will explain how negotiator 1 can turn this disadvantaged situation into her advantage

by declaring a deadline. Negotiator 1 first calculates pH , which is negotiator 1’s reputation level

at the time of deadline that makes negotiator 2 indifferent between conceding to negotiator 1

and waiting for her concession. Therefore, it is a function of α1 and α2 only. Suppose that

pH is sufficiently low as given in Figure 1c. Then, the optimality of equilibrium implies that

negotiator 1 should announce her deadline as K∗ and negotiator 2 should concede to negotiator

1 with a positive probability at time 0 (see Figure 1d), implying that negotiator 1 will be the

strong negotiator with a higher payoff.

t

1

z2

τ2
z1 τ1

ẑ2(t)

ẑ1(t)

Figure: 1c

pH

z̄1

K∗ t

1

z∗2(0)

z2

τ2
z1 τ1

ẑ∗2(t)

ẑ∗1(t)

Figure: 1d

pH

K∗

If negotiator 1’s strategy is such that her reputation function ẑ∗1(t) is given in Figure 1d, then

negotiator 2’s best reply is to concede to negotiator 1 with certainty before the deadline K∗.

Postponing concession beyond time K∗ is simply not optimal for negotiator 2 because at this

time, negotiator 1’s reputation will reach to pH and flexible negotiator 2 will prefer conceding

to 1 rather than inducing an impasse without a deal with probability pH . Because the growth

rate of the concession strategies are fixed and negotiator 2’s concession game strategy must be

11



continuous over the interval [0, K∗], which I formally prove in Section 4, negotiator 2 has no

choice other than playing a strategy in which it yields the reputation function ẑ∗2(t) in Figure 1d.

That is, negotiator 2 must concede with a positive probability at t = 0. Similarly, not conceding

to negotiator 2 at time 0 is a best response for negotiator 1 as well. Note that negotiator 1’s

reputation does not have to hit one at time K∗. All she needs is to build her reputation up to

the level pH before the deadline, and she can achieve this—without making an initial concession

at time 0—if she picks her deadline no earlier than K∗.

To sum, a negotiator who is weak because of her reputational disadvantage can reverse the

situation by exit threat. When pH is very high (in particular, if pH ≥ z̄1 where z̄1 = ẑ1(τ2) as

presented in Figure 1c), no deadline would make negotiator 1 strong.9 However, each negotiator

has the power to affect the value of pH through their demand choices. When pH is higher than

z̄1, for example, negotiator 1’s optimal action is to reduce her share α1 and demand something

more acceptable for negotiator 2. The parameter ᾱ1 (please see Theorem 2)—a function of the

negotiators’ initial reputations and time preferences—denotes the highest price negotiator 1 can

pick so that ph is lower than z̄1 for all (incompatible) demands negotiator 2 would pick. If

negotiator 1’s price is above ᾱ1, then negotiator 2’s best response is to pick an incompatible

demand to increase the value of pH above ẑ1. The negotiators’ payoff functions determine their

optimal demand selections and these results are presented in Theorems 2 and 3.

Theorem 1. In any sequential equilibrium with α1+α2 > 1, let pH = α1+α2−1
α2

and pL = z
λ1/λ2
2 pH ,

where λi =
rj(1−αi)
α1+α2−1

for i = 1, 2.

1. If z1 ≥ pH , then negotiator 1 chooses K = 0, negotiator 2 accepts α1 at time 01 with

certainty, and negotiator 1 accepts α2 only at time 02 if the game has not ended yet.

2. If pL ≤ z1 < pH , then negotiator 1 chooses K = − ln(z1/pH)
λ1

, and the concession game

strategies are

i. F1(t) = 1
1−z1

(
1− e−λ1t

)
for all t ∈ [0, K1] and F1(t) = 1 for all t ≥ K2, and

ii. F2(t) = 1
1−z2

(
1− z2 (pH/z1)λ2/λ1 e−λ2t

)
for all t ∈ [0, K1] and F2(t) = F2(K1) for all

t ≥ K2.

3. If z1 < pL, then negotiator 1 chooses any K ∈
[
− ln z2

λ2
,∞
)

, and the concession game strate-

gies are Fi(t) = 1
1−zi

(
1− zie

−λi
(

ln z2
λ2

+t
))

for all t ≤ − ln z2
λ2

and Fi(t) = 1 for all t ≥ − ln z2
λ2

.

All the proofs in this section are deferred to the appendix. Theorem 1 characterizes the

equilibrium strategies of the flexible negotiators given their first-stage offers. Flexible negotiator

9The condition pH > z̄1 implies that pH > ẑ1(τ2), which yields the third condition in Theorem 1 (i.e.,
z1 < pL).
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1’s type will be revealed at timeK2 (i.e., the second stage of the conventional time K) because the

obstinate type will leave the bargaining at time K1 for sure. Therefore, in equilibrium, flexible

negotiator 1 will accept α2 and finish the game at time K2 with certainty if the game ever reaches

this point. Given this behavior of flexible negotiator 1 and given that the game ever reaches time

K, flexible negotiator 2’s instantaneous payoff at time K is [1− ẑ1(K)]α2 if he does not concede

to negotiator 1. Here, z1 ≤ ẑ1(K) ≤ 1 indicates the posterior probability that negotiator 1 is

the obstinate type at time K1. However, if flexible negotiator 2 accepts α1 and finishes the game

at time K1, then his instantaneous payoff will be 1 − α1. Therefore, in equilibrium, flexible

negotiator 2 will certainly accept α2 prior to K if and only if ẑ1(K) ≥ α1+α2−1
α2

(= pH).

The above arguments suggest that if z1 is sufficiently high (i.e., z1 ≥ pH), then negotiator 1

should declare K = 0 in the second stage and force flexible negotiator 2 to concede immediately

at time 0. However, if z1 is less than this threshold, then negotiator 1 should build her reputation

prior to the deadline. Therefore, negotiator 1 should choose the deadline no earlier than the

time K∗ satisfying ẑ1(K∗) ≥ pH . Otherwise, with some positive probability, negotiator 2 never

concedes to negotiator 1. Since Bayes’ rule implies that ẑ1(K∗) = z1
1−B1(K∗)

, we have K∗ =

−ln(z1/pH)/λ1. It is crucial to note that choosing the deadline K bigger than K∗ is not optimal

for negotiator 1 because the earlier the deadline is, the sooner negotiator 2 accepts α1. Since

negotiator 1 discounts time, an earlier deadline implies a greater expected payoff for negotiator

1. As a result, negotiator 1 chooses her deadline as K∗ when z1 is strictly less than pH and is

higher than pL (the requirement pL ≤ z1 is explained in the next paragraph).

On the other hand, if negotiator 1’s initial reputation is very low (i.e., z1 < pL), then the time

required for negotiator 1 to build her reputation to pH (i.e., K∗) will exceed time τ2 = − ln z2
λ2

,

indicating the time that negotiator 2’s reputation reaches 1 if he concedes with a constant hazard

rate λ2 with no positive concession at time 0. Therefore, the deadline threat will have no use

for negotiator 1 for small values of z1, satisfying z1 < pL.

In equilibrium with α1 + α2 > 1 and K > 0, the flexible negotiators are indifferent between

quitting at time 0 and waiting for some time t ≤ K and then conceding at this time. Therefore,

flexible negotiator i’s equilibrium payoff of conceding to negotiator j at any time t is equivalent

to what he can achieve at the beginning of this stage (i.e., time 0). Therefore, by equation (1)

Ud
i

(
t, Fj

)
= αi(1− zj)Fj(0) + (1− αj)

[
1− (1− zj)Fj(0)

]
(4)

for all 0 ≤ t ≤ K. Thus, negotiator i’s equilibrium game payoff is given by

Ui
(
F1, F2

)
≡ (1− zi)

(
αi(1− zj)Fj(0) + (1− αj)

[
1− (1− zj)Fj(0)

])
+ ziαi

∫
y∈[0,K)

e−riydBj(y) (5)

13



Definition 1. In any sequential equilibrium of the game G, negotiator i is called strong if

Fj(0) > 0 and weak otherwise.

Remark 1 According to Theorem 1, in any sequential equilibrium where the negotiators’ ini-

tial offers are incompatible, only one negotiator can be strong. If negotiator i is weak, then

Ud
i (t, Fj) = 1− αj for all t ≤ K, and thus, his expected payoff in the game is strictly less than

1− αj.

For the fixed values of the primitives z1, z2 ∈ (0, 1) and r1, r2, let

pL(α1, α2) =
α1 + α2 − 1

α2

z
r2(1−α1)
r1(1−α2)
2 and pH(α1, α2) =

α1 + α2 − 1

α2

.

Then define the set

D ≡
{
α1 ∈ [0, 1]

∣∣∣ sup
α2∈[1−α1,1]

pL(α1, α2) ≤ z1

}
and

ᾱ1 ≡ sup
α1∈[0,1]

D.

Note that ᾱ1 is well defined because set D is nonempty. This is true because for any values

of z1 and z2, we can find α1 sufficiently close to 0 so that supα2∈[1−α1,1]pL(α1, α2) is also close to

0, and thus less than z1.

According to Theorem 1, negotiator 1’s equilibrium choice of K makes her strong except

when z1 is very low (i.e., z1 < pL). In that case, negotiator 1 can never make herself strong

by her choice of K. Therefore, given negotiator 2’s offer α2, negotiator 1’s best response is

to announce α1 ∈ [0, 1] such that the inequality pL(α1, α2) ≤ z1 holds. For this reason, ᾱ1

represents the highest possible demand that negotiator 1 could announce in equilibrium—given

the fixed parameters z1, z2, r1, and r2. If negotiator 1 offers ᾱ1 or anything less than ᾱ1, then

there is no α2 > 1− ᾱ1 such that negotiator 2 can make himself strong and negotiator 1 weak.

Hence, in any equilibrium, negotiator 1 will choose some α∗1 satisfying α∗1 ≤ ᾱ1, and so nego-

tiator 2 will be weak. If negotiator 2 makes an incompatible demand in stage 1, then by equation

(5), his expected payoff in the game will be strictly less than 1 − α∗1. Therefore, negotiator 2’s

best response is to make a compatible demand 1 − α∗1 and finish the game in stage 1. Antic-

ipating this in equilibrium, negotiator 1 will announce the highest possible demand she could

pick, which is ᾱ1, as the previous arguments imply. Hence, the equilibrium is unique, and the

negotiators’ first-stage offers are compatible. The game never reaches the second stage, where

14



negotiator 1 threatens negotiator 2 with leaving the bargaining table.

Theorem 2. In the unique sequential equilibrium of the game G, negotiator 1 demands ᾱ1,

negotiator 2 demands 1− ᾱ1, and the game ends at the first stage with no delay.

Example 1 (the value of ᾱ1): Suppose that ri = r and zi = z for i = 1, 2. Although it is

not possible to give a closed form solution for ᾱ1, we can find its value numerically. First, the

term pL(α1, α2) is a concave function of α2 with a unique maximizer (see figure 2). In fact,

α̂2(α1, z) = − 1

ln z + 1

(√
(ln z)(ln z − 4α1 + α2

1 ln z − 2α1 ln z)− (1− α1) ln z

2
− 1

)

maximizes pL(α1, α2) for given values of z and α1.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.000
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y

Figure 2: The x-axis corresponds to α2, taking values in [1−α1, 1]. The three curves correspond to pL(α1, α2)
for z = 0.1, and are drawn for different values of α1. From the curve at the bottom to the one at the top, α1

takes values 0.5, 0.6, and 0.69941, respectively.

Second, pL(α1, α2) increases with α1 (also see figure 2). Therefore, ᾱ1 satisfies

pL
(
ᾱ1, α̂2(ᾱ1, z)

)
= z

For example, when z = 0.1, then ᾱ1 = 0.69941. Alternatively, if z = 0.4 and z = 0.01, then

ᾱ1 = 0.78811 and ᾱ1 ≈ 0.6382, respectively.
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B. Insuring Negotiators and Mitigating the Effects of Exit Threat

The previous section considered the default case (i.e., the no-insurance case). In this section,

however, I will consider the partial-insurance case: in equilibrium, each negotiator will be com-

pensated (only) when he receives the message c, and the negotiator’s continuation payoff when

he receives the message c and d will be identical. I prove the following results for this insurance

plan, where the negotiators’ compensations are minimal. However, the same results would hold

when, for example, each negotiator i is ensured to receive a payoff no less than 1−αj whenever

he receives the message c.

Comparing with Theorem 2, the next result unambiguously shows that even if we insure

both negotiators, the equilibrium share of the second negotiator, who is unable to use the exit

threat, will increase.10 Moreover, if negotiator 2 is insured by his principal, whose preferences

are perfectly aligned with his agent’s, then the second negotiator’s principal prefers to insure his

agent for sufficiently low values of z2. Next, I will formally prove all these claims.

More formally, in any equilibrium where α1+α2 > 1 and K ≥ 0, the negotiator i’s equilibrium

game payoff is

Ui
(
Fi, Fj

)
= αi(1− zj)Fj(0) + (1− αj)

[
1− (1− zj)Fj(0)

]
(6)

Therefore, the size of the minimal compensation in ex-ante terms is

wi ≡ zi

[
Ui(Fi, Fj)− αi

∫
y∈[0,K)

e−riydBj(y)

]
. (7)

Note that Theorem 1 holds whether there is partial insurance or not. The equilibrium

strategies F1 and F2 do not change under partial insurance because these strategies represent

the fourth-stage equilibrium behavior of the flexible negotiators. Furthermore, one may naturally

suspect that negotiator 1’s choice of K should depend on the existence of the partial insurance,

but it does not. Recall from the arguments following Theorem 1: lowering K increases negotiator

1’s equilibrium payoff in the game as long as negotiator 1’s reputation reaches the level pH prior

to the time K. This observation holds whether or not there is partial insurance, so the optimal

value for K is still given by Theorem 1. That is, K is simply calculated by Bayes’ rule and

flexible negotiator 1’s concession game strategy F1.

Theorem 1 and the discussions in the previous section also imply that regardless of the

presence of the partial insurance, negotiator 1 will never choose a demand more than ᾱ1 in

equilibrium. If she does, then the second negotiator can profitably deviate to a demand that

10Therefore, one can immediately conclude that if negotiator 2 is insured but negotiator 1 is not, then the
second negotiator’s expected surplus will be even higher.
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makes negotiator 1 weak. Therefore, in any equilibrium where negotiators’ announced demands

are α1 and α2, we must have pL(α1, α2) ≤ z1.

Furthermore, if negotiators’ announced demands α1 and α2 are such that pH(α1, α2) < z1,

then negotiator 1 would be strong in any sequential equilibrium of the game G. In that case,

however, negotiator 1’s expected payoff (in the game G) would increase with α1. That is,

negotiator 1 would have incentive to deviate and announce α1 + ε for some ε > 0 small enough

so that the inequality pH(α1 + ε, α2) < z1 holds, and thus, the strong negotiator 1 receives a

higher expected payoff. For this reason, in any sequential equilibrium where negotiators’ initial

offers α1 and α2 are incompatible, the inequality z1 ≤ pH(α1, α2) must hold.

Thus, for the fixed values of the primitives and for any α1, α2 ∈ [0, 1] such that α1 + α2 > 1

define the set

Z(α1, α2) =
{
z ∈ (0, 1)

∣∣∣ pL(α1, α2) ≤ z ≤ pH(α1, α2)
}
.

Therefore, the previous arguments imply that z1 ∈ Z(α1, α2) must hold in equilibrium if the

negotiators are partially insured. The next theorem characterizes the equilibrium demands in

the first stage of the game G given that both negotiators are partially insured.

Theorem 3. Suppose that both negotiators are partially insured. In any sequential equilibrium

of the game G, the first-stage offers α∗1 and α∗2 must satisfy α∗1 + α∗2 ≥ 1 and

α∗1 ∈ arg max
α1∈[1−α∗2,ᾱ1]
z1∈Z(α1,α

∗
2)

{
α1 − z2(α1 + α∗2 − 1)

(
α1 + α∗2 − 1

z1α∗2

) r1(1−α
∗
2)

r2(1−α1)
}
.

Unlike the no-insurance case, there are multiple equilibria in the partial-insurance case. The

unique efficient equilibrium is the one that negotiator 1 demands ᾱ1. In all other equilibria,

negotiator 1’s initial offer (i.e., α∗1) is less than ᾱ1, and the second negotiator makes an incom-

patible offer in the first stage. In all these inefficient equilibria, negotiator 1 announces a positive

exit-time (as characterized in Theorem 1). In particular, given the first-stage demands α∗1 and

α∗2, negotiator 1 announces

K∗ = −α
∗
1 + α∗2 − 1

r2(1− α∗1)
ln

(
z1α

∗
2

α∗1 + α∗2 − 1

)
.

It is easy to verify that K∗ is an increasing function of α∗1, α∗2 and z1, but a decreasing function

of r2. Similar to the no-insurance case, negotiator 1 will be strong, and negotiator 2 will be weak

in any sequential equilibrium under the partial-insurance case. Since negotiator 2 is partially

compensated when he receives the message c, his expected payoff in the game will be 1 − α∗1

regardless of his announcement (i.e., α∗2). Negotiator 2’s indifference among all possible demands

in the set [1− α∗1, 1] is the reason for the multiplicity of equilibrium.
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Figure 3: The first stage best response correspondences of the negotiators (z1 = z2 = 0.1 and r1 = r2 = 0.7).

We know from Theorem 2 that if negotiator 1’s initial offer is α∗1 and if there is no insurance,

negotiator 2’s expected payoff in the game will be strictly less than 1 − α∗1 when negotiator

2 makes an incompatible demand in the first stage. Given this, negotiator 2 will never make

an incompatible demand in equilibrium. This is the reason for the uniqueness in Theorem 2.

That is, the source of the multiplicity in Theorem 3 is due to negotiator 2’s equilibrium payoff.

Therefore, if only negotiator 2 would have been compensated, then there would be multiple

equilibria (same as Theorem 3). However, the equilibrium demands would be different from

those that are characterized by Theorem 3 because the first negotiator’s expected payoff, if

negotiator 1 is not compensated, is given by equation (5), not by equation (6).

In equilibrium where negotiators’ initial offers α∗1 and α∗2 are incompatible, the second ne-

gotiator’s principal should compensate (in ex-ante terms) his agent in the amount of w, which

is given by equation (7).11 If negotiator 2 is not insured, then his expected payoff in the game

will be 1− ᾱ1. But if he is insured, then his expected payoff will increase to 1− α∗1, and so the

difference is ᾱ1−α∗1. This difference is greater than w whenever ᾱ1−α∗1 ≥ z2(1−α∗1). Thus, for

all values of z2 ≤ ᾱ1−α∗1
1−α∗1

, the principal of the second negotiator prefers to compensate his agent.

Clearly, the principal of the first negotiator does not prefer to compensate her.

Example 2 (an illustration of the equilibrium): Consider the following parameter values:

z1 = z2 = 0.1 and r1 = r2 = 0.7. The optimization problems are solved by MATLAB. In figure 3,

BRi(αj) denotes the best response correspondence of negotiator i given negotiator j’s first-stage

11In equilibrium, w = z2

[
1− α∗1 − 1

r2+λ∗
1

(
1− (z1/pH)(r2+λ∗1)/λ∗1

r2+λ∗
1

)]
, where λ∗1 =

r2(1−α∗
1)

α∗
1+α

∗
2−1

.
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Figure 4: Equilibrium demands for different values of z1.

demand αj.

For each α2 ∈ [0, 1], BR1(α2) can be found by choosing α1 satisfying z1 ∈ Z(α1, α2) and

maximizing u1 =
(

1− z2

(
pH
z1

)λ2
λ1

)
α1 + z2

(
pH
z1

)λ2
λ1

(
1−α2

)
. Similarly for each α1 ∈ [0, 1], BR2(α1)

can be found by choosing α2 ∈ [0, 1] that satisfies pL(α1, α2) ≥ z1 and maximizes u2 =
(
1 −

z1z
−λ1
λ2

2

)
α2 + z1z

−λ1
λ2

2 (1− α1). Given α1, if there is no α2 ∈ [0, 1] such that pL(α1, α2) ≥ z1 holds,

then BR2(α1) = [1 − α1, 1]. This is true because negotiator 2’s expected payoff in this case is

1 − α1 regardless of his announcement (i.e., α2). Note that there is no equilibrium in which

αi = 1 for i = 1, 2. This is true because negotiator j’s best response correspondence is not well

defined for αi = 1.

The dashed segment of the black line in figure 3 indicates the equilibrium demands in the

first stage. One equilibrium demand profile is that α∗1 = 0.6143 and α∗2 = 0.562. In that case,

pL = 0.0412 and pH = 0.3137, so z1 ∈ (pL, pH) as required. Then in equilibrium, we have

K∗ = 0.7465. Expected payoffs are u1 = 0.5497 and u2 = 0.3857. Since u1 + u2 = 0.9354 < 1,

the expected utility loss is 0.0646.

Example 3: Figure 4 shows that when we fix the values of z2, r1, and r2, the maximal demand

choice of negotiator 1 (i.e., ᾱ1) decreases as z1 decreases to 0. In the figure, the dashed lines

show ᾱ1, and the solid lines give the equilibrium demands for each z1. In this specific example,

the parameters are such that z2 = 0.1, r1 = 0.7, and r2 = 0.7, while z1 takes four different values

as indicated in the figure.
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The Limiting Case of Complete Rationality: Both Abreu and Gul (2000) and Kambe

(1999) show that as the initial probabilities of commitment types decrease to 0, the equilibrium

demands converge to a compatible share that purely depends on negotiators’ time preferences.

The same conclusion holds for the game G as well.

For this purpose, I first fix the parameters rb and rs. I say the bargaining game G(zm1 , z
m
2 )

converges to G(M) when the sequences {zm1 } and {zm2 } of initial priors satisfy

lim zm1 = 0, lim zm2 = 0 as m→∞ and log zm1 /log zm2 = M for all m ≥ 0. (8)

Corollary 1 . Whether or not the negotiators are partially insured for their loss, if the game

G(zm1 , z
m
2 ) converges to G(M), αm1 is the equilibrium demand of negotiator 1 in the game

G(zm1 , z
m
2 ), and if α∗1 ∈ [0, 1] is a limit point of αm1 , then we have α∗1 = r2

Mr1+r2
.

Given that we must have pL(αm1 , α
m
2 ) ≤ zm1 for all m, it is fairly straightforward to prove the

last result.

Remark 2 In the limit where zm1 and zm2 converge 0, the equilibrium demand is uniquely

determined under the no-insurance case. However, multiplicity of the equilibrium demands will

still be the case under partial insurance. In that case, α∗1 is unique (as given by Corollary 1),

but any α∗2 ≥ Mr1
Mr1+r2

is consistent with equilibrium.

4. Concession Game Strategies

In this section, I will characterize the flexible negotiators’ fourth-stage sequential equilibrium

strategies. Therefore, I take negotiators’ demands α1, α2, and negotiator 1’s deadline K as given.

I suppose that α1 + α2 > 1 because the game finishes at the first stage when α1 + α2 ≤ 1.

Consider any sequential equilibrium in which K = 0. The obstinate type of negotiator 1

leaves the game at time 01. If the game does not end at time 01, then flexible negotiator 1

accepts α2 at time 02 with probability one. This is true because (1) negotiator 1’s type will be

revealed if she does not leave at time 01, (2) flexible negotiator 1 receives 0 payoff if she leaves

the game at time 01, (3) in equilibrium, negotiator 2’s type is still not known to negotiator 1 at

time 02, and thus, flexible negotiator 1 accepts α2 at time 02 (if the game reaches this point)

and finalizes the game for sure.12 Hence, in equilibrium, the game will end at time 0 (either in

stage 01 or in 02) for sure and F2(02) = 0.

12This conclusion is a direct implication of Myerson (1991) and Abreu and Gul (2000); if negotiator 1’s type
is revealed but negotiator 2 is not known to be flexible, then in the unique equilibrium of he continuation game,
negotiator 1 immediately concedes to negotiator 2.
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Proposition 1. In any sequential equilibrium where K = 0 and α1 + α2 > 1,

1. if pH = α1+α2−1
α2

< z1, then negotiator 2 concedes at time 01 with probability 1 and negotiator

1 accepts α2 only at time 02. That is, F1(01) = 0, F1(02) = 1 and F2(01) = 1,

2. if z1 < pH , then negotiator 2 never concedes and negotiator 1 is indifferent between con-

ceding at times 01 and 02. That is, F2(01) = F2(02) = 0, 0 ≤ F1(01) ≤ 2
(

pH−z1
pH(1−z1)

)
and

F1(02) = 1,

3. if z1 = pH , then negotiator 1 concedes only at time 02 and negotiator 2 is indifferent

between conceding at time 01 and 02. That is, F1(01) = 0, F1(02) = 1, 0 ≤ F2(01) ≤ 1 and

F2(02) = F2(01).

Proof. It is deferred to Appendix.

Now, consider a sequential equilibrium in which K ≥ T0 = min{− ln z1
λ1
,− ln z2

λ2
}, where λi =

rj(1−αi)
α1+α2−1

. Note that time − ln zi
λi

is the time at which negotiator i’s reputation reaches 1 if Fi(0) =

0 (i.e., negotiator i does not concede at time 0). When negotiator i’s reputation reaches 1,

negotiator j stops playing the concession game. Therefore, in equilibrium, both negotiators’

reputations reach 1 and the game G ends at time T0 if negotiator 1 chooses K ≥ T0.

Proposition 2. In any sequential equilibrium in which K ∈ [T0,∞) and α1 + α2 > 1, we have

Fi(t) =

{
1

1−zi (1− cie
−λit), if t ∈ [0, T0]

1, otherwise,

where ci = zie
λiT0.

Proof. The proof follows from Hendricks, Weiss and Wilson (1988) and is analogous to the proof

of Lemma 1 in Abreu and Gul (2000).

Finally, I will characterize the flexible negotiators’ fourth-stage equilibrium strategies when

negotiator 1’s deadline K satisfy 0 < K < T0. For this purpose, first, consider a history in which

no negotiator concedes prior to time t = K. Given the negotiators’ equilibrium strategies, let

ẑ1 and ẑ2 denote the posterior probabilities that negotiators 1 and 2, respectively, are obstinate

types at time K. It must be the case that ẑi is greater than or equal to zi. Negotiator 2

believes that negotiator 1 will leave the game at time K1 with probability ẑ1, in which case

flexible negotiator 2’s instantaneous payoff is 0. On the other hand, negotiator 1 will concede

to negotiator 2 either at time K1 or time K2 (depending on her equilibrium strategy) with

probability 1 − ẑ1, in which case flexible negotiator 2’s instantaneous payoff is α2. Thus, in
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equilibrium, negotiator 2 concedes to negotiator 1 at time K1 with a positive probability if and

only if ẑ1 is high enough.

More formally, given negotiator 1’s equilibrium strategy F1, let U2(Accept at K1) and U2(Wait at K1)

denote flexible negotiator 2’s instantaneous (expected) payoff of conceding and waiting, respec-

tively, at time K1. That is, these payoffs are calculated at time K1. Thus, U2(Accept at K1) ≥
U2(Wait at K1) if and only if

ẑ1(1− α1) + (1− ẑ1)p1(K1)

[
1 + α2 − α1

2

]
+ (1− ẑ1)

[
1− p1(K1)

]
(1− α1) ≥ (1− ẑ1)α2

where p1(K1) indicates the probability that flexible negotiator 1 accepts α2 at time K1.

If p1(K1) = 0 is true, then we have U2(Accept at K1) ≥ U2(Wait at K1) if and only if ẑ1 ≥ pH

holds. Moreover, if ẑ1 = pH , then

U2(Accept at K1)− U2(Wait at K1) = p1(K1)
[1− α1

α2

][α1 + α2 − 1

2

]
is non-negative for all values of p1(K1).

The last two observations imply that, in equilibrium, if negotiator 1’s reputation at time K

(i.e., ẑ1) reaches pH and if negotiator 1 concedes to negotiator 2 at time K1 with some positive

probability (i.e., p1(K1) > 0), then negotiator 2 should also concede to negotiator 1 at time

K1. However, if negotiator 2 concedes to negotiator 1 at time K1 with a positive probability,

then flexible negotiator 1 prefers to wait at time K1.13 Hence, in equilibrium, if negotiator 1’s

reputation at time K ever reaches pH , then negotiator 1 will not concede to negotiator 1 at time

K1 and flexible negotiator 2 will be indifferent between conceding and waiting at this time.

Therefore, the question that we must answer is whether flexible negotiator 1 prefers to build

his reputation to pH prior to time K or not. The next result provides an affirmative answer.

Proposition 3. In any sequential equilibrium in which K ∈ (0, T0) and α1+α2 > 1, the following

must be true:

1. Equilibrium strategies F1 and F2 of stage 4 are continuous and strictly increasing over

[0, K1]. In particular, for all t ∈ [0, K1], Fi(t) = 1
1−zi (1 − cie

−λit) where ci ∈ [0, 1] with

(1 − c1)(1 − c2) = 0 and λi =
rj(1−αi)
α1+α2−1

. Moreover, F2(t) = F2(K1) for all t > K1 and

F1(K2) = 1.

13This argument is true because given F2 (i.e., the second negotiator’s strategy), U1(Accept at K1) = (1 −
ẑ2)p2(K1)

[
1+α1−α2

2

]
+
[
ẑ2 + (1 − ẑ2)(1 − p2(K1)

]
(1 − α2) is strictly smaller than U1(Accept at K2) = (1 −

ẑ2)p2(K1)α1 +
[
ẑ2 + (1− ẑ2)

(
1−p2(K1)

)]
(1−α2) whenever p2(K2) > 0 (i.e., negotiator 2 concedes to negotiator

1 at time K1 with a positive probability).
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2. Negotiator 1’s reputation at time K1 (i.e., ẑ1) reaches exactly pH whenever the second

negotiator’s reputation at time K1 (i.e., ẑ2) is strictly less than 1.

Proof. It is deferred to Appendix.

According to Proposition 3, if negotiator 1 does not make a positive probabilistic concession

at time 0, then in equilibrium, negotiator 1 should choose her deadline K = − ln(z1/pH)
λ1

≡ K∗.

We get this term by solving the equation ẑ1(t) = pH that must be satisfied in equilibrium. Note

that if negotiator 1 does not make initial probabilistic concession, then c1 = 1. Therefore, we

have ẑ1(t) = z1
z1+(1−z1)(1−F1(t))

= z1
e−λ1K

. Solving z1
e−λ1K

= pH yields the desired term K∗.

Proposition 4. In any sequential equilibrium in which 0 < K < min{K∗, T 0} and α1 +α2 > 1,

we have

(i) F1(t) = 1
1−z1 (1− z1

pH
eλ1(K1−t)) for all t ∈ [0, K1] and F1(t) = 1 for all t ≥ K2.

(ii) F2(t) = 1
1−z2 (1− e−λ2t) for all t ∈ [0, K1] and F2(t) = F2(K1) for all t ≥ K2.

Proof. Negotiator 1 cannot build her reputation to pH at time K1 if she does not make a positive

probabilistic concession. Therefore, c2 = 1 must hold in equilibrium (since both negotiators

cannot make concession at time 0 with positive probabilities). The last observation, together

with Proposition 3, gives F2. In order to find F1(t), we need to solve z1
z1+(1−z1)(1−F1(K1))

= pH .

Proposition 5. In any sequential equilibrium in which K∗ < K < T 0 and α1 +α2 > 1, we have

(i) F1(t) = 1
1−z1 (1− e−λ1t) for all t ∈ [0, K1] and F1(t) = 1 for all t ≥ K2.

(ii) F2(t) = 1
1−z2 (1− z2e

λ2(K1−t)) for all t ∈ [0, K1] and F2(t) = 1 for all t ≥ K2.

Proof. Since K∗ < K, negotiator 1 has more than sufficient time to build her reputation to pH .

In fact, reputation of negotiator 1 at time K1 (i.e., ẑ1) will be strictly higher than pH because

F1 is strictly increasing on [0, K1]. Thus, negotiator 2 strictly prefers to concede at time K1.

However, according to Proposition 3, F2 must be continuous on (0, K1] (i.e., p2(K1) must be 0).

These arguments imply that in equilibrium F2(K1) = 1. The last equality implies the value of

F2(t). Since c2 < 1, we have c1 = 1, which implies the value of F1.

Proposition 6. In any sequential equilibrium in which 0 < K = K∗ < T 0 and α1 + α2 > 1, we

have
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(i) F1(t) = 1
1−z1 (1− e−λ1t) for all t ∈ [0, K1] and F1(t) = 1 for all t ≥ K2, and

(ii) F2(t) = 1
1−z2 (1 − c2e

−λ2t) for all t ∈ [0, K1] and F2(t) = F2(K1) for all t ≥ K2 where

c2 ∈
[
z2

(
pH
z1

)λ2/λ1 , 1
]
.

Proof. By the definition of K∗, if F1(0) > 0, then ẑ1(K1) > pH . But then, flexible negotiator 2

strictly prefers conceding at time K1, implying that we must have F2(K1) = 1. Because K1 < T0,

the last equality is possible only if F2(0) > 0. However, in equilibrium, F1(0)F2(0) = 0 must

hold. Thus, we must have F1(0) = 0, which implies the value of F1. We also have c2 ≥ z2e
λ2K1

because F2(K1) ≤ 1 is true. The last inequality gives the set of possible values for c2.

Proposition 7. If α∗1 and α∗2 are negotiators’ demand choices in an equilibrium, then z1 ∈
Z(α∗1, α

∗
2) and 1− α∗2 ≤ α∗1 ≤ ᾱ1 must hold.

Proof. It is deferred to Appendix.

5. Some Extensions

One possible extension of the model is allowing negotiators to use mixed strategies in the

first stage. However, this modification would add nothing new but additional technicalities.

Theorem 1 and all the results in Section 4 clearly follow in this case. We know from Theorem 1

that in equilibrium, negotiator 1 will choose her deadline such that she is the strong negotiator

in the game. Since the second negotiator is weak, he will be indifferent between all the demands

in the set [1 − α1, 1]. The only difference is that negotiator 1 will be mixing over a subset of

[0, 1], which may include demands that are higher than ᾱ1.

In what follows, I will consider some (relatively simpler) extensions of the model, where

the negotiators sequentially choose their demands. Determining the set of equilibrium demands

is not easy because the negotiators’ payoff functions are highly complex and discontinuous.

However, I will characterize the conditions that give the set of equilibrium demands.

It is crucial to note that the case where negotiator 1 chooses the deadline K before negotiator

2 chooses his demand α2 has a completely different set of dynamics. Most of the results in Section

4 and the theorems in Section 3 will no longer be true in this case. Therefore, this specific

extension is discarded not because it is unimportant, but because it will make Theorem 1 and

the results in Section 4—the core of the equilibrium strategies—invalid. Finally, the following

characterizations are done under the assumption that negotiators are partially compensated

when they receive the message c. Therefore, negotiator i’s expected payoff in the game is given

by equation (6). For the case where the negotiators are not compensated, the utility functions

will change as dictated by equation (5).
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Sequential demand announcement (negotiator 2 is first): Suppose now that negotiator

2 makes his demand choice first (stage 1), and then negotiator 1 chooses both her demand α1

and exit-time K (stage 2). The timing of the rest of the game (i.e., stages 3 and 4) are the

same as before. In equilibrium, the optimal deadline will be determined according to Theorem

1. Equilibrium values of α∗1 and α∗2 are characterized as follows:

First, start with defining the negotiators’ best response correspondences. Given α2 ∈ (0, 1),

negotiator 1’s best response correspondence is

BR1(α2) = arg max
α1∈[1−α2,1)
z1∈Z(α1,α2)

u1(α1, α2)

where u1(α1, α2) = α1 − z2(α1 + α2 − 1)
(
α1+α2−1
z1α2

) r1(1−α2)
r2(1−α1) .

Hence, in equilibrium negotiator 2 chooses α∗2 ∈ (0, 1) and negotiator 1 chooses a function

α∗1 : (0, 1)→ [1− α2, 1) such that

(i) α∗2 ∈ arg min
α2∈(0,1)

BR1(α2), and

(ii) for any α2 ∈ (0, 1), α∗1(α2) ∈ arg max
α1∈[1−α2,1)
z1∈Z(α1,α2)

u1(α1, α2).

Sequential demand announcement (negotiator 1 is first): Suppose now that in stage

1 negotiator 1 makes her demand choice first, and then negotiator 2 chooses his demand. In

stage 2, negotiator 1 chooses a deadline K. The timing of the rest of the game (i.e., stages 3

and 4) are the same as before. In equilibrium, the optimal deadline is determined by Theorem

1. Equilibrium values of α∗1 and α∗2 are characterized as follows.

If negotiator 1 demands α1 > ᾱ1, then negotiator 2 will choose a correspondence α∗2 : (0, 1)→
[1− α1, 1), satisfying that for any α1 ∈ (0, 1),

α∗2(α1) ∈ arg max
α2∈[1−α1,1)

z1<pL

u2(α1, α2)

where u2(α1, α2) = α2 − (α1 + α2 − 1)z1z
−λ1/λ2
2 .

However, if negotiator 1 demands α1 ≤ ᾱ1, then negotiator 2 will choose any correspondence,

satisfying α∗2 : (0, 1)→ [1− α1, 1).
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Finally, negotiator 1 chooses her demand α∗1 such that α∗1 ∈ arg max
α1∈(0,1)

Ū1 where

Ū1 =


1− α∗2(α1), if α1 > ᾱ1

u1(α1, α
∗
2(α2)) if α1 ≤ ᾱ1 and α1 ∈ Z(α1, α

∗
2(α1))

1− α∗2(α1), if α1 ≤ ᾱ1 and α1 /∈ Z(α1, α
∗
2(α1)).

and u1(α1, α
∗
2(α1)) = α1 − z2(α1 + α∗2(α1)− 1)

(
α1+α∗2(α1)−1

z1α∗2(α1)

) r2(1−α∗2(α1))
r2(1−α1) .

The Case Where Both Negotiators Announce a Deadline: Another possible extension

is the case where both negotiators (either sequentially or simultaneously) choose a deadline.

Although this case might be interesting from an analytical perspective, it does not make much

sense in practice. In a contract negotiation, for example, when the labor union threatens the

management by announcing a deadline for the negotiations, the management is supposed to

make a decision between (1) conceding to the union, (2) making an acceptable counteroffer or

(3) allowing the labors to leave the bargaining table (e.g., strike). However, making a counter-

threat by choosing an earlier deadline is not an expected move from the management.

On the other hand, from an analytical point of view, allowing both negotiators to announce

a deadline and to leave the bargaining table gives rise to a significant amount of complexity.

Suppose, for example, that negotiators simultaneously declare an exit-time, where Ki ∈ [0,∞)

indicates negotiator i’s deadline. If K1 < K2, then it is not clear whether flexible negotiator 1

will accept negotiator 2’s demand prior to time K1 with certainty.

We know from our analyses in Sections 3 and 4 that if only negotiator 1 chooses a deadline,

then flexible negotiator 1 will concede to negotiator 2 before or at time K1, and so the game

will never go beyond this time. This behavior of flexible negotiator 1 affects both negotiators’

equilibrium strategies. However, if both negotiators choose a deadline and the difference between

K2 and K1 is sufficiently small, then flexible negotiator 1 may prefer to wait beyond time K1. In

equilibrium, negotiator 1’s type will be revealed at time K1 if she does not leave the bargaining

table at this time. Likewise, the second negotiator’s type will also be revealed at time K2.

Therefore, negotiator 1’s behavior during the interval [K1, K2] depends upon her continuation

payoff in the subgame following time K2, where both negotiators’ types are common knowledge.

That is, we first need to investigate the equilibrium of the concession (i.e., the war of attrition)

game between two flexible negotiators. As we know from Hendricks, Weiss, and Wilson (1988),

there are multiple equilibria of this game, depending on the negotiators’ declared demands at

the beginning of the game. Moreover, when both negotiators have the option of leaving the

bargaining game, then there also are multiple equilibria even though the negotiators’ outside

options are 0 and there is no uncertainty on negotiators’ types (Ponsati and Sakovics, 1998).
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This multiplicity issue and the complexity/discontinuity of the negotiators’ payoffs are likely

to make equilibrium investigation of this particular case inconclusive.

6. Concluding Remarks and Related Literature

According to the equilibrium calculations, negotiator 1 always chooses the exit-time (i.e., the

deadline) positive if the negotiators’ initial offers are incompatible. The deadline is a function

of both negotiators’ initial demands, negotiator 1’s commitment probability, and negotiator 2’s

time preferences. If negotiator 2 is more impatient, then negotiator 1 chooses a shorter deadline.

That is, negotiator 1 applies more time pressure on her rival (by shortening the deadline) if her

rival is impatient. There is a tradeoff between initial offers and the length of the deadline: If

negotiator 1 makes a greedy offer, then she cannot choose a short deadline because it will not

be a credible threat. In equilibrium, negotiators never choose extreme demands, and the exit

threat always makes agent 1 advantageous.

In equilibrium, negotiator 1 demands ᾱ1—a function of both negotiators’ commitment prob-

abilities and time preferences—and negotiator 2 offers 1− ᾱ1, so the game ends in the first stage.

Negotiator 2, who cannot choose a deadline, can mitigate the effects of his rival’s threat by

insuring himself against some of the utility loss he will suffer when he commits to his demand.

There is multiple equilibria in the partial-insurance case. The upper bound for negotiator 1’s

equilibrium demands is ᾱ1. When negotiator 2 is partially compensated, the temptation of

reaching a better deal causes delay in equilibria. However, this temptation fades away when

negotiator 2 is liable for all the utility losses that occur due to the commitment tactic.

As a possible extension and a new line for future research, it would be interesting to consider a

setup where negotiator 1 chooses both her demand and the deadline before the second negotiator

makes his offer. This structure allows the second negotiator to modify his demand given the first

negotiator’s deadline announcement. The equilibrium strategies in this case do not immediately

follow from the analyses in the paper. However, intuition suggests that the second negotiator’s

equilibrium surplus should be higher because negotiator 1 will not be able to position her deadline

according to the second negotiator’s demand, and thus, she may not always be the strong

negotiator in the game.

A model or a theory that helps us understand why and under what conditions bargainers

use the “take it or leave it” offers at the first place would be a significant contribution to the

literature. For this purpose, we need to study a model where the identity of the negotiator,

using the exit threat, is determined in equilibrium endogenously. One theory on this account

would be that negotiators may be uncertain about their valuations at the very beginning of the

game, and so the size of the surplus that will be divided is incomplete information. Negotiators
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may prefer to make offers and counteroffers at the very beginning of the game in order to reduce

the uncertainty about the rival’s type. Once the negotiators’ beliefs hit some level, which will

be determined in equilibrium, one of them may want to make a “take it or leave it” offer to

speed up the process. Since the bargainers discount time, reaching an agreement earlier is always

preferable. However, using “take it or leave it” offers at the early stages of the game is risky for

a negotiator because the expected loss in case his opponent calls his bluff is larger.

Commitment and exit threats are studied, to some extent, separately in the bargaining liter-

ature. Thus, the current work is the first one that combines these two threats. Shelling (1960)

points out the potential benefits of commitment in strategic and dynamic environments and

asserts that one way to model the possibility of commitment is to explicitly include it as an

action players can take. Crawford (1982), Muthoo (1996), and Ellingsen and Miettinen (2008)

follow this approach and show that commitment can be rationalized in equilibrium if revoking

commitments is costly. The bargaining models in these papers are one-shot simultaneous-move

games. Myerson (1991), Kambe (1999), and Abreu and Gul (2000) follow a reputational ap-

proach: parallel to Kreps and Wilson (1982) and Milgrom and Roberts (1982), commitments are

modeled as behavioral types that exist in society so that rational players can mimic if they like

to do so.14 The bargaining models in the second group of papers are continuous-time, infinite-

horizon games, which provide a fruitful platform to examine endogenous deadlines. A common

message of the previous results is that commitment threat/tactic benefits a negotiator if this

player is the only one who has the option to use it. However, if both negotiators are allowed

to use the commitment tactic, then multiple equilibria arise, and inefficiency (that is caused by

delay) is a very likely outcome.

The exit threat is studied less in the literature than the commitment threat. Among many

others, Osborne and Rubinstein (1990), Vislie (1988), Shaked (1994), Ponsati and Sakovics

(1998), and Ponsati and Sakovics (2001) model exit as the ability of opting out of negotiation

and receiving an outside option. On the other hand, Fershtman and Seidmann (1993), Ma and

Manove (1993), and Ponsati (1995), for example, model exit as a predetermined deadline for the

negotiations. The treatment of the exit threat in this paper has resemblance to both of these

approaches; announcing an exit time creates a deadline effect and the ability of choosing the

time of exit provides strategic advantage for much the same reason as the ability of opting out

does. However, the exit threat approach of this paper gives rise significantly different dynamics;

unless the negotiators leave the bargaining table, the negotiations could continue beyond the

announced deadline, and opting out is never a best response for the flexible negotiators.

Fudenberg and Tirole (1986), Chatterjee and Samuelson (1987), and Ponsati and Sakovics

(1995), for example, study war of attrition (WOA) games with two-sided uncertainty. Kambe

14Abreu and Sethi (2003) supports the existence of commitment types from an evolutionary perspective and
show that if players incur a cost of rationality, even if it is very small, the absence of such behavioral types is
not compatible with evolutionary stability in bargaining environments.
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(1999) and Abreu and Gul (2000) take a step forward and add a pre-play to standard WOA

games, where the negotiators simultaneously choose their demands that determine their strategy

in the WOA phase. The current paper, however, adds another layer to Kambe (1999) and Abreu

and Gul (2000), in which one of the negotiators announces an exit time.

Technically, this paper is closer to Kambe (1999) because in both models, negotiators choose

a demand that they may have to commit to later. There are two reasons for adopting this

approach. The first one is technical. Abreu and Gul (2000) interpret obstinate types as types

that are born with their demands. Given this interpretation, if negotiator i is rational and

demanding αi ∈ [0, 1], then this is his strategic choice. If he is an obstinate type, then he

merely declares the demand corresponding to his type.15 However, this interpretation leads to

a substantially complex model in our setting when there is a large (in particular dense) set of

types. In that regard, both Kambe (1999) and the current paper follow an approach leading to a

fairly simpler model to work with, where a negotiator’s initial probability of being the obstinate

type is independent of the demand (and the deadline) the negotiators announce at the beginning

of the game.

The second reason for using this approach is that negotiators may (have to) commit to their

initial demands or threats depending on how the events unfold during negotiation, and they

may be uncertain about whether they will have to commit or not prior to their (demand and

deadline) announcements. For example, an agent—who negotiates on behalf of his principal—

may have unaligned preferences with his principal and may not know whether the principal will

approve his tactic/bluff. In the Dr. Cuddy versus Atlantic Net negotiation, for instance, the

board members make it clear to Dr. Cuddy that following a strategy leading to an impasse

with the insurance company is not acceptable. However, Dr. Cuddy learns this after she makes

her threats. On the other hand, a state leader (or an executive manager) may commit to his

demand and deadline if revoking his commitments turns out to be very costly (cost of losing

face or credibility of his rhetorics), and the leader may not know the size of this cost for a fact

before seeing his audiences’ attachment/reaction to his commitments.

Although there are important similarities, the current paper is significantly different from

earlier works, which also use the reputational approach, in two aspects. First, in this paper, I

suppose that the obstinate type leaves the bargaining table, and this imposes a deadline effect

on reputation building. Second, I consider two separate cases regarding negotiators’ equilibrium

payoffs: the no-insurance (e.g., Kambe, 1999) and partial-insurance cases. These two case stud-

ies are important because they are valuable steps towards more detailed investigations on the

countermeasures of some bargaining tactics that negotiators extensively use in negotiations.

15We can easily extend this approach to the current setup. If negotiator i is rational and announcing a deadline
K ∈ [0,∞), then this is his strategic choice. If he is an obstinate type, then he merely declares the deadline
corresponding to his type.
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Appendix

Propositions 1 — 6 deal with the flexible negotiators’ equilibrium strategies in the concession game,

so their proofs are independent of the compensation system. Thus, the negotiators’ expected payoffs,

that are used to prove these results, are calculated by Equation (2). Although Proposition 7 and

Theorem 1 (in particular the optimal value of K) deal with negotiators’ first stage choices, these two

results hold regardless of the compensation system. I will provide the proofs of these two results only

for the case where the negotiators are compensated when they receive the message c. I do this only for

notational brevity/simplicity But, I will also provide the negotiators’ expected payoffs if they are not

compensated, and so one can easily check that both Proposition 7 and Theorem 1 will continue to hold

regardless of the compensation system.

Proof of Proposition 1. Let U1(t, F2) denote flexible negotiator 1’s expected payoff of conceding at

time t ∈ {01, 02} given F2. Therefore, U1(01, F2) = F2(01)(1− z2)(1+α1−α2
2 ) + z2(1−α2) + (1− z2)(1−

F2(01))(1− α2) and U1(02, F2) = (1− z2)F2(01)α1 + [(1− z2)(1− F2(01)) + z2](1− α2).

Similarly, let U2(t, F1) denote flexible negotiator 2’s expected payoff of conceding at time t given

F1. Therefore, U2(01, F1) = F1(01)(1+α2−α1
2 )(1 − z1) + z1(1 − α1) + (1 − z1)(1 − F1(01))(1 − α1). Let

U2(F1) denote flexible negotiator 2’s expected payoff of not accepting negotiator 1’s demand. Thus,

U2(F1) = (1− z1)F1(01)α2 + (1− z1)(1− F1(01))α2.

1. Suppose now that z1 > pH . To show F1(01) = 0, F1(02) = 1 and F2(01) = 1 are the equilibrium

strategies, first show that F2(01) = 1 is a best response to F1(01) = 0, F1(02) = 1. For this reason,

we need to show U2(01, F1) ≥ U2(F1). The last inequality implies that z1(1−α1)+(1−z1)(1−α1) ≥
(1 − z1)α2, which is true if and only if z1 >

α1+α2−1
α2

= pH . Similarly, to show that F1 is a best

response to F2(01) = 1, we need to show U1(02, F2) = α1(1 − z2) + z2(1 − α2) > U1(01, F2) =

z2(1− α2) + (1− z2)(1+α1−α2
2 ). The last inequality holds if and only if α1 + α2 > 1. Thus, these

strategies constitute an equilibrium.

To establish uniqueness, first observe that U1(02, F2) > U1(01, F2) for all values of F2(01) > 0.

Thus, as long as F2(01) > 0, we have F1(01) = 0. But, if F1(01) = 0, then flexible negotiator 2

prefers to accept at time 01. Hence, we need to show that F2(01) = 0 cannot hold in equilibrium:

Suppose for a contradiction that F2(01) = 0. Then, we must have that U2(F1) ≥ U2(01, F1).

However, the last inequality holds if and only if F1(01) ≤ 2( pH−z1
pH(1−z1)), which is never true since

z1 > pH .

2. Given that F1(01) ≤ 2( pH−z1
pH(1−z1)), we have U2(F1) ≥ U2(01, F1). That is, negotiator 2’s strategy is

a best response to any F1(01) that satisfies the above inequality. Likewise, if F2(01) = F2(02) = 0,

then U1(01, F2) = U1(02, F2) = 1− α2, and so F1(01) is a best response.

3. If z1 = pH and F1(01) = 0, then U2(01, F1) = U2(F1), and so any F2(01) ∈ [0, 1] is a best response

to F1. Moreover, as F2(01) ∈ [0, 1], we have U1(02, F2) ≥ U1(01, F2).

Q.E.D. for the proof of Proposition 1.
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Proof of Proposition 3. First, I will study the properties of the sequential equilibrium strategies

(distribution functions) in the concession game, i.e. F1 and F2. For this purpose, given α1, α2 and

K where α1 + α2 > 1 and K ∈ (0, T0), consider a pair of equilibrium distribution functions (F1, F2)

defined over the domain [0,∞). Proofs of the following results directly follow from the arguments in

Hendricks, Weiss and Wilson (1988) and are analogous to the proof of Lemma 1 in Abreu and Gul

(2000), so I skip the details.

Lemma A.1 . If a negotiator’s strategy is constant on some interval [t1, t2] ⊆ [0,K1), then his oppo-

nent’s strategy is constant over the interval [t1, t2 + η] for some η > 0.

Lemma A.2 . F1 and F2 do not have a mass point over (0,K1).

The idea behind the proof of Lemma A.2 is that if negotiator i concedes with a positive probability

at some time t ∈ (0,K1), then j prefers to wait during [t− ε, t] for some ε > 0 and concede right after

time t. This implies that negotiator j’s strategy is constant on interval [t− ε, t]. Therefore, by Lemma

A.1 negotiator i’s equilibrium strategy is also constant on this interval, contradicting with the initial

assumption that i concedes with a positive probability at time t.

Lemma A.3 . F1(0)F2(0) = 0.

Therefore, according to Lemma A.1 and A.2, both F1 and F2 are strictly increasing and continuous

over [0,K1].

To prove the first part of Proposition 3, first note that there is no interval (t′, t′′) with 0 ≤ t′ < t′′ <

K1 such that both F1 and F2 are constant. Assume on the contrary that t∗ < K1 is the supremum of

the upper bounds of t′′’s such that both F1 and F2 are constant. However, through lemma A.1, if Fi

is constant on (t′, t∗) for i ∈ {1, 2}, then Fj where j ∈ {1, 2}, j 6= i is constant on (t′, t∗ + η) for some

small η > 0. Hence, both F1 and F2 are constant on this later interval, contradicting the definition of

t∗.

Hence, if 0 ≤ t1 < t2 ≤ K1, then we have Fi(t2) > Fi(t1) for i = 1, 2. Moreover, Lemma A.2 implies

that both F1 and F2 are continuous over [0,K1). Finally, to show that both Fi’s are continuous on

[0,K1], suppose for a contradiction that F2 has jump at time K1. But, then negotiator 1 prefers to wait

for some time before K1 and concede at time K2. However, this contradicts the fact that F1 is strictly

increasing over [0,K1]. Likewise, F1 cannot have a jump at time K1. Suppose for a contradiction

that F1(K1) − F1(K−1 ) = p1 > 0 where F1(K−1 ) = limt↑K1 F1(t). Then let U2(t, F1) denotes flexible

negotiator 2’s expected payoff of waiting until time t and accepting α1 at that time. Then, we have

U2(t = K1 −∆, F1) = α2(1− z1)

∫ K1−∆

0
e−r2ydF1(y) + (1− α1)(1−B1(K1 −∆))e−r2(K1−∆)

U2(t = K1, F1) = α2(1− z1)

∫ K1

0
e−r2ydF1(y) + e−r2K1 [

1

2
(1 + α2 − α1)p1 + (1− α1)(1−B1(K1))]

Therefore, U2(t = K1, F1) − U2(t = K1 − ∆, F1) > 0 for small values of ∆ because this difference

is equal to o1(∆) + o2(∆) + e−r2K1 1
2(1 + α2 − α1)p1 where o1(∆) = α2(1 − z1)

∫K1

K1−∆ e
−r2ydF1(y),
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o2(∆) = (1 − α1)[(1 − B1(K1)) − (1 − B1(K1 −∆))er2∆] and both o1(∆) and o2(∆) approach 0 as ∆

approaches 0.

Thus we can conclude that if F1 has jump at time K1, then negotiator 2 prefers to wait for some

time [K1 −∆,K1) for ∆ > 0 small enough and concede at time K1, contradicting with the fact that

F2 cannot be constant over [0,K1]. Recall that

Ui(t, Fj) = αj(1− zj)
∫ t

0
e−riydFj(y) + αie

−rit[1− (1− zj)Fj(t)]

denote the expected payoff of flexible negotiator i who concedes at time t. Therefore, the utility

functions are also continuous on [0,K1].

Then, it follows that Di ≡ {t|Ui(t, Fj) = maxs∈[0,K1] Ui(s, Fj)} is dense in [0,K1]. Hence, Ui(t, Fj)

is constant for all t ∈ [0,K1]. Consequently, Di = [0,K1]. Therefore, Ui(t, Fj) is differentiable as

a function of t. The differentiability of F1 and F2 follows from the differentiability of the utility

functions on [0,K1]. Differentiating the utility functions and applying the Leibnitz’s rule, we get

Fi(t) = 1
1−zi (1− cie

−λit) for all t ≤ K1 where ci = 1− Fi(0) and λi =
rj(1−αi)
α1+α2−1 .

Finally, since obstinate type of negotiator 1 leaves the game at time K1, negotiator 1’s type will

be revealed at time K2. Hence, flexible negotiator 2 will never concede after time K1 and flexible

negotiator 1 will accept α2 and finish the game before or at time K if the game has not ended before.

To prove the second part of Proposition 3, I suppose that ẑ2 < 1. Because the equilibrium strategy

F2 is continuous on [0,K1], flexible negotiator 2 must be indifferent between conceding and waiting

(not conceding) at time K1. If negotiator 2 concedes at time K1, then his instantaneous payoff will be

1− α1. However, if he waits, then his expected payoff will be (1− ẑ1)α2 because flexible negotiator 1

accepts α2 at time K2 for sure. These two payoffs are equal if and only if ẑ1 = α1+α2−1
α2

= pH .

Q.E.D. for the proof of Proposition 3.

Proof of Theorem 1. As a result of the propositions 1 through 6, the negotiators’ equilibrium payoffs

in the game are as follows (assuming that α1 + α2 > 1 and negotiators are compensated when they

receive the message c.)

CASE 1: If K = 0, then

1. if z1 > pH , then

u1 = (1− z2)α1 + z2(1− α2) and u2 = 1− α1

2. if z1 < pH , then

u1 = 1− α2 and u2 = (1− z1)α2

3. if z1 = pH , then

u1 = (1− z2)F2(01)α1 + [(1− z2)(1− F2(01)) + z2](1− α2) and u2 = 1− α1
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where F2(01) ∈ [0, 1].

CASE 2: If 0 < K ≤ T0, then let K∗ = − ln(z1/pH)
λ1

1. if K < K∗, then

u1 = 1− α2 and u2 = (1− z1

pH
eλ1K)α2 +

z1

pH
eλ1K(1− α1)

2. if K∗ < K, then

u1 = (1− z2e
λ2K)α1 + z2e

λ2K(1− α2) and u2 = 1− α1

3. if K∗ = K, then

u1 = (1− c2)α1 + c2(1− α2) and u2 = 1− α1

where c2 ∈ [z2

(
pH
z1

)λ2/λ1
, 1]

CASE 3: If T0 < K, then

1. if z1 > z
λ1/λ2
2 , then

u1 = (1− z2z
−λ2/λ1
1 )α1 + z2z

−λ2/λ1
1 (1− α2) and u2 = 1− α1

2. if z
λ1/λ2
2 > z1, then

u1 = 1− α2 and u2 = (1− z1z
−λ1/λ2
2 )α2 + z1z

−λ1/λ2
2 (1− α1)

3. if z1 = z
λ1/λ2
2 , then

u1 = (1− α2) and u2 = 1− α1

First note that according to Proposition 3, negotiator 1’s reputation must reach pH at time K.

Hence, negotiator 1 needs K∗ amount of time to build her reputation if z1 < pH if she does not make

any probabilistic concession at time 0. Clearly negotiator 1 can build her reputation to pH much

earlier than K∗ if she makes a probabilistic concession at time 0. However, in this case, negotiator 1’s

expected payoff in the game will be the lowest payoff she can achieve in the game, that is it will be

1− α2. Therefore, in equilibrium, negotiator 1 will choose K no less than K∗.

To prove the first part of Theorem 1, suppose that pH ≤ z1. In this case negotiator 1 does not need

any time to build her reputation. Also, it is easy to see from the above payoff functions that payoff

of negotiator 1 is the highest when she chooses K = 0. Hence, in equilibrium, negotiator 1 will pick

K = 0, and the equilibrium strategies in the concession game will be as given in Proposition 1.

To prove the second part, suppose that pL ≤ z1 < pH . It immediately follows that K cannot be

0. Since pL ≤ z1 holds, we have K∗ ≤ T0. Thus, negotiator 1 will choose 0 < K ≤ T0, and so her

equilibrium payoff is one of those given above in CASE 2. Clearly, negotiator 1 does not select K < K∗

because she can achieve higher. However, for any K satisfying K∗ < K, negotiator 1 can increase
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her payoff by choosing an exit-time shorter than K. Therefore, the optimal choice for negotiator 1 is

K = K∗, and the equilibrium strategies are characterized by Proposition 6.

However, in equilibrium, the value of c2 is uniquely determined and it is equal to z2

(
pH
z1

)λ2/λ1
.

The proof of the last argument is easy. First note that negotiator 1’s payoff decreases as c2 in-

creases. Suppose for a contradiction that there is an equilibrium where negotiator 1 chooses K∗ = K

and c2 > z2

(
pH
z1

)λ2/λ1
. In this case, negotiator 1 could increase her expected payoff by deviating

to K ′ = K∗ + ε for some sufficiently small ε > 0. This is true because negotiator 1’s payoff gets(
1− z2e

ελ2
(
pH
z1

)λ2/λ1)
α1+z2e

ελ2
(
pH
z1

)λ2/λ1
(1−α1), which is strictly higher than (1−c2)α1+c2(1−α2)

for sufficiently small ε > 0.

Finally to prove the third part of Theorem 1, suppose that z1 < pL. In this case, we have T0 < K∗

and z1 < z
λ1/λ2
2 . Therefore, negotiator 1’s expected payoff is as given under (2) in CASE 3. That says,

negotiator 1’s expected payoff is 1− α2, and is independent of the value of K she chooses. Thus, any

K ∈ [T0,∞) forms an equilibrium if F1 and F2 are given in Proposition 2.

REMARK: Negotiator 1’s expected payoffs in the game, when the negotiators are not compensated,

are as follow:

• If K = 0, then

1. if z1 ≥ pH , then u1 = (1− z1)
[
(1− z2)α1 + z2(1− α2)

]
+ z1(1− z2)α1

2. if z1 < pH , then u1 = (1− z1)(1− α2)

• If 0 < K ≤ T0, then let K∗ = − ln(z1/pH)
λ1

1. if K < K∗, then u1 = (1− z1)(1− α2) + z1α1λ2

∫K
0 e−(r1+λ2)tdt

2. if K∗ < K, then

u1 = (1− z1)
[
(1− z2e

λ2K)α1 + z2e
λ2K(1− α2)

]
+ (1− z2e

λ2K)z1α1 + z2e
λ2Kz1α1λ2

∫ K

0
e−(r1+λ2)tdt

3. if K∗ = K, then

u1 = (1− z1)
[
(1− c2)α1 + c2(1− α2)

]
+ z1α1

[
(1− c2) + c2λ2

∫ K

0
e−(r1+λ2)tdt

]

where c2 = z2

(
pH
z1

)λ2/λ1
as we prove in the proof of Theorem 1.

• If T0 < K, then
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1. if z1 > z
λ1/λ2
2 , then

u1 = (1− z1)
[
(1− z2z

−λ2/λ1
1 )α1 + z2z

−λ2/λ1
1 (1− α2)

]
+ z1α1

[
1− z2z

−λ2/λ1
1

]
+ z2z

−λ2/λ1
1 λ2

∫ T0

0
e−(r1+λ2)tdt

2. if z
λ1/λ2
2 ≥ z1, then u1 = (1− z1)(1− α2)

Q.E.D. for the proof of Theorem 1.

Proof of Proposition 7. Consider a sequential equilibrium where negotiators’ demands α∗1 and α∗2

are incompatible. Suppose for a contradiction that z1 /∈ Z(α∗1, α
∗
2). First, suppose that pH(α∗1, α

∗
2) < z1.

According to Theorem 1, in equilibrium, negotiator 1 selects K = 0, which leads to expected payoff of

(1−z2)α∗1 +z2(1−α∗2). However, if negotiator 1 demands α∗1 + ε where ε > 0 is small enough so that we

still have pH(α∗1+ε, α∗2) < z1, then negotiator 1’s expected payoff increases to (1−z2)(α∗1+ε)+z2(1−α∗2),

contradicting the optimality of the equilibrium.

Now suppose that z1 < pL(α∗1, α
∗
2). Then, according to Theorem 1, negotiator 1 selects any K > T0

and her expected payoff in the game is 1−α∗2. However, if negotiator 1 demands 1−α∗2 + ε where ε > 0

is small enough so that ε
α∗2

= pH(1− α∗2 + ε, α∗2) < z1, then negotiator 1’s expected payoff increases to

(1− z2)(1− α∗2 + ε) + z2(1− α∗2), contradicting the optimality of the equilibrium.

Next, I will show that we must have α∗1 ≤ ᾱ1. Suppose for a contradiction that α∗1 > ᾱ1. That

is, given the definition of ᾱ1, there must exist some α2 > 1 − α∗1 such that pL(α∗1, α2) > z1. Note

that α2 is different from α∗2 because, as we just proved, the equilibrium prices α∗1 and α∗2 must satisfy

z1 ∈ Z(α∗1, α
∗
2). Finally, note that in equilibrium, negotiator 1 will choose K = − ln(z1/pH)

λ1
because

z1 ∈ Z(α∗1, α
∗
2) holds, and so negotiator 2 will be weak. That is, u2(α∗1, α

∗
2) = 1− α∗1

However, if negotiator 2 deviates to α2, then according to Theorem 1, negotiator 1 will choose

K ∈ [T0,∞) and negotiator 2 will become strong. In this case, negotiator 2’s expected payoff in

the game will be u2(α∗1, α2) = (1 − z1z
−λ1/λ2
2 )α2 + z1z

−λ1/λ2
2 (1 − α∗1), which is larger than u2(α∗1, α

∗
2)

because α2 > 1− α∗1, contradicting with the optimality of equilibrium. Thus, in equilibrium, we must

have α∗1 ≤ ᾱ1. Furthermore, since the optimality of equilibrium implies α∗1 + α∗2 ≥ 1, we must have

1− α∗2 ≤ α∗1 ≤ ᾱ1.

Q.E.D. for the proof of Proposition 7.

Proof of Theorem 2. Suppose now that the negotiators are not compensated for their loss that may

occur due to commitment. In this case, the negotiators’ expected payoffs are calculated by Equation (4).

Note that Propositions 1—6 must still hold because these results characterize the flexible negotiators’

equilibrium strategies. One can easily check the proofs of Theorem 1 and Proposition 7 that these

results will continue to hold.
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For any α1 ∈ (0, 1), the best response correspondence of negotiator 2 is as follows:

BR2(α1) =


1− α1, if α1 ≤ ᾱ1

arg max
α2∈[1−α1,1)

z1<pL

Ū2, otherwise.

where Ū2 = (1 − z2)
(
α2 − z1(α1 + α2 − 1)z

−λ1/λ2
2

)
+ z2(1 − z1)

∫K
0 e−r2ydF1(y). In the best response

correspondence of the second negotiator, the critical change is that negotiator 2 prefers to choose a

compatible demand (1 − α1) and finish the game at the very beginning of the game. The reason for

this is the following. If negotiator 1 chooses a price α1 that is less than ᾱ1, then there is no price that

negotiator 2 can deviate and make himself strong. However, because negotiator 2 is not compensated

when he receives the message c, the weak negotiator 2’s expected payoff in the game is strictly less

than 1−α1 if he chooses an incompatible demand. Therefore, optimality implies that negotiator 2 will

finish the game by choosing a compatible demand 1− α1 in stage 1.

No price α1 > ᾱ1 can be sustained in equilibrium because if α1 > ᾱ1 , then negotiator 2 prefers

to deviate to a demand α2 > 1 − α1 to make himself strong. No price α1 < ᾱ1 can be supported

in equilibrium because negotiator 1 can increase her expected payoff by increasing her price to some

α1 + ε. If negotiator 1 chooses α1 < ᾱ1, then in equilibrium the second negotiator will choose 1− α1.

However, by choosing α1 + ε, the first negotiator guarantees that z1 > pH = ε
α2

, and so, she increases

her expected payoff over α1. Hence, the unique equilibrium is that first negotiator chooses ᾱ1.

Q.E.D. for the proof of Theorem 2.

Proof of Theorem 3. The best response correspondences of the negotiators are as follows: For any

α1 ∈ (0, 1),

BR2(α1) =


[1− α1, 1), if α1 ≤ ᾱ1

arg max
α2∈[1−α1,1)

z1<pL

{
α2 − z1(α1 + α2 − 1)z

−λ1/λ2
2

}
, otherwise.

For any α2 ∈ (0, 1), the best response correspondence of the first negotiator is,

BR1(α2) = arg max
α1∈[1−α2,ᾱ1]
z1∈Z(α1,α2)

{
α1 − z2(α1 + α2 − 1)(pH/z1)λ2/λ1

}
Note that for any α2 given, as α1 decreases down to 1− α2, then pH decreases to 0. Hence, for any α2

given, there always exists some α1 strictly higher than 1− α2 such that z1 ∈ Z(α1, α2).

By proposition 7 we know that the equilibrium demands α∗1 and α∗2 must satisfy 1− α2 ≤ α∗1 ≤ ᾱ1

and z1 ∈ Z(α∗1, α
∗
2). Given that we must have z1 ∈ Z(α∗1, α

∗
2), Theorem 1 implies that negotiator 1

is strong, and hence her expected payoff is (1 − z2

(
pH
z1

)λ2/λ1
)α∗1 + z2

(
pH
z1

)λ2/λ1
(1 − α∗2) where the

parameters pH , λ1 and λ2 are calculated with α∗1 and α∗2.
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Q.E.D. for the proof of Theorem 3.

References

[1] Abreu, D., and F. Gul, (2000):“Bargaining and Reputation,” Econometrica, 68, 85-117.

[2] Abreu, D., and R. Sethi (2003): “Evolutionary Stability in a Reputational Model of Bargaining,”
Games and Economic Behavior, 44, 195-216.

[3] Abreu, D., and D. Pearce, (2007): “Bargaining, Reputation and Equilibrium Selection in Repeated
Games with Contracts,” Econometrica, 75, 653-710.

[4] Abreu, D., D. Pearce, and E. Stacchetti, (2012): “One Sided Uncertainty and Delay in Reputational
Bargaining,” working paper, Princeton University.

[5] Compte, O., and P. Jehiel, (2002):“On the Role of Outside Options in Bargaining with Obstinate
Parties,” Econometrica, 70, 1477-1517.

[6] Chatterjee, K., and L. Samuelson, (1987): “Bargaining with Two-sided Incomplete Information:
An Infinite Horizon Model with Alternating Offers,” The Review of Economic Studies, 54, 175-192.

[7] Crawford, V.P. (1982): “A Theory of Disagreement in Bargaining,” Econometrica, 50, 607-637.

[8] Ellingsen, T., and T. Miettinen (2008): “Commitment and Conflict in Bilateral Bargaining,” Amer-
ican Economic Review, 98, 1629-1635.

[9] Ellingsen, T., and T. Miettinen (2014): “Tough negotiations: Bilateral bargaining with durable
commitments,” Games and Economic Behavior, 87, 353-366.

[10] Fershtman, C., and D. J. Seidmann, (1993): “Deadline effects and inefficient delay in bargaining
with endogenous commitment,” Journal of Economic Theory, 60, 306-321.

[11] Fudenberg, D., and J. Tirole (1986): “A theory of exit in duopoly,” Econometrica, 943-960.

[12] Hendricks, K., A. Weiss, and R. Wilson (1988): “The War of Attrition in Continuous-Time with
Complete Information,” International Economic Review, 29, 663-680.

[13] Kambe, S. (1999): “Bargaining with Imperfect Commitment,” Games and Economic Behavior,
28, 217-237.

[14] Kreps, D.M., and R. Wilson (1982): “Reputation and Imperfect Information,” Journal of Eco-
nomic Theory, 27, 280-312.

[15] Ma, C. T. A., and M. Manove, (1993): “Bargaining with deadlines and imperfect player control,”
Econometrica, 1313-1339.

[16] Milgrom, P., and J. Roberts (1982): “Predation, Reputation, and Entry Deterrence,” Journal of
Economic Theory, 27, 280-312.

[17] Myerson, R. (1991): Game Theory: Analysis of Conflict. Cambridge, MA: Harvard University
Press.

[18] Muthoo, A. (1996): “A Bargaining Model Based on the Commitment Tactic,” Journal of Economic
Theory, 69, 134-152.

[19] Osborne, M. J., and A. Rubinstein (1990): Bargaining and Markets. San Diego: Academic Press.

37



[20] Ozyurt, S. (2015a): “Searching for a Bargain: Power of Strategic Commitment,” American Eco-
nomic Journal: Microeconomics, 7(1): 320-353.

[21] Ozyurt, S. (2015b): “Bargaining, Reputation and Competition,” Sabanci University working pa-
per.

[22] Ponsati, C. (1995): “The deadline effect: A theoretical note,” Economics Letters, 48, 281-285.

[23] Ponsati, C., and J. Sakovics (1995): “The war of attrition with incomplete information,” Mathe-
matical Social Sciences, 29, 239-254.

[24] Ponsati, C., and J. Sakovics (1998):“Rubinstein bargaining with two-sided outside options,” Eco-
nomic Theory, 11, 667-672.

[25] Ponsati, C., and J. Sakovics (2001): “Bargaining under Randomly Available outside Options,”
Spanish Economic Review, 3, 231-252.

[26] Rubinstein, A. (1982): “Perfect Equilibrium in a Bargaining Model,” Econometrica, 54, 97-109.

[27] Shaked, A. (1994): “Opting Out: Bazaars versus ‘Hi Tech’ Markets”, Investigaciones Economicas,
18, 421-432.

[28] Vislie, J. (1988): “Equilibrium Market with Sequential Bargaining and Random Outside Options,”
Economics Letters, 27, 325-328.

[29] Wolitzky, A. (2012): “Reputational Bargaining with Minimal Knowledge of Rationality,” Econo-
metrica, 80, 2047-2087.

38


