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Selçuk Özyurt †

New York University

December 7, 2012

Abstract

We present a model to investigate the behavior of forgetful players in infinitely

repeated games. We assume that each player may forget the entire history of the

play with a fixed probability. Our modeling specifications make a clear distinction

between absentminded and forgetful players. We consider two extreme cases re-

garding the correlation of forgetfulness of the players. In the first case, forgetfulness

is simultaneous: If a player forgets, so do the rest. For this part, we are able to

prove two Folk theorems. In the other extreme, we consider the case where for-

getfulness is independent between players, so players’ state of memory is no longer

common knowledge. We focus on Conditionally Belief-Free strategies to recapture

the recursive structure in the sense of Abreu, Pearce and Stacchetti (1986, 1990).

By utilizing a method analogous to Ely, Horner and Olszewski (2005), we represent

characterization results for the payoff set of conditionally belief-free strategies.
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1 Introduction

In this paper, we consider infinitely repeated games with forgetful players. The structure

of each period in the repeated game is as follows: Players simultaneously choose their

actions and then immediately these choices become publicly observable. Before moving

to the next period, nature makes its move and sends one of two signals to each player:

Forget with probability p, or Recall. Whenever a player receives the signal Forget, we

say this player forgets the entire history of the play i.e., he forgets whatever he had

chosen and observed previously. However, he can perfectly recall what period he is in.

If, a player receives the Recall signal, he continues to perfectly recall all the actions and

signals he has observed since the last period that he received a Forget signal. We assume

that the probability of receiving the signal Forget is the same throughout the game and

across players.

Our modeling assumptions make a clear distinction between forgetful players and

absentminded players since even if players forget, they always remember the calendar

time. As it is first introduced by Piccione and Rubinstein (1997), an absentminded player

may visit the same information set more than once throughout the game. Remembering

the calendar time makes such occurrences impossible in th game we consider. The reason

for making this key assumption is to keep our analysis aside from the complications that

might arise with absentminded players.1

For dynamic games, the perfect recall assumption simplifies the analysis of the game

with a great deal. However, this assumption may be very strong and restrictive in some

environments. The cognitive boundaries of the players may prevent them from perfectly

recalling the history of the game. The decision-makers of a firm can change through

time yet the firms continue to play the same game. In such instances, the payoff-relevant

past play of the game may not be transferred through all generations perfectly, and the

possibility of such an imperfect information flow between the decision-makers may affect

their overall behavior.

Though forgetfulness can be modeled in various forms, we model it in a simple way.

Yet, the complications following such a simple model are impressive. Strategies that

have been used to prove various folk theorems in the repeated game literature are no

longer equilibrium strategies in our context, because these strategies depend heavily

1More detailed discussions about absentminded players can be found at Piccione and Rubinstein

(1997) and its references.
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upon the assumption that each player can perfectly recall private or public history.

We consider two extreme cases in terms of the correlation of signals that players

receive at each period. The first and relatively much simpler case assumes that the

nature sends the same signal (perfectly correlated signals or simultaneous forgetfulness)

to all players and this signal can be publicly observable. This assumption ensures that

at any period of the repeated game, the players’ state of memory will be the same and

is common knowledge. In the second extreme case, we assume that the nature may send

different signals (uncorrelated signals or independent forgetfulness) to each player and

players privately observe these signals.

The latter case yields various complications that we do not encounter in the former

case: At any period, the players’ state of memory need not be same and this is private

information. We also assume that players do not have an outside tool to communi-

cate during the play of the repeated game. Therefore, each player must condition his

strategies on his own private histories.

This paper is not the first attempt to analyze the behavior of players who have

memory imperfections in a repeated game environment. Cole and Kocherlakato (2005)

and Lehrer (1998) consider players who are capable of remembering only a fixed finite

number of periods of past observations. In other words, in their set up, all the players

are restricted to use strategies that depend only on fixed and finite length histories.

These studies are analogous to our first case (simultaneous forgetfulness). But the main

distinction with their set up and our first case is that our players’ memory imperfection

is stochastic i.e., there is always positive probability that all the players will remember

the entire history of the game, this probability converging to zero as the game unfolds.

Therefore, players are not restricted to strategies that depend on exogenously fixed finite

length histories.

The second case (independent forgetfulness) is somehow more interesting but also

more challenging. A Player may forget the history of the game and he never knows

whether his opponents have forgotten and if not, what they can recall. So in this case

each player’s state of memory is not common knowledge. The main difficulty arising

in this case is that players must condition their strategies on their private histories.

Therefore, at any period the optimal continuation strategy for player i must be a best

reply to his beliefs about his opponents’ possible private histories. That is, the optimal

continuation strategy is a correlated equilibrium where the correlation device is each

player’s beliefs about his opponents’ private histories.
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On the one hand, as the game unfolds this correlation device becomes more compli-

cated. So, keeping track of these beliefs along each history and across players makes the

verification of optimality of the continuation strategies an intractable problem. On the

other hand, since the continuation strategies form correlated equilibrium, they need not

be the equilibrium strategy of the original repeated game. In other words, we loose the

recursive structure of the repeated game in the sense of Abreu, Pearce and Stacchetti

(1986, 1990) (APS).

The independent forgetfulness case shares some common features with the repeated

games with imperfect private monitoring. In both environments, players’ strategies

map private histories to action sets. Piccione (2002), Ely (2002), and Ely, Horner and

Olszewski (2005) restrict players to play belief-free strategies; after any private history,

a player’s continuation strategy is a best reply to his opponents’ continuation strategies

regardless of the private histories each may have. These strategies are the “safest”

strategies that players can use; even if players have the option to learn the true private

histories of the game, they do not have incentive to change their own strategies. Ely et

al. study this family of strategies in detail and show that the recursive structure of the

repeated game can be recaptured if players are restricted to these strategies. However,

this family is so restricted that it is not possible to support all feasible and individually

rational payoffs as an equilibrium.2

In this paper, we show that by restricting players to use a class of strategies analogous

to belief-free strategies (which we call conditionally belief-free strategies), it is possible to

recapture the recursive structure in the sense of APS. A conditionally belief free strategy

basically imposes the condition that for any player i and after any private history of this

player, his continuation strategy is a best reply to his opponents’ continuation strategies,

as long as his opponents’ private histories do not contradict the memory of player i’s

history. Note that in the game we consider, each player has some partial memory about

the past play with a positive probability and the belief-free strategies do not allow

players to use their partial memory. For this reason, the set of belief-free strategies is a

subset of the set of conditionally belief-free strategies in this set-up.

So we relax the belief-freeness assumption by restricting players to use conditionally

belief-free strategies so that they can utilize any information that they can recall. For

example, suppose that player i recalls perfectly the entire history of the game at some

2As Ely, Horner and Olszewski (2005) show, the prisoners’ dilemma is an exception i.e. every fea-

sible and individually rational payoff of the prisoners’ dilemma game can be supported as a belief-free

equilibrium strategy.
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period t i.e., he can perfectly recall all the action profiles played at each previous period.

While the player i chooses his best reply continuation strategy at stage t + 1, he does

not know whether his opponent can perfectly recall this history or not, but if he recalls

the entire history, player i knows that his opponent’s private history will not be different

than what he recalls, so player i does not have to select a continuation strategy which

is best reply to his opponent’s continuation strategy that follows a history “different”

than what player i recalls (different in terms of action profiles played at each period).

It is clear that compared with belief-free strategies, conditionally belief-free strate-

gies constitute a larger class of strategies. Moreover, as the probability of forgetting

approaches zero, each player can perfectly recall the entire history of the game with

high probability, and hence there is a high probability that their continuation strategies

will be a best reply to the “true” continuation strategy that their opponents actually

use. In other words, this class of strategies may be rich enough to prove that every

feasible and individually rational payoff vector can be sustained as an equilibrium at

least when probability of receiving the forget signal tends to 0.

Section 2 presents the basics of the model. In section 3 we consider simultaneous

forgetfulness. For this case, we give two folk theorems: Nash threat and minimax threat

folk theorems. The strategy that we use to prove the first result is a modified version

of the strategy used by Friedman (1971). The minimax threat folk theorem’s proof uses

the modified version of the strategy introduced by Fudenberg and Maskin (1986).

In section 4, we focus on two-player games. The generalization to N players is

possible though the analysis becomes significantly harder. Following a parallel method

used by Ely et al., we restrict our attention to conditionally belief-free strategies in

which at each period t, and after any t-length histories, players are restricted to choose

their mixed actions over a fixed set, the “regime prevailing at period t”. We define self

generation of payoff vectors, which is analogous to APS, and similar to Ely et al..3

However, to recapture the recursive structure in our set up we need a stronger concept

(we call as strong self generation) which employs the idea of self generating collection of

sets. With this stronger definition at hand, we are able to show that if a set is strongly

self generated, then it is a subset of the set of payoffs of all conditionally belief free

equilibrium strategies, and conversely the set of payoff vectors of all conditionally belief

free strategies is also strongly self generating. Finally, we conclude in section 5.

3Ely, Horner and Olszewski (2005) call this condition strong self generation
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2 The Model

The stage game, G, consists of n (≥ 2) players, and for each player i = 1, 2, ...n, a finite

action set Ai and the payoff function ui : A :=Xn
i=1Ai → R. The infinitely repeated

game is the repetition of the stage game G for indefinite time. We denote by G∞(δ, p) the

infinitely repeated game with stage game G, discount factor δ ∈ (0, 1) and probability

of forgetting p ∈ (0, 1). We assume that the discount factor δ and the probability of

forgetting p is same for each player.

Each period of the repeated game consists of three stages. In the first stage, players

simultaneously chose their actions (possibly mixed actions). In the second stage, each

players’ choice is revealed and players publicly observe the revealed actions. In the final

stage, nature either sends the signal Forget, with probability p, or the signal Recall,

with probability 1 − p, to each player. So, we model forgetfulness as a stochastic and

exogenous action taken by nature. If the nature sends the signal Forget to player i

at stage t, we say player i forgets the first t periods of the repeated game. So, every

t length history of player i with which player i receives the signal Forget in period t

will be collected into the same information set in period t + 1. If player i receives the

signal Recall, he recalls all the information that he observed since the last time that he

received the signal Forget. So, receiving the Recall signal in period t does not reveal any

information about previous periods that are forgotten previously.

An n-tuple vector a ∈ A denotes a profile of actions, and a−i = (a1, ..., ai−1, ai+1, ..., an)

denotes the action profile of all players but i. A mixed action αi for each player i is

a randomization over Ai i.e., αi ∈ ∆Ai. Similarly α−i = (α1, ..., αi−1, αi+1, ..., αn) de-

notes the mixture profile of all players but i. Player i’s payoff if he takes action ai given

that others play according to α−i is ui(ai, α−i).

For each player i, let mi = (mi
1, ...m

i
n) ∈ ∆A := ∆A1 × ...×∆An so that

(mi
1, ...,m

i
i−1,m

i
i+1, ...,m

i
n) = arg min

α−i

max
ai

ui(ai, α−i)

and v∗i ≡ maxai ui(ai,m
i
−i) = ui(m

i).

The strategy profile (mi
1, ...,m

i
i−1,m

i
i+1, ...,m

i
n) is a minimax strategy (which may

not be unique) against player i. v∗i is the smallest payoff that the other players can

keep player i below.4 We call v∗i player i’s minimax value and refer to (v∗1, ..., v
∗
n) as the

4Note that if the number of players is more than 2, other players may keep the player j’s payoff even
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minimax point of the game G. It is clear that in any equilibrium of the stage game G,

whether or not it is repeated, player i’s expected average payoff must be no less than

v∗i .

Henceforth, we normalize the payoffs of the stage game G in such a way that the

minimax point is equal to the zero vector, i.e. (v∗1, ..., v
∗
n) = (0, ..., 0). We denote

V = convex hull{v|∃a ∈ A with u(a) = v} and V ∗ = {v ∈ V |vi > 0 for all i}.

The set V consists of feasible payoffs, and V ∗ consists of feasible and individually

rational payoffs. In the repeated game G∞(δ, p) we assume that players maximize the

discounted sum of single period payoffs. Therefore, if {a(t)}∞t=1 is the sequence of vectors

of actions played throughout the game, then player i’s payoff is

∞∑
t=1

δt−1ui(a(t))

and the average payoff is

(1− δ)
∞∑
t=1

δt−1ui(a(t))

We denote the set of signals by Σ = {F,R} where F stands for Forget and R stands

for Recall. A generic element of the set Σ is denoted by y, and yi is the signal sent to

player i. Let π : Σ→ [0, 1] be the probability distribution over the set of signals where

π(y) is the probability of receiving the signal y ∈ Σ. Therefore, if y = F, for instance,

we have π(y) = p.

In the following two sections we will explore two extreme cases regarding the cor-

relation between the signals that each player receives. Suppose that player i receives

the signal yi ∈ Σ and the player i′ receives the signal yi′ ∈ Σ. Section 3 considers the

case where the correlation between yi and yi′ for any player i, i′ is one, i.e. the signals

are perfectly correlated. Section 4 explores the case where the correlation between the

signals yi and yi′ for any player i, i′, is zero: Players’ signals are uncorrelated.

lower than v∗j by using a correlated strategies against player j, where the outcome of the correlation

device is not observed by j. Parallel to the rest of the literature on repeated games, however, we rule

out such correlated strategies.
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3 Perfectly Correlated Signals: Simultaneous Forgetful-

ness

In this section we assume that in each period the nature sends same signal to all players

and that this signal is publicly observable. Therefore, players’ state of memories is

always same and this is common knowledge. In this environment, we are able to show

that if the players are patient enough and if the probability of receiving the signal F

is small enough, then every feasible and individually rational payoff vector is a payoff

vector of some Perfect Bayesian Equilibrium (PBE) strategy profile.5

Proposition 3.1. Let α∗ be an equilibrium of the stage game with payoffs y = (y1, ...yn).

Then, for any v = (v1, ..., vn) ∈ V with vi > yi for all player i, there exists x ∈ (0, 1)

such that for all δ, p ∈ (0, 1) with x < δ(1− p), there is a Perfect Bayesian Equilibrium

of G∞(p, δ) with payoff v.

Proof. See Appendix.

In the proof of Proposition 3.1 we use a modified version of the strategy presented

by Friedman (1971): For any v = (v1, ..., vn) ∈ V , players start playing the action profile

that corresponds to the payoff vector v.6 Call this strategy profile say â = (â1, ..., ân).

Each player i continues to play âi as long as the realized actions were â in all previous

periods that all players can remember. If one player deviates from â, and if players can

recall this deviation, each player i starts playing α∗i -the stage game Nash Equilibrium

strategy- for the rest of the game. When players receive the signal F, they start playing

according to â.

Proposition 3.1 is silent for the individually rational and feasible payoffs that are

strictly less than the static Nash Equilibrium payoff of the stage game G. In order

to cover those payoffs, we need more complex strategies. The next result generalizes

Proposition 3.1.

5We use Perfect Bayesian Equilibrium as the equilibrium concept in this paper. Sequential equilib-

rium, as it is introduced by Kreps and Wilson (1982), is defined for finite dynamic games with perfect

recall. It is still an open question which equilibrium notion would be most suitable for games with

imperfect recall.
6The payoff vector v possibly does not correspond to a pure strategy action profile â. In that case â

is a public randomization yielding payoffs with expected value v.
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Proposition 3.2. Assume that the dimension of the set V ∗ of feasible and individually

rational payoffs equal the number of players. Then, for any v = (v1, ..., vn) ∈ V ∗, there

exists x ∈ (0, 1) such that for all δ, p ∈ (0, 1) with x < δ(1−p) there is a Perfect Bayesian

Equilibrium of G∞(p, δ) with payoff v.

Proof. See appendix.

In the proof of Proposition 3.2 we use a modified version of Fudenberg and Maskin

(1986). We fix some v ∈ V ∗. Each player i starts playing âi where u(â) = v.7 Players

continue playing according to â as long as no player deviates. If a player deviates, he

is minimaxed by the other players for a finite period that is long enough to remove

any gain from deviating from the initial strategy. Once the punishment phase is over,

players move to the reward phase for the rest of the game, i.e. players start playing

according to ˆ̂a that “rewards” only the minimaxing players in the form of an additional

“ε ” in their average payoff. The reason for that is to give the required incentive for

the players to minimax the deviating player in the punishment phase. The requirement

that the dimension of the set V ∗ is equal to the number of players ensures the existence

of such a reward in the payoff set. When players receive the signal F, whether they

are in the punishment phase or in the reward phase, they revert to playing their initial

actions according to â. It is important to note that Proposition 3.1 and 3.2 are proved

under the assumption that there exists a public randomization device, and that mixed

strategies are observable. The proofs can be replicated even if the players do not observe

the mixed actions.

4 Uncorrelated Signals: Independent Forgetfulness

In this section, we assume that the nature sends (possibly different) signals to each

player and players privately observe their signals. Therefore players’ states of memories

do not have to be same, and they are not common knowledge. That is, if player i receives

the signal F, he does not know whether his opponent received the same signal or not.

All he knows is that his opponent might have received the signal F with probability p

or the signal R with probability 1− p.

The independent forgetfulness case is rather difficult compared with the perfectly

correlated case. The difficulty arises because players need not agree on the “true history”

7â may be a public randomization yielding payoffs with expected value v.
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of the game: If player i forgets, he does not know which history is the true history of the

repeated game. Moreover, he does not know whether his opponent has also forgotten,

or if recalls, which periods he recalls. Therefore, in this case, players’ strategies must

depend on their private histories.

In addition, in any period and after any private history, player i’s best reply must

be based on an expected payoff calculation relative to i’s beliefs about his opponents’

possible histories. This implies that at each period the optimal continuation strategy

must be a correlated equilibrium in which the correlation device is the players’ beliefs

about their opponents’ possible histories. Therefore, after any private history the con-

tinuation strategy need not be the equilibrium strategy of the original game and so we

loose the recursive structure in the sense of APS.

On the other hand, as the game unfolds, the correlation device becomes much more

complicated, and the need of keep track of beliefs of players over time and across histories

makes the verification of optimality of the continuation strategy an intractable exercise.

In this section we show that if we restrict our attention to a specific family of strate-

gies, it is possible to recapture the recursive structure. The family of strategies we

consider is called Conditionally Belief-Free.

4.1 Preliminaries

In this section, we focus on two-player games. A = A1×A2 is the set of action profiles.

A t-length (private) history for player i is an element of Ht
i := (A × Σ)t. Given that

a ∈ A and yi ∈ Σ are generic elements of A and Σ respectively, let hti = {(aτ , yτi )}τ=t
τ=1

be a generic element of Ht
i . If a player’s initial history is the null history, we denote it

∅.

A t-length history for player i is called history with memory k (where 1 ≤ k ≤ t) if

the signal F is not observed for last k periods. That is, the history hti = {(aτ , yτi )}τ=t
τ=1

has memory k if yτi = R for every τ with t− k+ 1 ≤ τ ≤ t. In case the t-length history

hti is specified to have a particular memory, say k, we write it as hti(k).

For any t-length, k-memory history, hti(k), we call the sequence of the last k period

actions, mhti(k) = ({aτ}τ=t
τ=t−k+1, t), the memory of hti(k). Note that the order of aτ ’s in a

memory is important although the notation does not explicitly emphasize this point. If

k = 0, we take mhti(k) = (∅, t). Two histories with same memory are treated differently
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if the length of these histories is different, so we define the memory as a sequence of

actions and the total length of the history.

Let Ht
i (k) be the set of i’s private t-length, k-memory histories. For every t-length,

k-memory history, hti(k), define hti(k) to be the partition of the set Ht
i (k), where hti(k) is

the set of all t-length, k-memory histories that agrees with the memory of hti(k). More

formally, for any hti(k) = {(aτ , yτi )}τ=t
τ=1, the history ĥti(k) = {(âτ , ŷτi )}τ=t

τ=1 belongs to

hti(k) if and only if âτ = aτ for each τ satisfying t− k + 1 ≤ τ ≤ t.

For every t-length, k-memory history, hti(k), define the equivalence class h̃ti(k) to

be the set of all t-length histories that agrees with the memory of hti(k). That is, if

hti(k) = {(aτ , yτi )}τ=t
τ=1, a t-length history (with any memory) ĥti = {(âτ , ŷτi )}τ=t

τ=1 ∈ h̃ti(k)

if and only if aτ = âτ for every τ which satisfies t ≥ τ ≥ t−k+1. Note that any t-length

history with 0-memory has h̃ti(0) = Ht
i . Also note that histories in h̃ti(k) depend only

on the memory of the history hti(k), i.e., not the past observation of signals.

Let Hi = ∪t,kHt
i (k) be the set of private histories for player i. Define H as the set

of history profiles i.e., H = {ht = {(aτ , yτi ), (âτ , ŷτ−i)}τ=t
τ=1 ∈ Hi ×H−i|t ∈ Z+ such that

aτ = âτ for every t ≥ τ ≥ t−max{k, k̂}+ 1 where k, k̂ are the memories of hti and ht−i

respectively}. Note that H 6= Hi ×H−i. A pair of t-length histories is denoted by ht.

For any history profile h, let s|h denote the continuation strategy profile derived

from s following history h. Given a strategy profile s, for each t and ht−i ∈ Ht
−i, let

Bi(s|ht−i
) denote the set of continuation strategies for player i that are best replies to

s−i|ht−i
.

We give a generic definition of the (behavior) strategy in our context.

Definition 4.1. A repeated game (behavior) strategy for player i is a mapping si :

Hi −→ ∆Ai with the property that for any t, k, and any different h, h′ ∈ hti(k) , si(h) =

si(h
′).

According to Ely et al., a strategy profile s is belief-free if for every hti ∈ Hi,

si|hti ∈ Bi(s|ht−i
) for all ht−i ∈ Ht

−i, and for i = 1, 2. It is easy to see that belief-

free strategies are PBE. Moreover, they are the “safest” strategies that players can use:

A player’s continuation strategies must be best replies to opponents’ continuation strate-

gies regardless of the private history he might have. So, if both players use belief-free

strategies, during the repeated game, they will never change their strategies even if they

have a chance to learn the true history.
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Ely et al. show that it is possible to recapture the recursive structure if we concen-

trate on this specific family of strategies. However, this family is not large enough to

attain folk theorems for many games. Obviously, we can use this family of strategies in

our set up as well; however, we show that the recursive structure in our setup can be

recaptured by a more general class of strategies.

Definition 4.2. A strategy profile s is conditionally belief-free if for every hti(k) ∈ Hi,

si|hti(k) ∈ Bi(s|ht−i
) for all ht−i ∈ h̃ti(k) and for i = 1, 2.

A strategy profile is conditionally belief-free if and only if for any t-length, k-memory

history, hti(k), player i’s best reply strategy is independent of player−i’s private histories,

conditional on that −i’s private histories do not contradict with the memory of the

history hti(k). If, for instance, player i has a history of memory zero, then his best reply

strategy is independent of other player’s private histories. However, if i has a history of

memory one, then his best reply strategy depends on the memory of that history: Since

i remembers only the last stage of the repeated game, he does not have to choose his

continuation strategy which is best reply to all possible t-length histories.

By using conditionally belief-free strategies, we relax the strong assumption made

by belief-free strategies. In our case, forgetful players may have partial memories, yet

belief-free strategies do not use this partial information. Therefore, we allow players to

use any piece of information that can be recalled.

It is important to note that conditionally belief-free strategies are not as strong as

they seem. For instance, subgame perfect equilibrium strategies in repeated games with

perfect monitoring are conditionally belief-free when there is perfect recall. Similarly,

sequential equilibrium or perfect public equilibrium strategies in games with imperfect

but public monitoring are also conditionally belief-free as long as there is perfect recall.

This is because players’ private histories coincide in all these cases.

It is clear that conditionally belief-free strategies are PBE. Perfect Bayesian Equilib-

rium strategies involving conditionally belief-free strategies will be called conditionally

belief-free equilibrium.

Continuation Values

For any conditionally belief-free equilibrium strategy profile, the continuation strat-

egy after some history profile ht ∈ Ht is also conditionally belief-free. Although each
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player might disagree on the history of the play in ht, each player’s continuation strategy

after the history ht is same as the continuation strategy which follows the true history,

by definition of conditionally belief-freeness.

Moreover, for any conditionally belief-free strategy and player there is a set of po-

tential continuation values. These values are the payoffs from the continuation strategy

profiles that could arise after some finite history of the play. Given player −i’s history

ht−i, the continuation value of player i, ui(s|hti) (for any hti whose memory does not con-

tradict with the memory of ht−i), can be treated as a function wi(a
t, yt−i). This function

depends on the previous period’s action profile at and player −i’s private signal yt−i.

This is because given player −i’s private history, each continuation strategy played by

player i after any history hti (whose memory does not contradict with the memory of

ht−i) is a best-reply and hence achieves the same value.89

Fix some set W = W1 ×W2 ⊆ R2. A continuation payoff function for player i is

a function of the form wi : A×Σ−i −→ Wi with the following property: For any a,

a′ ∈ A, wi(a, y−i) = wi(a
′, y−i) whenever y−i = F. This condition requires that given

that the opponent receives the signal F in last period, it is irrelevant whether the player

recalls the action profile a or a′. This condition is implied by the fact that players are

restricted to use conditionally belief-free strategies.

Regimes

Let P(A) = P(A1) × P(A2) be the set of all non-empty subsets of A, and let

Ai ∈ P(Ai) for i = 1, 2. In case A = (Ai,A−i) is specified to have a particular period

t, we write it as At, and we call At the regime that prevails at date t. We restrict our

attention to a specific family of conditionally belief-free equilibrium strategies:

8It is important to note that the continuation value function wi(., .) depends on player −i’s history

ht−1
−i although the representation does not explicitly reveals this dependency.

9Fix the history ht
−i and a conditionally belief-free strategy. Consider a history ht

i whose memory

does not contradict with the memory of ht
−i. Suppose first that ht

i’s memory is “shorter” than the

memory of ht
−i. Then since the strategy is conditionally belief free, the continuation strategy following

ht
i is best reply to continuation strategy for player −i following the history ht

−i. However, if ht
i’s memory

is “longer” than the memory of ht
−i, then we can always find a history ĥt

−i whose memory is exactly

same as the memory of ht
−i such that the history ĥt

−i does not contradict with the memory of ht
i. Since

histories ht
−i and ĥt

−i have same memories, −i’s continuation strategy must be same after these two

histories, and hence, player i’s continuation strategy after history ht
i is best reply to −i’s continuation

strategy following the history ht
−i.
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Definition 4.3. A strategy profile (si, s−i) is called conditionally belief-free with full

support over the regime sequence {At} if for any i, period t, and hti ∈ Ht
i , we have

si(h
t
i) ∈ ∆Ati, and si(h

t
i)[ai] > 0 for all ai ∈ Ati.

Obviously this is a restricted class of strategies, because there might be conditionally

belief-free strategies that randomize over different sets when a player receives the signal

F and when he receives the signal R. This restriction yields important simplifications

for the rest of our analysis: The following Propositions and the Corollary will shape our

definition of strong self-generation. Their proof is very similar to one given by Ely et al.

Proposition 4.1 (Exchangeability Property). Let {At} be a sequence of regimes

and let s, s′ be two conditionally belief-free equilibria with full support over the regime

sequence {At}. The strategy profiles (s1, s
′
2) and (s′1, s2) are also conditionally belief-free

equilibria with full support over the regime sequence {At}.

Proof. See Appendix.

The following corollary is a straightforward application of Proposition 4.1.

Corollary 4.1. Let E({At}) be the set of all payoffs arising from conditionally belief-

free equilibria bounded by the regime sequence {At}. Then E({At}) = E1×E2 for some

subsets E1, E2 of R.

4.2 Strong Self Generation

In this section, we fix the value of the discount factor δ and probability of forgetting p

where δ, p ∈ (0, 1).

Definition 4.4 (Self Generation). Let W = W1×W2 ⊆ R2 and the regime A ∈ P(A)

be given. A payoff vector v ∈ R2 is generated by W using the regime A if for each player

i there is a mixture α−i ∈ ∆A−i and a continuation payoff function wi : A×Σ−i →Wi

such that

vi ≥ (1− δ)ui(ai, α−i) + δE(wi| ai, α−i, y−i)

for all ai ∈ Ai, with equality for each ai ∈ Ai, where

E(wi| ai, α−i, y−i) =
∑

a−i∈A−i

∑
y−i∈Σ

α−i(a−i)π(y−i)wi(ai, a−i, y−i)
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This definition is parallel to the self-generation of APS and same with the strong

self-generation of Ely et al.

When there exists α−i and wi as in the definition, say α−i enforces wi and generates

vi, or (α−i, wi) generates vi in brief. We fix the regime A throughout.

In this setup, self generation as given in previous definition is not enough to achieve

a characterization result as in the case of APS. The reason for this is that, at each

period, once player i receive the signal F, his opponent’s best reply set is independent

of player i’s private history. Therefore, player −i’s continuation value must achieve the

same value independent of his private history. Therefore, at any period, the continuation

value for player −i following histories with zero memory for player i must be same. Self

generation, however, does not impose any restriction for this event to be true. For this

purpose, we consider the self generating sets of sets. So, an F-generated set corresponds

to the values of all continuation strategies of a conditionally belief-free strategy at some

period t.

Definition 4.5 (F-generated sets). Let W = W1×W2 ⊆ R2. For any player i, a set

of real numbers X ⊆ R is F-generated by Wi, if for each v ∈ X,

1. there exists a mixture α−i ∈ ∆A and a continuation payoff function wi : A×Σ−i →
Wi such that (αv−i, w

v
i ) generates v, and

2. for any v, v′ ∈ X, we have wvi (., y−i) = wv
′
i (., y−i) whenever y−i = F.

Fix the set W = W1 ×W2 throughout. Let P(Wi) denote the set of all non-empty

subsets of Wi and let W i be a non-empty subset of P(Wi) in which each set X ∈ W i is

F-generated by Wi. We call such collections of sets as F-collection.

A set of real numbers X ⊆ R is called F-generated by the F-collection W i, if X is

F-generated by Wi and the set of continuation values {wvi (a, y−i) | ∃a ∈ A, y−i ∈ Σ−i,

v ∈ X, αv−i ∈ ∆A−i, and wvi s.t. (αv−i, w
v
i ) generates v } is a subset of some set in

W i. Define B(W i) as the set of all sets of real numbers that are F-generated by the

F-collection W i. Therefore, an F-collection, W i, is called self-generating F -collection

if W i ⊆ B(W i). Finally, define B∗(W i) = {v | ∃X ∈W i s.t. v ∈ X}.

Definition 4.6. Let W = W1 ×W2 ⊆ R2 be given. W is strongly self-generating if for

each player i, Wi ⊆ B∗(W i) for some self-generating F-collection W i.
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The next proposition shows that if a set W is a strongly self-generating set using A,

then it is a subset of the payoff set of all conditionally belief-free equilibrium strategies

with full support over the regime A.

Proposition 4.2. If W is strongly self-generating set using A, then each element of

W is payoff of a conditionally belief-free equilibrium strategy with full support over the

constant regime A.

Proof. See Appendix.

The next proposition corresponds to the factorization theorem of APS. It shows that

the payoff set of all conditionally belief-free equilibrium strategies with full support over

the fixed regime A is itself strongly self generating.

Proposition 4.3. The payoff set of all conditionally belief-free equilibrium strategies

with full support over the constant regime A is itself a strongly self-generating set.

Proof. See Appendix.

Previous propositions characterize conditionally belie-free equilibrium strategies us-

ing a fixed regime in every period. Obviously this is a restricted family of conditionally

belief-free strategies, and there is room to construct more equilibrium payoffs: If we

relax the single regime assumption and allow using possibly different regime at every

period, we can attain more conditionally belief-free equilibrium payoffs. To pursue in

this way, parallel to Ely et al., we use public randomization over regimes.

4.3 Public Randomization over Regimes

We, now, suppose that at each period, players publicly observe the outcome of a lottery

over the set of regimes. Our interpretation is that when a certain regime A is realized in

a certain period, players choose their optimal actions over the regime A, more precisely

the optimal actions must be full support over the regime A. We assume that players

never forget the history of public randomization outcome. Therefore, if a player receives

the signal F, then he forgets the history of the action-signal profiles, but perfectly recalls

the history of the public randomization. This assumption, we believe, is without loss

of generality, yet allowing players the possibility of forgetting the public randomization

makes the analysis harder.
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When players have access to a public randomization device, a strategy shall depend

on private history as well as the history of realizations of the public randomization. We

make the following modifications to our notations; Let Z be the set of public signals,

and z be a generic element of Z. We will assume direct public randomization, i.e.,

Z = P(A). A t-length (private) history for player i is an element of Ht
i := (A×Σ×Z)t.

So, hti = {(aτ , yτi , zt)}τ=t
τ=1 is a generic element of Ht

i .

For any t-length, k-memory history, hti(k), we call the sequence of the last k period

actions and the sequence of public randomization realizations, mhti(k) = ({aτ}τ=t
τ=t−k+1,

{zt}τ=t
τ=1, t), memory of hti(k). If k = 0 we take mhti(k) = ({zt}τ=t

τ=1, t). For every t-

length, k-memory history, hti(k), define the equivalence class hti(k) be the set of all t

-length, k-memory histories that agrees with the memory of hti(k). That is, if hti(k) =

{(aτ , yτi , zτ )}τ=t
τ=1, for any t-length, k-memory history ĥti = {(âτ , ŷτi , zτ )}τ=t

τ=1 ∈ hti(k) we

have aτ = âτ whenever t ≥ τ ≥ t− k + 1.

Similarly, for every t-length, k-memory history, hti(k), define the equivalence class

h̃ti(k) be the set of all t-length histories that agrees with the memory of hti(k). That

is, if hti(k) = {(aτ , yτi , zτ )}τ=t
τ=1, for any t-length history (with any memory in which the

history of realization of public randomization is same as hti(k)) ĥti = {(âτ , ŷτi , zτ )}τ=t
τ=1

∈ h̃ti(k) we have aτ = âτ for every τ which satisfies t ≥ τ ≥ t− k + 1.

Let H is the set of history profiles defined as H = {ht = {(aτ , yτi , zτ ), (âτ , ŷτi , z
τ )}τ=t

τ=1

∈ Hi ×H−i | t ∈ Z+ such that aτ = âτ for every t ≥ τ ≥ t −max{k, k̂} + 1 where k, k̂

are the memories of hti and ht−i respectively}.

Given that the public randomization is included into our notations this way, our

definitions of (behavior) strategy and conditionally belief-free strategy remain the same.

For any z ∈ Z, the regime in a given period depends on the current realization of

z, At(zt) where At(zt) = Ati(zt) × At−i(zt). Therefore, a strategy profile (si, s−i) is

called conditionally belief-free strategy with full support according to the i.i.d. public

randomization µ ∈ ∆P(A) if for any i, period t, and hti ∈ Ht
i , we have si(h

t
i) ∈ ∆Ati(zt),

and si(h
t
i)[ai] > 0 for all ai ∈ Ati(zt) where zt is the realization of public randomization

in hti.

Strong self-generation is now defined with respect to a fixed public randomization

over regimes. Let µ ∈ ∆P(A) be an i.i.d. probability distribution over the set of all

non-empty regimes.

Definition 4.7. Let W = W1 ×W2 ⊆ R2, and i.i.d. public randomization over regimes
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µ ∈ ∆P(A) be given. A payoff vector v ∈ R2 is generated by W using the public

randomization µ if for each player i, and regime A ∈ P(A), there is a mixture αA−i ∈
∆A−i and a continuation payoff function wAi : A × Σ−i → Wi such that, for each

ai : P(A)→ Ai we have

vi ≥
∑

A∈P(A)

µ(A)
[
(1− δ)ui(ai(A), αA−i) + δE(wAi

∣∣ ai, αA−i, y−i)] (1)

for all ai ∈ Ai, with equality for each ai(A) ∈ Ai, where

E(wAi
∣∣ ai, α−i, y−i) =

∑
a−i∈A−i

∑
y−i∈Σ

αA−i(a−i)π(y−i)w
A
i (ai(A), a−i, y−i) (2)

When there exists αA−i and wAi for each A ∈ P(A) as in the definition, say the

collection of mixtures {αA−i} enforces the collection of {wA−i} respectively and generates

vi, or ({αA−i}, {wAi }) generates vi in brief.

Now we define self-generation of sets of real numbers. For that purpose, fix the set

W = W1 ×W2 and the i.i.d public randomization µ ∈ ∆P(A) throughout.

Definition 4.8. For any player i, a set of real numbers X ⊆ R is F-generated by Wi

using µ, if for each v ∈ X, and each regime A ∈ P(A),

1. there exists a mixture αA−i ∈ ∆A and a continuation payoff function wAi : A ×
Σ−i −→Wi such that ({αA,v−i }, {w

A,v
i }) generates v, and

2. for any v, v′ ∈ X and A ∈ P(A), we have wA,vi (., y−i) = wA,v
′

i (., y−i) whenever

y−i = F.

Let W
µ
i is a non-empty subset of P(Wi) in which each set X ∈ Wµ

i is F-generated

by Wi using µ. We call such collections of sets as F-collection. A set of real numbers

X ⊆ R is F-generated by the F-collection W
µ
i , if X is F-generated by Wi and the set

of continuation values {wA
∗,v

i (a, y−i) | ∃a ∈ A, y−i ∈ Σ−i, A∗ ∈ P(A) and v ∈ X,

αA,v−i ∈ ∆A−i, wA,vi for each A s.t. ({αA,v−i }, {w
A,v
i }) generates v } is a subset of some

set in W
µ
i .

Let B(W
µ
i ) is the set of all set of real numbers that are F-generated by W

µ
i . An F-

collection, W
µ
i , is called self-generatingF -collection if W

µ
i ⊆ B(W

µ
i ). Define B∗(W

µ
i ) =

{v | ∃X ∈Wµ
i s.t. v ∈ X}.

Definition 4.9. Let W = W1 ×W2 ⊆ R2 be given. W is strongly self-generating set

using µ if for each player i, Wi ⊆ B∗(W
µ
i ), for some self-generating F−collection, W

µ
i .
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The following proposition is the analogue of Proposition 4.2.

Proposition 4.4. If W is strongly self-generating set using the i.i.d. public random-

ization µ ∈ ∆P(A), then each element of W is the payoff of a conditionally belief-free

strategy with full support according to µ.

Proof. See Appendix.

The following proposition, however, is the analogue of Proposition 4.3.

Proposition 4.5. The set of all payoffs of the conditionally belief-free equilibria with

full support according to µ is itself a strongly self-generating set.

Proof. See Appendix.

5 Conclusion

In this study, we analyze infinitely repeated games with forgetful players. The first case,

where all players forget simultaneously, is rather simpler and so, we can provide folk

theorems. The simplicity is due to the fact that the common knowledge assumption

of the histories is preserved. In the second case, where players forget independently,

players (private) histories are no longer common knowledge. We restrict players to use

conditionally belief-free strategies that naturally depend only on players’ own private

histories. We are able to show that the recursive structure in the sense of APS can be

recaptured in our case, however for this to be happen, we need a stronger notion of

self generation; self generating sets of sets. We represent the analysis of this section for

two players. The generalization to a finite N players is simple, however, the analysis are

significantly difficult. Exploring the structure of the conditionally belief-free equilibrium

payoffs set is the subject of our future research. However, the techniques that have been

introduced by Fudenberg, Levine and Maskin (1994) or Kandori and Matsushima (1998)

to analyze the structure of this set cannot be used in our setup. We need to develop

similar but stronger techniques for this purpose.
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6 Appendix

Proof of Proposition 3.1. Assume first that there is a pure strategy â with u(â) = v,

and consider the following strategy:

In period 1, each player i plays âi. Each player i continues to play âi so long as

the realized actions were â in all previous periods. If at least one player did not play

according to â, then each player i plays α∗i until nature moves Forget. Once players

forget, every player i starts playing âi until at least one player does not play according

to â.

We need to check that this strategy is a Perfect Bayesian Equilibrium. For this we

need to show that the strategy satisfies the no improvement property.

Define v = maxai ui(ai, â−i) and suppose that up until period t no player has de-

viated. If player i plays according to âi at every period t, his utility will be vi. If he

deviates at period t and reverts to his initial strategy, however, the gain will be

(1− δ)v + δ

[
(1− δ)(1− p)
1− δ(1− p)

yi +
p

1− δ(1− p)
vi

]
(3)

Therefore, player i never deviates as long as the payoff given in eqn.3 is less than or

equal to vi. This is expressed by following inequality:

(1− δ)v + δ
(1− δ)(1− p)
1− δ(1− p)

yi ≤
(

1− δp

1− δ(1− p)

)
vi (4)

which is equivalent to

(1− δ(1− p)) v + δ(1− p)yi ≤ vi (5)

Eqn.5 can be rewritten as

v − δ(1− p)v + δ(1− p)yi ≤ vi (6)

or equivalently

δ(1− p) [yi − v] ≤ vi − v (7)

We know that yi < vi and vi ≤ v. So, by multiplying both sides with negative one, we

get

δ(1− p) [v − yi] ≥ v − vi (8)

so, choose x = δ(1− p) such that

δ(1− p) [v − yi] = v − vi (9)
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Note that for every δ > δ and every p < p eqn.8 and hence eqn.5 will be satisfied,

meaning that player i has no incentive to deviate. It is important to see whether there

exists δ, p with p, δ ∈ (0, 1) that satisfies eqn.9: For that solve δ as a function of p:

δ =

(
1

1− p

)[
v − vi
v − yi

]
(10)

Note that we have 0 < δ. We may have δ < 1 if and only if(
1

1− p

)[
v − vi
v − yi

]
< 1 (11)

Which is equivalent to

p < 1−
[
v − vi
v − yi

]
(12)

Since vi > yi, we have v−vi
v−yi < 1. So, there exists some p and δ with 0 < p, δ < 1 such

that eqn.9 is satisfied.

On the other hand, if there is no pure strategy â with u(â) = v, we use public

randomizations a(w). In this case if player i does not deviate his payoff is

(1− δ)ui(a(w)) + δvi ≥ (1− δ)v + δvi (13)

where v = mina ui(â). The realization of a(w) might give less than vi but it cannot be

less than v. Therefore, player i does not deviate if, and only if

(1− δ)v + δ

[
(1− δ)(1− p)
1− δ(1− p)

yi +
p

1− δ(1− p)
vi

]
≤ δvi + (1− δ)v (14)

which is equivalent to

(1− δ) [v − v] +
δ(1− δ)(1− p)

1− δ(1− p)
yi ≤ δvi

[
1− p

1− δ(1− p)

]
(15)

(1− δ) [v − v] +
δ(1− δ)(1− p)

1− δ(1− p)
yi ≤

δ(1− δ)(1− p)
1− δ(1− p)

vi (16)

(1− δ(1− p)) [v − v] + δ(1− p)yi ≤ δ(1− p)vi (17)

[v − v] + δ(1− p) [yi − v + v] ≤ δ(1− p)vi (18)

v − v ≤ δ(1− p) [vi − yi + v − v] (19)

Therefore, choose x = δ(1 − p) such that eqn.19 holds with equality. Note that for

every δ > δ and every p < p eqn.19 and hence eqn.14 will be satisfied, meaning that
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player i has no incentive to deviate. It is important to see whether there exists δ, p with

p, δ ∈ (0, 1) that satisfies eqn.19 with equality: For that solve δ as a function of p:

δ =

(
1

1− p

)[
v − v

v − v + vi − yi

]
(20)

So that 0 < δ. Moreover, δ < 1 if(
1

1− p

)[
v − v

v − v + vi − yi

]
< 1 (21)

implies

p < 1−
[

v − v
v − v + vi − yi

]
(22)

Since vi > yi, we have v−v
v−v+vi−yi < 1. So, there exists some p and δ with p, δ ∈ (0, 1)

such that eqn.19 is satisfied with equality.

Proof of Proposition 3.2. Assume first that there is a strategy â (possibly public

randomization) with u(â) = v, where v ∈ V ∗. Choose v′ = (v′1, ..., v
′
n) in the interior of

V ∗ such that vi > v′i for all i. Since v′ is the interior of V ∗ and V ∗ has full dimension,

there exists ε > 0 such that for each j, (v′1 + ε, ..., v′j−1 + ε, v′j , v
′
j+1 + ε, ..., v′n + ε) ∈ V ∗.

Suppose that a(j) = (a1(j), ..., an(j)) be a joint strategy such that u(a(j)) = (v′1 +

ε, ..., v′j−1 +ε, v′j , v
′
j+1 +ε, ..., v′n+ε). Moreover, assume that wji = ui(m

j). Now, consider

the following strategy:

Play begins in phase I. In phase I, play action profile â, where u(â) = v. Play remains

in phase I so long as in each period either the realized action is â, or the realized action

differs from â in two or more components. If a single player j deviates from â, then play

moves to phase IIj .

Phase IIj play mj (minimax strategy) each period. Continue phase IIj for N

periods so long as in each period either the realized action is mj or the realized action

differs from mj in two or more components. Switch to phase IIIj after N successive

periods of phase IIj . If during phase IIj a single player i’s action differs from mj
i ,

begin phase IIi. (Note that this construction makes sense only if mixed actions are

observable).10

Phase IIIj Play â(j), and continue to do so unless in some period a single player

i fails to play âi(j). If a player i does deviate, begin phase IIi.

10Fudenberg and Maskin (1986) show that their proof can be replied even if mixed actions are not

observable. We believe similar replication for our proof can easily be verified.
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If nature takes the action Forget, then players move to phase I regardless of the phase

that they were in. We need to consider the following three exhaustive cases:

Deviation in Phase I: If player i does not deviate in phase I, his payoff is vi
1−δ (this

is not average payoffs). If he deviates, however, his payoff is

v +
δp

(1− δ)(1− δ(1− p))
vi +

δN+1(1− p)N+1

1− δ(1− p)
v′i (23)

Therefore, net gain from deviation is less than

v +
δp

(1− δ)(1− δ(1− p))
vi +

δN+1(1− p)N+1

1− δ(1− p)
v′i −

vi
1− δ

(24)

Since 1
1−δ = 1

1−δ(1−p) + δp
(1−δ)(1−δ(1−p)) , eqn.23 is less than

v+
δp

(1− δ)(1− δ(1− p))
vi+

δN+1(1− p)N+1

1− δ(1− p)
v′i−

vi
1− δ(1− p)

− δp

(1− δ)(1− δ(1− p))
vi

(25)

which is also less than

v − v′i
[

1− δN+1(1− p)N+1

1− δ(1− p)

]
(26)

In limit, eqn.24 is less than v − (N + 1)v′i and for N ≥ v−v′i
v′i

, the net gain from

deviation is negative.

CASE 2: Deviation in phase II

Subcase 1: Player i deviates in phase IIi: Then he will get at most zero for the

period in which he deviates (because others are minimaxing him and his best reply gives

zero) and then only lengthens his punishments, postponing the positive payoff of v′i. So

he will not deviate.

Subcase 2: Player i deviates in IIj . If player i does not deviate, he would get wji

(payoff of minimaxing player j, which might be negative) for K < N periods and then

gets v′j(i) = v′i + ε. So if he deviates, the payoff of deviating will be

p

(1− δ)(1− δ(1− p))
vi +

(1− p)(1− δK(1− p)K)

1− δ(1− p)
wi +

(1− p)K+1δK

1− δ(1− p)
(v′i + ε) (27)

If player i deviates; his payoff will be same as eqn.23.

Therefore, the net gain from deviation in this case is

v +
δp

(1− δ)(1− δ(1− p))
vi +

δN+1(1− p)N+1

1− δ(1− p)
v′i −

p

(1− δ)(1− δ(1− p))
vi −

(1− p)(1− δK(1− p)K)

1− δ(1− p)
wi −

(1− p)K+1δK

1− δ(1− p)
(v′i + ε) (28)
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By multiplying the forth term by δ, the value of eqn.28 will increase. Following

that, we can cancel the second and the forth terms. Fifth term can be rewritten as

−
(

1−δn(1−p)n+1

1−δ(1−p)

)
wi + p

1−δ(1−p)wi where first term converges to a finite number K as

δ(1 − p) converges to 1, and second term is always less than 1 ( this is because p <

1− δ(1− p)⇔ δ(1− p) < 1− p⇔ δ < 1).

Third and sixth terms of eqn.28 are no more than

δN+1(1− p)N+1

1− δ(1− p)
v′i −

δN+1(1− p)N+1

1− δ(1− p)
v′i −

δN+1(1− p)N+1

1− δ(1− p)
ε (29)

The last term of eqn.29 converges to −∞ as δ(1−p) converges to 1. Hence, the net gain

in this case is negative as well. That is to say, there exists some x ∈ (0, 1) such that for

all δ, p with δ(1− p) > x the net gain falls below zero. Hence player i has no incentive

to deviate in Phase IIj .

CASE 3: Deviation in Phase III

Subcase 1: Player i deviates in IIIi: In this case player i gets payoff as given in

eqn.23. However, if he does not deviate, he gets the payoff of

p

(1− δ)(1− δ(1− p))
vi +

1− p
1− δ(1− p)

v′i (30)

Therefore, net gain from deviation in this case is less than

Therefore, the net gain from deviation in this case is

v +
δp

(1− δ)(1− δ(1− p))
vi +

δN+1(1− p)N+1

1− δ(1− p)
v′i −

p

(1− δ)(1− δ(1− p))
vi −

1− p
1− δ(1− p)

v′i (31)

Multiply the forth term in eqn.31 with δ so that it cancels out with the second term,

and net gain from deviation is still no more than the resulting argument. Besides, sum

of the third term and the last term is less than or equal to

−(1− p)
[

1− δN (1− p)N

1− δ(1− p)

]
v′i (32)

As δ(1− p) converges to 1, the term in eqn.32 converges to −Nv′i. Therefore, net gain

from deviation is no more than v −Nv′i which is less than zero as long as N > maxU
v′i

.
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Therefore, if we choose N such that N > maxi∈n{
v−v′i
v′i
, v
v′i
}, then no player has

incentive to deviate in any case.

Subcase 2: Player i deviates in IIIj : If he deviates his payoff is same as in eqn.23.

If he does not deviate, however, he gets

p

(1− δ)(1− δ(1− p))
vi +

1− p
1− δ(1− p)

(v′i + ε) (33)

Therefore, the net gain form deviation is less than

v +
δp

(1− δ)(1− δ(1− p))
vi +

δN+1(1− p)N+1

1− δ(1− p)
v′i −

p

(1− δ)(1− δ(1− p))
vi −

1− p
1− δ(1− p)

(v′i + ε) (34)

Multiply the forth term of eqn.34 with δ so that second and forth terms sum up to zero.

In addition, sum of the third and the fifth terms are less than

δN+1(1− p)N+1

1− δ(1− p)
v′i −

δN+1(1− p)N+1

1− δ(1− p)
v′i −

(
1− p

1− δ(1− p)

)
ε (35)

Note that the last term in eqn.35 converges to −∞ as δ(1 − p) converges to 1. Hence,

there exists some x∗ ∈ (0, 1) such that for all δ(1− p) > x∗ deviation is not profitable.

It is crucial to note that N as defined previously depends on player i’s payoff values.

We can choose N such that N > max{N1, ..., Nn} that provides enough incentive for

every player not to deviate from their initial strategy.

This last subcase finishes the proof of Theorem 2.

Proof of Proposition 4.1. We prove a stronger claim: Let s = (s1, s2) is a con-

ditionally belief-free equilibrium strategy profile with full support over the regime se-

quence {At}. Wlog, consider player 1, and let s∗1 be a strategy with support (not

necessarily full support) over the regime sequence {At}, i.e., for every t, and ht1 ∈ Ht
1,

s∗1(ht1) ∈ ∆At1. We claim that s∗1 is a conditionally belief-free sequential best reply to

s2, i.e., s∗1|ht1 ∈ B1(s|ht2) for all t, ht1 ∈ Ht
1 and ht2 ∈ h̃t1. Wlog, assume that s∗1 is a

pure strategy. For each period t, and history ht1, the mixture s1(ht1) assigns positive

probability to the pure action s∗1(ht1), simply because s∗1(ht1) is an element of At1 and At1
is the regime governing the strategy s in period t.

Therefore, for any t and ht1, define a continuation strategy ŝ1|ht1 to be the strategy

which begins by playing the pure action s∗1(ht1) in period t and plays according to s1|ht1
after period t. By definition, the continuation strategy ŝ1|ht1 ∈ B1(s|ht2) for all t, ht1 ∈ H1
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and ht2 ∈ h̃t1. This is because s1|ht1 is a best response to s2|ht2 and ŝ1|ht1 differs from s1|ht1
only in period t in which s1(ht1) assigns positive probability to the pure action ŝ1(ht1).

We, now, construct a sequence of strategies for player 1, st1, for t = 0, 1, ... First,

set s0
1 = s∗1. Inductively define st1 by st1(hτ1) = st−1

1 (hτ1) if τ < t and s1|ht1 = ŝ1|ht1 . By

construction, we have st1
∣∣
ht1

= ŝ1|ht1 which is a best reply tos2|ht2 for all t, ht1 ∈ Ht
1, and

ht2 ∈ h̃t1.

Now, by replacing the continuation strategy of st1
∣∣
ht1

by ŝ1|ht+1
1

, we can derive

st+1
1

∣∣
ht1

. Then by construction, we must have st+1
1ht1
∈ B1(s2|ht2), we can inductively

conclude that

st+k1 |ht1 ∈ B1(s|ht2) for all k ≥ 0, ht1 ∈ Ht
1 and ht2 ∈ h̃t1

By construction, for all k ≥ 0,st+k1 (ht1) = s∗1(ht1) and thus for any fixed ht1, the

sequence of continuation strategies st+k1

∣∣∣
ht1

converges to s∗1|ht1 as k → ∞ , history by

history (in the product topology). Since discounted payoffs are continuous in the product

topology, 6 implies that s∗1|ht1 ∈ B1(s|ht2) for all t, ht1 ∈ Ht
1 and ht2 ∈ h̃t1 as required

Proof of Proposition 4.2. Let v = (vi, v−i) ∈ W . We will show that player i has a

strategy, si, which randomizes over the set Ai, after each history, against which player

−i’s maximum payoff is v−i and that this payoff is achieved by any strategy which

randomizes over A−i. Since the symmetric arguments imply the same conclusion with

the roles reversed, these strategies form a conditionally belief-free strategy profile s with

full support over the constant regime A.

Construct the Markovian strategy si as follows. Start with the payoff vector v =

(vi, v−i) ∈ W . Since W is strongly self-generating, for player −i, there exists some

self-generating F-collection W−i and an F-generated set X such that v−i ∈ X ∈ W−i.
Without loss of generality, we can take X = {v−i}. Since, the F-collection W−i is self-

generated, there must exists a mixture α
v−i

i ∈ ∆Ai and a continuation function w
v−i

−i

such that equation 4.2 holds for all a−i ∈ A−i i.e., (α
v−i

i , w
v−i

−i ) generates v−i. Therefore,

assign si(1) = α
v−i

i .

Since W−i is self-generating F-collection, the set U2 = {wv−i

−i (a, yi)}a∈A,yi∈Σ is a

subset of some set in W−i. So, the “state” of the strategy in period 2 will be the

continuation value for player −i, call it u = w
v−i

−i (a, yi) ∈ U2, where (a, yi) is player i’s

realization of last period private history. Again, since W−i is self-generating and U2 is

a subset of some set in W−i, for each state u ∈ U2, we know that there exists a mixture
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αui ∈ Ai and a continuation function wu−i such that equation 4.2 holds, i.e., (αui , w
u
−i)

generates u ∈ U2. Therefore, after any one-length history (a, yi) and the associated

state u, set si(a, yi) = αui .

Remark that the set U2 is an F- generated and W−i is self-generating F-collection,

i.e., the set U3 = {wu−i(a, yi)}u∈U1,a∈A,yi∈Σ is a subset of some set in W−i, and for each

u, u′ ∈ U2, wu−i(., yi) = wu
′
−i(., yi) whenever yi = F. Therefore, when in period 2 the

state u has realized and having played the action profile a′ ∈ A and observed the private

signal y′i ∈ Σ in stage 2, player i will transit to state u′ = wu−i(a
′, y′i) ∈ U3 in stage 3. The

F- generation guarantees that there is a unique state u′ ∈ U3 for each 2-length private

history for player i, and whenever two 2-length private history have same memories, the

states associated to each histories are same.

Continue inductively to construct the strategy profile s this way. We can ensure that

for any t, k (≤ t), player i, and for any two histories h, h′ ∈ hti(k) we have si(h) = si(h
′).

Moreover, it follows from Equation 4.2 and the one-shot deviation property that any

such strategy profile s = (si, s−i) is a conditionally belief-free strategy with full support

over the regime A, and achieves the payoff of v as required.

Proof of Proposition 4.3. Pick a conditionally belief-free equilibrium strategy profile s

with full support over the constant regimeA, and let wi(h) = ui(s|h) for the continuation

payoff to player i after history h ∈ H. Define W s
i be the set of all possible continuation

values in equilibrium s. Formally, W s
i = {wi(h) : h ∈ H}. We first show that W s =

W s
i × W s

−i is strongly self-generating. Since the conditionally belief free equilibrium

strategy s is arbitrary, and the union of self generating sets is also self generating, this

will lead us to E = ∪s∈SW s is strongly self-generating as well, where S is the set of all

conditionally belief-free equilibrium strategy profiles with full support over the constant

regime A. We prove each of these claims in turn.

Observe, first, that for a given conditionally belief-free equilibrium, wi(h) depends

only on the memory of player −i’s history h−i. To prove this point, first, fix a t-length

history h−i with memory k. Denote mh−i as the memory of the history h−i. Then,

consider three t-length histories hi, h
′
i with memories less than k and h′′i with memory

more than k such that (hi, h−i), (h
′
i, h−i) and (h′i, h−i) ∈ H.11

11Restricting attention to histories hi such that (hi, h−i) ∈ H does not alter our analysis. Suppose

that hi’s memory is less than h−i’s memory and hi’s memory does not contradict with h−i’s memory

but (hi, h−i) /∈ H. We can always find a history ĥi that has same memory with hi, so that si|hi
= si|ĥi

,

and (ĥi, h−i) ∈ H. Therefore, si|hi
∈ Bi(s−i|h−i

) and s−i|h−i
∈ B−i(si|hi

). On the other hand, if
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We must have wi(hi, h−i) = wi(h
′
i, h−i). Suppose for a contradiction that wi(hi, h−i) >

wi(h
′
i, h−i) implying that si|h′i is not best reply to s−i|h−i

contradicting that s is a con-

ditionally belief-free strategy.

Now, consider hi and h′′i . We claim that wi(hi, h−i) = wi(h
′′
i , h−i). First, observe

that s−i|h−i
is best reply to si|h′′i , and vice versa. Now suppose for a contradiction

that wi(hi, h−i) > wi(h
′′
i , h−i); in that case player i never plays si|h′′i against s−i|h−i

after observing the history h′′i which contradicts to the assertion that s is conditionally

belief-free equilibrium strategy. However, if we assume wi(hi, h−i) < wi(h
′′
i , h−i) than

in that case player i never plays si|hi against s−i|h−i
after observing the history hi

which contradicts, again, to the assertion s is an equilibrium strategy. Therefore, we

can denote wi(h
t) = wi(m

ht−i)

Now, fix some arbitrary period t + 1 and history ht ∈ H. Suppose that the mixed

action α−i := s−i(h
t
−i) ∈ ∆A−i is played by i’s opponent after ht.Let a∗i ∈ Ai be

arbitrary. Then, there is a best reply continuation strategy ŝi for player i which plays

a∗i at period t + 1 after history hti. That is, ŝi is a best reply continuation strategy to

s−i|ht−i
. Moreover, ui(ŝi, s−i|ht−i

) = ui(s|ht) = wi(h
t).

We claim that the payoff vector wi(h
t) can be generated by W s

i . For that purpose,

we, first, need to show that there exists a continuation payoff function wi which depends

only on ht−i, a
t+1 and yt+1

−i i.e., the memory of ht+1
−i , mht+1

−i = m(ht−i,a
t+1,yt+1

−i ).

First consider the case where yt+1
−i = F. For any at+1 ∈ A, and yi ∈ Σ we claim that

wi(h
t+1
−i ) yields the same value: Take any a, a′ ∈ A, and suppose first that yt+1

i = F.

Then we know that any continuation strategy of player i after observing (a,F) at stage

t+ 1 is also a continuation strategy after observing (a′,F) and are best reply to s−i|ht+1
−i

and vice versa, where ht+1
−i = (ht−i, a,F), since both players have memory zero. There-

fore, these continuation strategies of player i will automatically achieve the same value.

Now, consider the case where yt+1
i = R. Since yt+1

−i = F, the continuation strategy

s−i|ht+1
−i

is best reply to si|(hti,a,R) and si|(hti,a′,R). Although player i’s best reply con-

tinuation strategies after observing (a,R) and (a′,R) at stage t + 1 may be different,

they have to yield same continuation values i.e., both are best reply to s−i|ht+1
−i

. Suppose

not, i.e., wi(h
t
i; a,R) = ui(si|(hti,a,R) , s−i|ht+1

−i
) > wi(h

t
i; a
′,R) = ui(si|(hti,a′,R) , s−i|ht+1

−i
).

Therefore, player i deviates after history (hti, a
′,R) and plays si|(hti,a,R), which contra-

hi’s memory is more than h−i’s memory, and h−i’s memory does not contradict with hi’s memory but

(hi, h−i) /∈ H, we can always find a history ĥ−i that has same memory with h−i, so that s−i|h−i
=

s−i|ĥ−i
, and (hi, ĥ−i) ∈ H. Hence, si|hi

∈ Bi(s−i|h−i
) and s−i|h−i

∈ B−i(si|hi
).
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dicts with the fact that s is a conditionally belief free equilibrium. The same arguments

for the reversed inequality shows that best reply continuation strategies must yield the

same value. Therefore, we can conclude that if yt+1
−i = F, it really does not matter what

action-signal profile player i has observed at stage t+ 1.

Now, assume that yt+1
−i = R and at+1 = a = (a∗i , a−i) ∈ A. Then we need to show

that whether player i observes the signal F or R, his continuation strategies must give

same values.12 First observe that s−i|ht+1
−i

is best reply to both si|(hti,a,R) and si|(hti,a,F)

and vice versa. Although these best reply continuation strategies might be different,

they have to achieve same values: Suppose for a contradiction that wi(h
t
i; a,R) =

ui(si|(hti,a,R) , s−i|ht+1
−i

) > wi(h
t
i; a,F) = ui(si|(hti,a,F) , s−i|ht+1

−i
) which contradicts that

s is a conditionally belief free equilibrium strategy. Same arguments in the case of re-

versed inequality shows that player i’s continuation strategies must attain same value

in both cases.

In this way we can view wi(.) as a continuation payoff function, which depends only

on the memory of ht+1
−i . Moreover, since mht+1

−i = (mht−i ∪ {a}, t + 1) if yt+1
−i = R, and

mht+1
−i = (∅, t+1) if yt+1

−i = F, we can write i’s continuation payoff function, after history

ht+1
i , as wi(m

ht−i ; ., .) taking values in Wi with the property that wi(m
ht−i ; a, y−i) =

wi(m
ht−i ; a′, y−i) for all a′, a ∈ A whenever y−i = F.

Now, we need to show that this continuation function will generate wi(h
t) along with

the mixture α−i = s−i(h
t
−i): The payoff to i from using ŝi against s−i(h

t
−i) can thus be

written

(1− δ)ui(a∗i , α−i) + δE(wi(m
ht−i ; ., .)

∣∣∣ a∗i , α−i, y−i)
where

E(wi(m
ht−i ; ., .)

∣∣∣ a∗i , α−i, y−i) =
∑

a−i∈A−i

∑
y−i∈Σ

α−i(a−i)π(y−i)wi(m
ht−i ; a∗i a−i, y−i)

Since ŝi is a best reply against s−i|ht−i
, 6 is equal to wi(h

t). Moreover, since a∗i was

an arbitrary element of Ai, this equality holds for all ai ∈ Ai. Finally, since s is

conditionally belief-free strategy bounded by constant regime A, player i cannot achieve

a greater continuation value with a strategy that begins with some action ai /∈ Ai. Thus,

wi(h
t) must be greater than or equal to expression 6 for actions ai /∈ Ai

12Given that player −i observes the signal (a,R), we do not need to consider the case where player i

observes some a 6= a′, because such history will never be in H.
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Therefore, the mixture s−i(h
t
−i) enforces wi(m

ht−i ; ., .) and generates wi(h
t) ∈ W s

i .

Since ht was arbitrary, every element of W s
i can be so generated. Applying the same

arguments for player −i shows that the set W s = W s
i ×W s

−i is self-generating.

To show, W is strongly self generating, we need to show that for any i, there exists

a self-generating F-collection W
s
i such that W s

i ⊆ B∗(W
s
i ). So, for given conditionally

belief-free strategy s and for each player i, let O0 = {wi(∅)}, and for t > 0, Oti =

{wi(mht−1
−i ; a, y−i) | ht−i ∈ Ht

−i, a ∈ A and y−i ∈ Σ−i}. Then, for each player i, set

W
s
i = {Oti}t.

Note that for each t ≥ 0, Oti is generated by the set Ot+1
i i.e., for every real number

v ∈ Oti , there exists a mixture s−i(h
t−1
−i , a

t, yt−i) ∈ ∆A−i that enforces the continua-

tion payoff function wi(m
(ht−1
−i ,a

t,yt−i); ., .), which is in Ot+1
i for every at+1 ∈ A, yt+1

−i ∈
Σ−i, and generates v. Moreover, each Oti is F-generated because, for any a, a′ ∈ A,

wi(m
(ht−1
−i ,a

t,yt−i); a, y−i) = wi(m
(ht−1
−i ,a

t,yt−i); a′, y−i) whenever y−i = F, because both

histories yield same memories (∅, t+1). Therefore, W
s
i is a self-generating F-collection.

Moreover, we have W s
i = B∗(W

s
i ) for each i. Hence, W s is strongly self-generating set.

Since E is the union of all continuation values occurring along histories of all con-

ditionally belief-free equilibria, i.e., E = ∪s∈SW s where S is the set of all conditionally

belief-free equilibrium strategy profiles bounded by constant regime A, it is the union

of strongly self-generating sets and is therefore strongly self-generating; for each player

i, define W i = {W s
i}s∈S . It is easy to show that this collection is a self-generating

F-collection. Moreover, for each player i, we have Ei = B∗(W i). Hence, E is strongly

self-generating set.

Proof of Proposition 4.4. Let v = (vi, v−i) ∈ W , we will show that player i has a

strategy, si, with full support according to µ such that player −i’s maximum payoff is

v−i and this payoff is achieved by any strategy for player −i with full support according

to µ. Since the symmetric arguments imply the same conclusion with the roles reversed,

these strategies form a conditionally belief-free strategy profile s.

Construct the Markovian strategy si as follows. Start with the payoff vector v−i ∈
W−i. Since W is strongly self-generating, for player −i, there exists some self-generating

F-collection W−i and an F-generated set X such that v−i ∈ X ∈W−i. Without loss of

generality, we can take X = {v−i}. Since, the F-collection W−i is self-generated, there

must exists a mixture α
A,v−i

i ∈ ∆Ai and a continuation payoff function w
A,v−i

−i for each

A ∈ P(A) such that equation 1 holds for all a−i(A) ∈ A−i for each A ∈ P(A), i.e.,
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({αA,v−i

i }, {wA,v−i

−i }) generates v−i. Therefore, assign si(1) = αAi after each associated

public randomization A.

SinceW−i is self-generating F- collection, the set U2 = {wA,v−i

−i (a, yi)}A∈P(A),a∈A,yi∈Σ

is a subset of some set in W−i. So, the “state” of the strategy in period 2 will be the

continuation value for player −i, call it u = w
A,v−i

−i (a, yi) ∈ U2, where (a, yi) is player

i’s realization of last period private history and A is the realization of the public ran-

domization. Again, since W−i is self-generating and U2 is a subset of some set in W−i,

for each state u ∈ U2, we know that there exists a mixture αA,ui ∈ ∆ Ai and a con-

tinuation function wA,u−i for each A such that equation 1 holds, i.e., ({αA,ui }, {w
A,u
−i })

generates u ∈ U2. Therefore, after any one-length history (a, yi, z) and the associated

state u ∈ U2, set si(a, yi, z =A) = αA,ui .

Remark that the set U2 is an F- generated and W−i is self-generating F-collection,

i.e., the set U3 = {wA,u−i (a, yi)}A∈P(A),u∈U2

a∈A,yi∈Σ

is a subset of some set in W−i, and for each

u, u′ ∈ U2 and A ∈ P(A), wA,u−i (., yi) = wA,u
′

−i (., yi) whenever yi = F. Moreover, when

in period 2 the state u has realized and having played the action profile a′ ∈ A and

observed the private signal y′i ∈ Σ and public signal A in stage 2, player i will transit

to state u′ = wA,u−i (a′, y′i) ∈ U3 in stage 3. The F- generation guarantees that there is

a unique state u′ ∈ U3 for each 2-length private history for player i, and whenever two

2-length private history have same memories, the states associated to each histories are

same.

Continue inductively to construct the strategy profile s in this way, we can ensure

that for any t, k(< t), player i, and for any two histories h, h′ ∈ hti(k) we have si(h) =

si(h
′). Moreover, it follows from Equation 1 and the one-shot deviation property that

when the public randomization is i.i.d with distribution µ, any such strategy profile

s = (si, s−i)is conditionally belief-free with full support according to µ, and achieves the

payoff of v as required.

Proof of Proposition 4.5. Pick a conditionally belief-free equilibrium strategy profile

s with full support according to µ, and let wi(h) = ui(s|h) for the continuation payoff to

player i after history h ∈ H. Define W s
i be the set of all possible continuation values in

the equilibrium s. Formally, W s
i = {wi(h) : h ∈ H}. We first show that W s = W s

i ×W s
−i

is strongly self-generating. Since the conditionally belief free equilibrium strategy s is

arbitrary, and the union of self generating sets is also self generating, this will lead us to

E = ∪s∈SW s is strongly self-generating as well, where S is the set of all conditionally

belief-free equilibrium strategy profiles with full support according to µ. We prove each
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of these claims in turn.

Observe, first, that for a given conditionally belief-free equilibrium, wi(h) depends

only on the memory of player −i’s history h−i. To prove this point, first, fix a t-length

history h−i with memory k. Denote mh−i as the memory of the history h−i. Then,

consider three t-length histories hi, h
′
i with memories less than k and h′′i with memory

more than k such that (hi, h−i), (h
′
i, h−i) and (h′i, h−i) ∈ H.13

We must have wi(hi, h−i) = wi(h
′
i, h−i). Suppose for a contradiction that wi(hi, h−i) >

wi(h
′
i, h−i) implying that si|h′i is not best reply to s−i|h−i

contradicting that s is a con-

ditionally belief-free strategy.

Now, consider hi and h′′i . We claim that wi(hi, h−i) = wi(h
′′
i , h−i). First, observe

that s−i|h−i
is best reply to si|h′′i , and vice versa. Now suppose for a contradiction

that wi(hi, h−i) > wi(h
′′
i , h−i); in that case player i never plays si|h′′i against s−i|h−i

after observing the history h′′i which contradicts to the assertion that s is conditionally

belief-free equilibrium strategy.

However, if we assume wi(hi, h−i) < wi(h
′′
i , h−i) than in that case player i never

plays si|hi against s−i|h−i
after observing the history hi which contradicts, again, to the

assertion s is an equilibrium strategy. Therefore, we can denote wi(h
t) = wi(m

ht−i).

Now, fix some arbitrary period t + 1 and history ht ∈ H. Because s conforms to

the public randomization, for each zt = A ∈ P(A), the mixed action α−i := s−i(h
t
−i)

∈ ∆A−i(zt) played by i’s opponent after ht where zt is the realization of the public

randomization in ht. Let a∗i (A) ∈ Ai(zt). Since, Ai = Ati(zt = A) for each A, there

is a best reply continuation strategy ŝi for player i which plays a∗i (A) at period t + 1

after history hti. That is, ŝi is a best reply continuation strategy to s−i|ht−i
for every

A ∈ P(A). Moreover, ui(ŝi, s−i|ht−i
) = ui(s|ht) = wi(h

t).

We claim that the payoff vector wi(h
t) can be generated by W s

i . For that purpose,

we, first, need to show that there exists a continuation payoff function wi which depends

only on ht−i, a
t+1 and yt+1

−i i.e., the memory of ht+1
−i , mht+1

−i = m(ht−i,a
t+1,yt+1

−i ).

13Restricting attention to histories hi such that (hi, h−i) ∈ H does not alter our analysis. Suppose

that hi’s memory is less than h−i’s memory and hi’s memory does not contradict with h−i’s memory

but (hi, h−i) /∈ H. We can always find a history ĥi that has same memory with hi, so that si|hi
= si|ĥi

,

and (ĥi, h−i) ∈ H. Therefore, si|hi
∈ Bi(s−i|h−i

) and s−i|h−i
∈ B−i(si|hi

). On the other hand, if

hi’s memory is more than h−i’s memory, and h−i’s memory does not contradict with hi’s memory but

(hi, h−i) /∈ H, we can always find a history ĥ−i that has same memory with h−i, so that s−i|h−i
=

s−i|ĥ−i
, and (hi, ĥ−i) ∈ H. Hence, si|hi

∈ Bi(s−i|h−i
) and s−i|h−i

∈ B−i(si|hi
).
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First consider the case where yt+1
−i = F. For any at+1 ∈ A, and yi ∈ Σ we claim

that wi(h
t+1
−i ) yields the same value: Take any two a(A), a′(A) ∈ A, and suppose

first that yt+1
i = F. Then, given that A ∈ P(A) is publicly observed at stage t + 1,

we know that any continuation strategy after observing (a(A),F) at stage t + 1 is

also a continuation strategy after observing (a′(A),F) and are best reply to s−i|ht+1
−i

and vice versa, where ht+1
−i = (ht−i,A, a(A),F), since both players have memory zero.

Therefore, these continuation strategies of player i will automatically achieve the same

value. Now, consider the case where yt+1
i = R. Since yt+1

−i = F, the continuation

strategy s−i|ht+1
−i

is best reply to si|(hti,A,a(A),R) and si|(hti,A,a′(A),R). Although player

i’s best reply continuation strategies after observing (A, a(A), R) and (A, a′(A), R)

at stage t + 1 may be different, they have to yield same continuation values. Sup-

pose not, i.e., wi(h
t
i;A, a(A), R) = ui(si|(hti,A,a(A),R) , s−i|ht+1

−i
) > wi(h

t
i;A, a′(A),R) =

ui(si|(hti,A,a′(A),R) , s−i|ht+1
−i

). Therefore, player i deviates after history (hti,A, a′(A),R)

and plays si|(hti,A,a(A),R), which contradicts with the fact that s is a conditionally belief

free equilibrium. The same arguments for the reversed inequality shows that best reply

continuation strategies must yield the same value. Therefore, we can conclude that if

yt+1
−i = F, it really does not matter what action-signal profile player i has observed at

stage t+ 1.

Now, assume that yt+1
−i = R and at+1 = a(A) = (a∗i (A), a−i(A)) ∈ A. Then

we need to show that whether player i observes the signal F or R, his continuation

strategies must give same values.14 First observe that s−i|ht+1
−i

is best reply to both

si|(hti,A,a(A),R) and si|(hti,A,a(A),F) and vice versa. Although these best reply continua-

tion strategies might be different, they have to achieve same values: Suppose for a con-

tradiction that wi(h
t
i;A, a(A),R) = ui(si|(hti,A,a(A),R) , s−i|ht+1

−i
) > wi(h

t
i;A, a(A),F) =

ui(si|(hti,A,a(A),F) , s−i|ht+1
−i

) which contradicts that s is a conditionally belief free equi-

librium strategy. Same arguments in the case of reversed inequality shows that player

i’s continuation strategies must attain same value in both cases.

In this way we can view wi(.) as a continuation value function, which depends only

on the length and the memory of ht+1
−i . Moreover, since mht+1

−i = (mht−i ∪ {a,A}, t+ 1)

if yt+1
−i = R, and mht+1

−i = ({zτ}τ=t
τ=1,A, t+ 1) if yt+1

−i = F, we can write i’s continuation

payoff function, after history ht+1
i , as wAi (mht−i ; ., .) taking values in W s

i with the prop-

erty that for any A, wAi (mht−i ; a(A), y−i) = wAi (mht−i ; a′(A), y−i) for all a(A), a′(A) ∈ A

whenever y−i = F.

14Given that player −i observes the signal (a(A),R), we do not need to consider the case where player

i observes some a(A) 6= a′(A), because such history will never be in H.
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The payoff to i from using ŝi against s−i(h
t
−i) when the realized regime in period

t+ 1 is A can thus be written

(1− δ)ui(a∗i (A), αA−i) + δE(wAi (mht−i ; ., .)
∣∣∣ ai(A, αA−i, y−i) (36)

where

E(wAi (mht−i ; ., .)
∣∣∣ ai(A), αA−i, y−i) =

∑
a−i∈A−i

∑
y−i∈Σ

αA−i(a−i)π(y−i)w
A
i (mht−i ; a∗i (A), a−i, y−i)

(37)

and the expected payoff before the realization of the regime in period t+1 is the expected

value of this expression with respect to µ, i.e., the right hand side of equation 1.

Since ŝi is a best reply against s−i|h−i
, 36 is equal to wi(h

t). Moreover, since

we selected i’s action from each Ai(zt+1 = A) arbitrarily, this equality holds for any

selection {a∗i (A)}A∈P(A). Finally, since s is conditionally belief-free, player i cannot

achieve a greater continuation value with a strategy that does not conform to the regime.

Thus, wi(h
t) must be greater than or equal to expression 36 when a∗i (A) /∈ Ai(Ati) for

some A.

Therefore, the mixture sequence {s−i(ht−i,A)} enforces the continuation payoff se-

quence {wAi (mht−i ; ., .)} for each A and generates wi(h
t) ∈ W s

i . Since ht was arbitrary,

every element of W s
i can be so generated. Applying the same arguments for player −i

shows that the set W s = W s
i ×W s

−i is self-generating.

To show, W is strongly self generating, we need to show that for any i, there exists

a self-generating F-collection W
s
i such that W s

i ⊆ B∗(W
s
i ). So, for given conditionally

belief-free strategy s with full support according to µ, and for each player i, let O0 =

{wi(∅)}, and for t > 0, Oti = {wAi (mht−1
−i ; a, y−i) | A ∈ P(A), ht−i ∈ Ht

−i, a ∈ A and

y−i ∈ Σ−i}. Then, for each player i, set W
s
i = {Oti}t.

Note that for each t ≥ 0, Oti is generated by the set Ot+1
i i.e., for every real

number v ∈ Oti , there exists a mixture s−i(h
t−1
−i , a

t, yt−i, z
t) ∈ ∆A−i(zt) that enforces

the continuation payoff function wi(m
(ht−1
−i ,a

t,yt−i,z
t); ., .), which is in Ot+1

i for every

at+1 ∈ A, yt+1
−i ∈ Σ−i, and generates v. Moreover, each Oti is F-generated, because

for any a, a′ ∈ A, wi(m
(ht−1
−i ,a

t,yt−i,z
t); a, y−i) = wi(m

(ht−1
−i ,a

t,yt−i,z
t); a′, y−i) whenever

y−i = F, because both histories yield same memories (∅, t + 1). Therefore, W
s
i is a

self-generating F-collection. Moreover, we have W s
i = B∗(W

s
i ) for each i. Hence, W s is

a strongly self-generating set.
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Since E is the union of all continuation values occurring along histories of all condi-

tionally belief-free equilibria with full support according to µ, i.e., E = ∪s∈SW s where

S is the set of all conditionally belief-free equilibrium strategy profiles with full support

according to µ, it is the union of strongly self-generating sets and is therefore strongly

self-generating; for each player i, define W i = {W s
i}s∈S . It is easy to show that this

collection is a self-generating F-collection. Moreover, for each player i, we have Ei =

B∗(W i). Hence, E = E1 × E2 is a strongly self-generating set.
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