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Abstract

A social choice hyperfunction picks a non-empty set of alternatives at each ad-

missible preference profile over sets of alternatives. We analyze the manipulability

of social choice hyperfunctions. We identify a domain Dλ of lexicographic order-

ings which exhibits an impossibility of the Gibbard-Satterthwaite type. Moreover,

this impossibility is inherited by all well-known superdomains of Dλ. As most of

the standard extension axioms induce superdomains of Dλ while social choice cor-

respondences are particular social choice hyperfunctions, we are able to generalize

many impossibility results in the literature.
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1 Introduction

The seminal impossibility result of Gibbard (1973) and Satterthwaite (1975) shows that

every non-manipulable social choice function which is defined over the unrestricted do-

main of preference relations is dictatorial if its range contains at least three alternatives.

This result is fairly robust. There is literature dating back to Pattanaik (1973), Barberà

(1977), Kelly (1977), Gärdenfors (1978) and Feldman (1979a, 1979b, 1980), showing

similar impossibilities for social choice rules which are not necessarily singleton-valued.

Their results are given in a framework where social choice rules are modeled as so-

cial choice correspondences which assign a set of alternatives to every preference profile

over alternatives. The analysis is made under certain extension axioms which connect

preferences over alternatives to preferences over sets of alternatives.

There is a recent trend of carrying this analysis further in a framework where ma-

nipulability is analyzed via hyperfunctions, i.e. functions that pick a non-empty set of

alternatives at each admissible preference profile over sets of alternatives. This approach

has the advantage of being part of a more general framework which, when compared

to the classical one, allows to use finer information about individual preferences over

sets. Standard social choice correspondences impose a strong invariance condition over

social choice rules: A social outcome must be the same as long as individuals’ rankings

over singleton sets are the same. In other words, even if individuals change their pref-

erences over sets, the social outcome must remain unchanged as long as their ordering

of singleton sets remains the same. It is clear that hyperfunctions do not have such a

restriction and thus, are more general social choice objects. As a result, every Gibbard-

Satterthwaite type of impossibility established in the world of hyperfunctions can be

carried to the standard world of social choice correspondences.

Of course, if we consider social choice hyperfunctions defined over the full domain of

preference profiles, then strategy-proofness is equivalent to dictatorship, simply by the

Gibbard-Satterthwaite theorem. Barberà, Dutta and Sen (2001) -BDS from now on-

show that this equivalence is quite robust under domain restrictions. They consider a

domain of orderings over sets defined through the idea of expected utility consistency.

They use two versions of this concept. One version leads to a coarser domain, ending

up in an impossibility of the Gibbard-Satterthwaite type: Any unanimous and strategy-

proof social choice hyperfunction must be dictatorial. The other version, leading to a
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narrower domain, allows for a slightly more permissive result, though still of the Gibbard-

Satterthwaite spirit: Any unanimous and strategy-proof social choice hyperfunction

must be either dictatorial or bi-dictatorial.

We identify a lexicographic domain Dλ of orderings over sets which exhibits a similar

impossibility: Every unanimous and strategy-proof social choice hyperfunction defined

over Dλ is dictatorial or bi-dictatorial. In fact, Dλ extracts the essential structure of the

BDS domains leading to the impossibility of the Gibbard-Satterthwaite type. We are

thus able to establish that the impossibility over Dλ is inherited by all of its well-known

superdomains. As most of the standard extension axioms induce superdomains of Dλ,

we are able to state our impossibility result for many well-known domains, including

those determined by the extension axioms that Gärdenfors (1976) and Kelly (1977) use

in their analysis of strategy-proof social choice correspondences.

Section 2 introduces the preliminaries. Section 3 identifies the lexicographic domain

Dλ over which an impossibility result of the Gibbard-Satterthwaite type prevails. Sec-

tion 4 announces the main result which extends this impossibility to the superdomains of

Dλ. Section 5 gives instances of impossibilities generalized by our main result. Section

6 makes some closing remarks and discusses related literature.

2 Preliminaries

Taking any two integers n ≥ 2 and m ≥ 3, we consider a society N = {1, · · · , n}
confronting a set of alternatives A with m alternatives. We write A = 2A�{∅} for the

set of non-empty subsets of A.

We let Π stand for the set of complete, transitive and antisymmetric binary relations

over A. Every ρ ∈ Π represents an individual preference on the elements of A in the

following manner: For any a, b ∈ A, a ρ b means “a is at least as good as b”.1 When

the preference over A is specified to belong to a particular agent i ∈ N, we write it as

ρi. A typical preference profile over A is denoted by ρ = (ρ1, · · · , ρn) ∈ ΠN.

Similarly, we let < stand for the set of all complete and transitive binary relations

over A. Every R ∈ < represents an individual preference on the elements of A in the
1As ρ is antisymmetric, for any distinct a, b ∈ A we have a ρ b ⇒ not b ρ a. In other words, for

distinct alternatives a ρ b means “a is preferred to b”
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following manner: For any X,Y ∈ A , X R Y means “X is at least as good as Y ”. We

denote P and I for the strict and indifference counterparts of R.2 In case the preference

over A is specified to belong to a particular agent i ∈ N, we write it as Ri, with its

respective strict and indifference counterparts Pi and Ii. A typical preference profile

over A is denoted by R = (R1, · · · , Rn) ∈ <N.

Given any D ⊆ <, we define a social choice hyperfunction (or simply a “hyperfunc-

tion”) as a mapping f : DN → A. We only consider hyperfunctions whose domains are

Cartesian products of some non-empty D ⊆ <, in which case we say that the hyperfunc-

tion is defined over the domain D. A hyperfunction f : DN → A is manipulable over

E (∅ 6= E ⊆ D) if and only if there exists i ∈ N and R,R′ ∈ EN with Rj = R′j for all

j ∈ N�{i} such that f(R′) Pi f(R), and strategy-proof over E if f is not manipulable

over E. Finally, f is strategy-proof (resp. manipulable) if it is strategy-proof over D

(resp. manipulable over D).

A hyperfunction f : DN → A is dictatorial if and only if there exists d ∈ N

such that for all R ∈ DN we have f(R) ∈ arg maxARd, bi-dictatorial if there exist

distinct i, j ∈ N such that for all R ∈ DN we have f(R) = arg maxARi ∪ arg maxARj

and unanimous if for any X ∈ A and any R ∈ [D]N with arg maxARi = X for all

i ∈ N, we have f(R) = X. A domain D is dictatorial (resp. bi-dictatorial) if and only if

every unanimous and non-manipulable hyperfunction defined over D is dictatorial (resp.

dictatorial or bi-dictatorial).

Given any f : DN → A, E ⊆ D and distinct i, j ∈ N, we say that i and j are

the bi-dictators of f over E if and only if f(R) = arg maxARi ∪ arg maxARj for all

R ∈ [E]N, and i is the dictator of f over E if f(R) = arg maxARi for all R ∈ [E]N.

An immediate consequence of the Gibbard-Satterthwaite theorem is that < is dic-

tatorial. In this paper, we ask whether it is possible to escape this impossibility by

restricting < through axioms which extend preferences over alternatives to sets of alter-

natives.

We accept that if the preference over A is some ρ ∈ Π, then the preference over A

can be some R ∈ < which is “consistent” with ρ. Thus, we define a consistency map
2For any X,Y ∈ A, we write X P Y if and only if X R Y holds but Y R X does not, i.e. X is

preferred to Y . In case X R Y and Y R X both hold, we write X I Y , which means indifference between

X and Y .
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κ : Π→ 2<�{∅} which assigns to every ρ ∈ Π a non-empty set κ(ρ) ⊆ < of preferences

on A consistent with ρ. We assume that every consistency map κ satisfies the following

basic axiom A0:

A0. Given any ρ ∈ Π and any R ∈ κ(ρ), we have x ρ y ⇔ {x} R {y} for all x, y ∈ A.

A0 requires that the ordering of individuals over singleton sets must be the same as

their ordering over the basic alternatives. Remark that A0 implies κ(ρ) ∩ κ(ρ′) = ∅ for

all distinct ρ, ρ′ ∈ Π.

Given any consistency map κ, we write Dκ =
⋃
ρ∈Π κ(ρ) for the set of acceptable

preferences over A induced by κ. Note that Dκ is always a strict subset of <, as every

κ is assumed to satisfy our basic axiom A0.

Now, we introduce the concept of a leximax extension over A which orders any two

sets according to their best elements. If these are the same, then the ordering is made

according to the second best elements, and so on. The elements according to which the

sets are compared will disagree at some step - except possibly when one set is a subset of

the other, in which case the smaller set is preferred.3 Formally, given an ordering ρ ∈ Π,

the leximax ordering λ+(ρ) over A is defined as follows: Take any distinct X,Y ∈ A.

Let, without loss of generality, X = {x1, · · · , x|X|} and Y = {y1, · · · , y|Y |} such that

xj ρ xj+1 for all j ∈ {1, · · · , |X|−1} and yj ρ yj+1 for all j ∈ {1, · · · , |Y |−1}. If xh = yh

for all h ∈ {1, · · · ,min{|X| , |Y |}}, then X λ+(ρ) Y if and only if |X| < |Y |. If there

exists some h ∈ {1, · · · ,min{|X| , |Y |}} for which xh 6= yh, then X λ+(ρ) Y if and only

if xh ρ yh for the smallest value of h.

The leximin extension over A orders any two sets according to a lexicographic com-

parison of their worst elements - this is the mirror image of the leximax extension.4

So given an ordering ρ ∈ Π, the leximin ordering λ−(ρ) over A is defined as follows:

Take any distinct X,Y ∈ A. Let, without loss of generality, X = {x1, · · · , x|X|} and

Y = {y1, · · · , y|Y |} such that xj+1 ρ xj for all j ∈ {1, · · · , |X| − 1} and yj+1 ρ yj for all

j ∈ {1, · · · , |Y | − 1}. If xh = yh for all h ∈ {1, · · · ,min{|X| , |Y |}}, then X λ−(ρ) Y if

and only if |X| > |Y |. If there exists some h ∈ {1, · · · ,min{|X| , |Y |}} for which xh 6= yh,

then X λ−(ρ) Y if and only if xh ρ yh for the smallest value of h.
3This is exactly how words are ordered in a dictionary. For example, given three alternatives a, b and

c, the leximax extension of the ordering a b c is {a}, {a, b}, {a, b, c}, {a, c}, {b}, {b, c}, {c}.
4For example, the leximin extension of the ordering a b c is {a}, {a, b}, {b}, {a, c}, {a, b, c}, {b, c}, {c}.

5



Kaymak and Sanver (2003) show that at each ρ ∈ Π, the leximax and leximin

extensions respectively determine unique orderings λ+(ρ) and λ−(ρ) over A which are

complete, transitive and antisymmetric.

We write λ for the consistency map which assigns the leximax and leximin extensions

to every ρ ∈ Π, i.e. λ(ρ) = {λ+(ρ), λ−(ρ)} for all ρ ∈ Π. We write Dλ =
⋃
ρ∈Π λ(ρ) for

the set of acceptable preferences over A defined through λ.

3 A Bi-dictatorial Domain

In this section, we show that Dλ is bi-dictatorial. Notice first that under the consistency

map λ, the best and the worst elements of every ordering is a singleton set. This

is what we call the “regularity” of a domain. We say that a domain D is regular if

D consists of orderings having singleton sets as their unique maximal and minimal

elements. Regularity is very natural when we conceive sets as non-resolute outcomes. A

regular domain D is called fully regular if every singleton set is a unique maximal and

a unique minimal element for at least one ordering in D. So Dλ is fully regular. Note

that the range of every unanimous hyperfunction defined over a fully regular domain

contains all singleton sets.

Theorem 3.1. A unanimous hyperfunction f : [Dλ]N → A is strategy-proof if and only

if f is dictatorial or bi-dictatorial.

We prove Theorem 3.1 in Appendix A.

Remark 3.1. Theorem 3.1 no longer holds when the domain of the hyperfunction is

further restricted to Dλ+
=
⋃
ρ∈Π{λ+(ρ)} or to Dλ− =

⋃
ρ∈Π{λ−(ρ)}. To see the

former, consider the hyperfunction f1 : [Dλ+
]N → A that picks a strict majority winner

when it exists and the whole set A otherwise.5 So, for every R ∈ [Dλ+
]N we have

f1(R) =

{
{a} if

∣∣{i ∈ N : arg maxARi = {a}}
∣∣ > n/2 for some a ∈ A

A otherwise

One can check that f1 is unanimous, neither dictatorial nor bi-dictatorial. It is non-

manipulable over Dλ+
because, at any preference profile where the outcome is some

5This social choice rule is given as Example 5 in Benoit (2002) with a similar purpose.
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singleton, there is a majority of voters obtaining their best alternative (thus having no

incentive to manipulate) while the remaining voters are unable to manipulate. On the

other hand, at a preference profile where the outcome is the set A, all voters prefer A

to all singletons -except their first best since they have leximax preferences.

To see that Theorem 3.1 fails to hold over Dλ− , consider the hyperfunction f2 :

[Dλ− ]N → A which picks the union of the top alternatives of all agents.6 So, for ev-

ery R ∈ [Dλ− ]N we have f2(R) =
⋃
i∈N arg maxARi. Again one can check that f2 is

unanimous, neither dictatorial nor bi-dictatorial. On the other hand, by a unilateral

misrepresentation, a voter can possibly make an alternative, which is not her best, in-

cluded in the outcome set with the possible expense of making her first best excluded.

Though whether she is able to include (or exclude) an alternative depends on the pref-

erence profile, misrepresentation is never beneficial under leximin preferences. Thus, f2

is non-manipulable over Dλ− .7

Remark 3.2. Theorem 3.1 fails to hold when |A| = 2. Note that even when |A| = 2,

|A| = 3. So, the range condition of the Gibbard-Satterthwaite theorem holds. However,

when |A| = 2, both f1 and f2 defined over Dλ are strategy-proof.

6This social choice rule is given as Example 6 in Benoit (2002), aiming to show that the results of

BDS do not apply to domains obtained through lexicographic orderings.
7The set of non-manipulable social choice correspondences under leximin preferences is characterized

by Campbell and Kelly (2002) who, among other things, show that a social choice correspondence which

is strategy-proof over a domain that contains the leximin extensions must be choosing, at each preference

profile, the union of the top elements of a fixed coalition H of voters. In case this result is carried a step

forward so as to show that over Dλ this coalition H can be at most a doubleton, we get the restriction

of Theorem 3.1 to social choice correspondences.
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4 Main Result

In this section, we analyze the implications of Theorem 3.1 for the superdomains of Dλ.

Although one may be tempted to think that all superdomains of Dλ are dictatorial or

bi-dictatorial, this is not the case, as the following example illustrates:8

Consider a set of alternatives A = {a, b, c}. Now take the ordering R ∈ < over A

where arg maxAR = {a, b} and {a, b} P {a} P X for all X ∈ A�{{a, b}, {a}}. The

following hyperfunction defined over the domain Dλ∪{R} is unanimous, strategy-proof,

neither dictatorial nor bi-dictatorial:

For all R ∈ [Dλ ∪ {R}]N, we have

f(R) =

{
arg maxAR1 if R1 ∈ Dλ

arg max{{a,b},{a}}R2 otherwise

Thus, not every superdomain of Dλ is dictatorial or bi-dictatorial. So, it is of in-

terest to see which superdomains of Dλ preserve the property of being dictatorial or

bi-dictatorial.

Proposition 4.1. Take two fully regular domains D,D′ ⊂ < with D′ ⊂ D, and a

strategy-proof hyperfunction f : DN → A. If d ∈ N is the dictator of f over D′ then d

is the dictator of f over D.

Proof. Take D,D′ and f as in the statement of the proposition. Let, without loss of

generality, 1 ∈ N be the dictator over D′. Take any R ∈ DN with R1 ∈ D′. Write

k = |{i ∈ N�{1} : Ri ∈ D�D′}|. We claim that f(R) = arg maxAR1 for any value

of k in {1, · · · , n − 1}. We prove our claim by induction on k. We present the proof

only for k = 1 while these arguments, mutatis mutandis, establish the inductive step.

So take k = 1 and let, without loss of generality, R2 ∈ D�D′. Suppose f(R) = X

for some X ∈ A�{{a}} where {a} = arg maxAR1. Now, take some R′2 ∈ D′ with

arg minAR
′
2 = {a}. Consider the profile R′ ∈ [D′]N where R′j = Rj for all j ∈ N�{2}

while the preference of agent 2 is R′2. As agent 1 is the dictator over D′, we have

f(R′) = {a}. But since X P ′2 {a}, agent 2 manipulates R′ by R2 ∈ D�D′, contradicting

that f is strategy-proof, and this proves our claim for k = 1.
8Sanver (2007) characterizes dictatorial domains which do not admit non-dictatorial superdomains.
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Note that for k = 0, we have f(R) = arg maxAR1 by the choice of D′ and f . Thus,

f(R) = arg maxAR1 for all R ∈ DN with R1 ∈ D′, which implies f(R) = arg maxAR1

for all R ∈ DN with R1 ∈ D as well, as otherwise 1 manipulates R by picking a preference

in D′.

Before stating the next proposition, we introduce a few conditions. The first one,

which we refer to as Condition β, is used by Barberà (1977) in his analysis of strategy-

proof social choice correspondences. We define two versions of it. We say that a fully

regular domain D ⊆ < satisfies condition β∗ (resp. β) if and only if for any R ∈ D with

arg maxAR = {a} we have

(β∗) {a} P {a, b} P {b} for all b ∈ A�{a}.

(β) {a} P {a, b} R {b} for all b ∈ A�{a}.

Clearly β∗ implies β.

The second condition which imposes a weak form of separability on preferences over

sets has also two versions. We say that a fully regular domain D ⊆ < satisfies condition

σ∗ (resp. σ) if and only if for any R ∈ D with arg maxAR = {a} we have

(σ∗) {a, b} P {c, b} for all b, c ∈ A�{a}.

(σ) {a, b} R {c, b} for all b, c ∈ A�{a}.

Proposition 4.2. Let f : DN → A be a strategy-proof hyperfunction with D ⊃ Dλ

being a (fully regular) domain satisfying conditions β∗ and σ∗. If i, j ∈ N are the

bi-dictators of f over Dλ then i and j are the bi-dictators of f over D.

The proof of Proposition 4.2 is given in Appendix B.

Interestingly, conditions β and σ turn out to be necessary and sufficient to ensure

the strategy-proofness of bi-dictatorial hyperfunctions. We state this in the following

proposition.

Proposition 4.3. Take any fully regular domain D ⊃ Dλ. A bi-dictatorial hyperfunc-

tion f : DN → A is strategy-proof if and only if D satisfies conditions β and σ.

9



Proof. We leave the “if” part to the reader. To show the “only if” part, consider any

fully regular domain D ⊃ Dλ and a bi-dictatorial hyperfunction f defined over D.

Let, without loss of generality, individuals 1 and 2 be the bi-dictators. We show that

f is manipulable if β or σ fails to hold. First suppose β is violated. Let R ∈ D

with arg maxAR = {a} be an ordering which violates β. Hence {b} P {a, b} for some

b ∈ A�{a}. Consider a preference profile R ∈ DN with R1 = R and arg maxAR2 = {b}.
As f is bi-dictatorial, we have f(R) = {a, b}. Thus, agent 1 can manipulate f at R

by pretending any ordering R′1 with arg maxAR
′
1 = {b}. Now suppose σ is violated.

Let R ∈ D with arg maxAR = {a} be an ordering which violates σ. Hence we have

{b, c} P {a, b} for some b, c ∈ A�{a}. Consider a preference profile R ∈ DN with

R1 = R and arg maxAR2 = {b}. As f is bi-dictatorial, we have f(R) = {a, b}. But

since {b, c} P1 {a, b}, agent 1 can manipulate f at R by pretending an ordering R′1 with

arg maxAR
′
1 = {c}.

Propositions 4.1, 4.2 and 4.3 lead to the following theorem which extends Theorem

3.1 to almost all superdomains of Dλ.

Theorem 4.1. Take any fully regular domain D ⊃ Dλ satisfying condition β∗ and

consider a unanimous hyperfunction f : DN → A.

(i) If D satisfies condition σ∗, then f is strategy-proof if and only if f is dictatorial

or bi-dictatorial.

(ii) If D violates condition σ, then f is strategy-proof if and only if f is dictatorial.

The proof of Theorem 4.1 is given in Appendix C.

Remark 4.1. Dλ itself satisfies conditions β∗ and σ∗, hence Theorem 3.1 follows from

Theorem 4.1.

Remark 4.2. Condition β∗ is critical for Theorem 4.1 to hold. To see this, let A =

{a, b, c} and N = {1, 2}. Consider D = Dλ ∪ {R∗} ⊂ < where arg maxAR
∗ = {a},

arg minAR
∗ = {b}, {c} P ∗ {a, c}, {c} P ∗ {b, c}, {a, b} I∗ {b, c} and {a, b} P ∗ {b}.

As {a} P ∗ {c} P ∗ {a, c}, the domain D violates Condition β∗. One can check that

hyperfunction f defined below is unanimous, strategy-proof, non-dictatorial and non

bi-dictatorial: For any R1, R2 ∈ D we have
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f(R1, R2) =


{a, b} if Ri = R∗, arg maxARj = {b} and arg maxA�{b}Rj = {a, b}
{b, c} if Ri = R∗, arg maxARj = {b} and arg maxA�{b}Rj = {b, c}
{c} if Ri = R∗ and arg maxARj = {c}
X otherwise

where i, j ∈ {1, 2}, i 6= j and X = arg maxAR1
⋃

arg maxAR2.

5 Generating Further Impossibilities

To extend our analysis, we now generate further impossibility results through Theorem

4.1. To do this, we consider various extension axioms employed in related literature. The

first one is the dominance axiom used by Kelly (1977) in his analysis of strategy-proof

social choice rules:

DOM. For any two distinct X,Y ∈ A we have X P Y whenever x ρ y holds for all

x ∈ X and for all y ∈ Y .

We write δ for the consistency map determined by DOM. So, for every ρ ∈ Π, we

have δ(ρ) = {R ∈ < : R satisfies DOM}

A stronger axiom is the Gärdenfors (1976) principle defined as follows:

G. For any X ∈ A and any y ∈ A�X we have

(i) X P X ∪ {y} whenever x∗ ρ y where x∗ = arg minX ρ

(ii) X ∪ {y} P X whenever y ρ x∗ where x∗ = arg maxX ρ

We write γ for the consistency map determined by G. So, for every ρ ∈ Π, we have

γ(ρ) = {R ∈ < : R satisfies G}.

Finally, we have the modified version of the monotonicity axiom of Kannai and Peleg

(1984), used by Roth and Sotomayor (1990):

M. For any X ∈ 2A, and x, y ∈ A�X we have

X ∪ {x} R X ∪ {y} if and only if x ρ y
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We write µ for the consistency map determined by M. So, for every ρ ∈ Π, we have

µ(ρ) = {R ∈ < : R satisfies M}.

We write Dδ =
⋃
ρ∈Π δ(ρ), Dµ =

⋃
ρ∈Π µ(ρ), Dγ =

⋃
ρ∈Π γ(ρ) for the domains

determined by the respective consistency maps δ, µ and γ. It can be checked, as Kaymak

and Sanver (2003) have shown, that the leximax and leximin extensions satisfy all three

conditions. Hence, Dλ is a subset of Dδ, Dµ and Dγ .

Theorem 5.1. Consider a unanimous hyperfunction f : [D]N → A

(i) Let D = Dδ. f is strategy-proof if and only if f is dictatorial.

(ii) Let D = Dγ . f is strategy-proof if and only if f is dictatorial.

(iii) Let D = Dδ∩Dµ . f is strategy-proof if and only if f is dictatorial or bi-dictatorial.

(iv) Let D = Dγ∩Dµ. f is strategy-proof if and only if f is dictatorial or bi-dictatorial.

Proof. We first show (i) and (ii). Dλ is a subset of Dδ and Dγ . Note that both Dδ

and Dγ are fully regular. Moreover, each of them satisfies condition β∗ but violates

σ. Hence, by part (ii) of Theorem 4.1, a unanimous hyperfunction defined over these

domains is strategy-proof if and only if it is dictatorial. To show (iii) and (iv), we start

by noting that both Dδ ∩ Dµ and Dγ ∩ Dµ are supersets of Dλ . Moreover they are

fully regular while they satisfy conditions β∗ and σ∗. So by part (i) of Theorem 4.1, a

unanimous hyperfunction defined over these domains is strategy-proof if and only if it

is dictatorial or bi-dictatorial.

We now consider domains restricted through expected utility consistency. A utility

function u : A → R represents ρ ∈ Π if u(x) ≥ u(y) ⇔ x ρ y for all x, y ∈ A. A

probability distribution over X ∈ A is a mapping ΩX : X → [0, 1] with the property

that
∑

x∈X ΩX(x) = 1.

EUC. A preference ordering R ∈ < is expected utility consistent (EUC) with ρ ∈ Π if

and only if given any X,Y ∈ A with X R Y , there exists a utility function u representing

ρ, and probability distributions ΩX on X and ΩY on Y such that
∑

x∈X ΩX(x)u(x) ≥∑
y∈Y ΩY (y)u(y).

For every ρ ∈ Π, let EUC(ρ) = {R ∈ < : R is EUC with ρ} and DEUC =⋃
ρ∈Π EUC(ρ).
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BEUC. A preference ordering R ∈ < is Bayesian expected utility consistent (BEUC)

with ρ ∈ Π if and only if given any X,Y ∈ A with X R Y , there exists a utility function

u representing ρ and a probability distribution Ω on A such that∑
x∈X

Ω(x)∑
z∈X Ω(z)

u(x) ≥
∑
y∈Y

Ω(y)∑
z∈Y Ω(z)

u(y).

For every ρ ∈ Π, let BEUC(ρ) = {R ∈ < : R is BEUC with ρ} and DBEUC =⋃
ρ∈Π BEUC(ρ).

UEUC. A preference ordering R ∈ < is uniform expected utility consistent (UEUC)

with ρ ∈ Π if and only if given any X,Y ∈ A with X R Y , there exists a utility function

u representing ρ such that
∑

x∈X
1
|X|u(x) ≥

∑
y∈Y

1
|Y |u(y).

For every ρ ∈ Π, let UEUC(ρ) = {R ∈ < : R is UEUC with ρ} and DUEUC =⋃
ρ∈Π UEUC(ρ). Notice that DUEUC ⊂ DBEUC ⊂ DEUC .

Theorem 5.2. Consider a unanimous hyperfunction f : DN → A.

(i) Let D = DEUC . f is strategy-proof if and only if f is dictatorial.

(ii) Let D = DBEUC . f is strategy-proof if and only if f is dictatorial.

(iii) Let D = DUEUC . f is strategy-proof if and only if f is dictatorial or bi-dictatorial.

Proof. First note that Dλ is a subset of DUEUC , hence of DBEUC and of DEUC . More-

over, each of these domains is fully regular and satisfies condition β∗. To see (i) and (ii),

it suffices to note that DEUC and DBEUC violate σ which, by part (ii) of Theorem 4.1,

establishes that they are dictatorial. To see (iii), note that DUEUC satisfies σ∗ which,

by part (i) of Theorem 4.1, proves that it is bi-dictatorial.

We close this section by relating our findings to those of BDS. For this purpose, we

state the following two extension axioms, CEUC and CEUCEP, as they appear in BDS.

CEUC. A preference ordering R ∈ < is conditional expected utility consistent (CEUC)

with some ρ ∈ Π if and only if there exists a utility function u representing ρ and a

probability distribution Ω on A such that

X R Y ⇔
∑
x∈X

Ω(x)∑
z∈X Ω(z)

u(x) ≥
∑
y∈Y

Ω(y)∑
z∈Y Ω(z)

u(y)

for all X,Y ∈ A.

13



For every ρ ∈ Π, let CEUC(ρ) = {R ∈ < : R is CEUC with ρ} and DCEUC =⋃
ρ∈Π CEUC(ρ).

CEUCEP. A preference ordering R ∈ < is conditional expected utility consistency with

equal probabilities (CEUCEP) with some ρ ∈ Π if and only if there exists a utility

function u representing ρ such that

X R Y ⇔
∑
x∈X

1
|X|

u(x) ≥
∑
y∈Y

1
|Y |

u(y)

for all X,Y ∈ A.

Similarly, for every ρ ∈ Π, let CEUCEP(ρ) = {R ∈ < : R is CEUCEP with ρ}
and DCEUCEP =

⋃
ρ∈Π CEUCEP(ρ).

It immediately follows from the definitions that DCEUC ⊂ DBEUC and DCEUCEP ⊂
DUEUC . The set inclusions are proper and as Can et al. (2008) have shown, Dλ is

neither a subset of DCEUC nor of DCEUCEP . So, Theorem 4.1 does not immediately

yield the BDS results. However, with further elaboration, it is possible to generate

BDS impossibilities through Theorem 4.1 for social choice correspondences. Formally

speaking, a social choice correspondence (SCC) is a mapping f : ΠN → A. Note that

the set of SCCs coincides with the set of hyperfunctions which satisfy the following

invariance property:

A hyperfunction f : DN → A is invariant if for any R,R′ ∈ DN with {x} Ri {y} ⇔
{x} R′i {y} for all i ∈ N and x, y ∈ A, we have f(R) = f(R′).

Proposition 5.1. An invariant hyperfunction f : [DBEUC ]N → A is strategy-proof if

and only if f is strategy-proof over DCEUC .

Proof. The “only if” part directly follows from the definitions. To see the “if” part,

take an invariant hyperfunction f : [DBEUC ]N → A which is not strategy-proof. So,

there exists i∗ ∈ N and R,R′ ∈ [DBEUC ]N with Rj = R′j for all j ∈ N�{i∗} such that

f(R′) Pi∗ f(R). Now, pick Q,Q′ ∈ [DCEUC ]N such that Qj = Q′j for all j ∈ N�{i∗}
while {x} Qi {y} ⇔ {x} Ri {y} and {x} Q′i {y} ⇔ {x} R′i {y} hold for all i ∈ N,

for all x, y ∈ A, and the set f(R′) is preferred to the set f(R) under the relation Qi∗ .

Existence of these preference relations is ensured by the definition of CEUC and BEUC.

Therefore, as f is invariant, we have f(Q) = f(R) and f(Q′) = f(R′). Thus, i∗ can

manipulate f at Q, implying that f is not strategy-proof over DCEUC .
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The arguments in the proof of Proposition 5.1 show, mutatis mutandis, the following

proposition which we state with no formal proof:

Proposition 5.2. An invariant hyperfunction f : [DUEUC ]N → A is strategy-proof if

and only if f is strategy-proof over DCEUCEP .

It is important to remark that Propositions 5.1 and 5.2 generate BDS results for

social choice correspondences.

Theorem 5.3. Consider a unanimous and invariant hyperfunction f : DN → A.

(i) Let D = DCEUC . f is strategy-proof if and only if f is dictatorial.

(ii) Let D = DCEUCEP . f is strategy-proof if and only if f is dictatorial or bi-

dictatorial.

Proof. Take a unanimous and invariant hyperfunction f : DN → A. We first show (i).

The “if” part is obvious. To see the “only if” part, let f : [DCEUC ]N → A be strategy-

proof. Take any invariant hyperfunction ϕ : [DBEUC ]N → A such that ϕ(R) = f(R)

for all R ∈ [DCEUC ]N. Then, ϕ is strategy-proof by Proposition 5.1 and dictatorial by

Theorem 5.2. Hence, f is dictatorial. Similar arguments prove (ii).
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6 Concluding Remarks

We establish a general impossibility result on strategy-proof hyperfunctions. We identify

a domain Dλ of lexicographic orderings over which a result of the Gibbard-Satterthwaite

type prevails. Moreover, almost all superdomains of Dλ inherit this impossibility. It

may also be worth recalling that any impossibility of the Gibbard-Satterthwaite type

obtained for hyperfunctions can immediately be translated into the standard world of

social choice correspondences. Thus, our main result expressed in Theorem 4.1 implies

or paves the way to explain many previous results - hence the qualification “general”

appearing in the title.

We wish to conclude by giving a more detailed discussion of the literature related to

our paper. We start by comparing our results with those on strategy-proof hyperfunc-

tions. BDS is the paper which is certainly closer to our analysis. It makes sense to say

that Dλ extracts the essential structure of the BDS domains leading to the impossibility

of the Gibbard-Satterthwaite type. In fact, the proof of our Theorem 3.1 is based on the

proof of their main result. On the other hand, our and their domains are not subsets

of each other. So, our results are logically independent. Nevertheless, with additional

arguments, Theorem 4.1 generates the BDS impossibility for invariant hyperfunctions.

Another analysis of strategy-proof hyperfunctions is made by Benoit (2002). Our

frameworks are quite similar. By using a near-unanimity condition which implies una-

nimity, he establishes an impossibility over domains containing orderings that are com-

patible with leximin extensions. Our results and those of Benoit (2002) are for different

domains, hence being logically independent.

We also wish to compare our results with those on strategy-proof social choice corre-

spondences. The typical analysis is made by considering a social choice correspondence

F : ΠN → A under a consistency map κ. We say that F is strategy-proof under κ if

and only if given any ρ ∈ ΠN, i ∈ N and ρ′ ∈ ΠN with ρj = ρ′j for all j ∈ N�{i},
we have F (ρ) Ri F (ρ′) for all Ri ∈ κ(ρi). Note that the non-existence of strategy-proof

hyperfunctions defined over the domain <κ =
⋃
ρ∈Π κ(ρ) implies the non-existence of

strategy-proof social choice correspondences under κ. Thus, many previous impossi-

bility results on strategy-proof social choice correspondences can be obtained through

our theorems. We use this fact as an opportunity to remark that although the proof

of Theorem 3.1 is based on the BDS proofs, our ability of generalizing this result to
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superdomains of Dλ provides a new insight. Theorem 4.1 covers a variety of domains

consistent with expected utilities as well as the environments defined by the extension

axioms which Gardenfors (1976), Barberà (1977) and Kelly (1977) use in their analysis

of strategy-proof social choice correspondences.9

In particular, a more recent analysis made by Ching and Zhou (2002) also falls in

this category. They consider manipulability of social choice correspondences assuming

“Bayesian rational” individuals. Their Lemma 1 shows it to be equivalent to a con-

sistency map determined by the Gärdenfors (1976) principle. In this framework, they

characterize strategy-proof social choice correspondences as dictatorial or constant ones

- an impossibility result which almost follows from part (ii) of Theorem 5.1.10 Another

related work is by Duggan and Schwartz (2000) who analyze the manipulability of so-

cial choice correspondences under a consistency map determined by expected utility

consistency. Their result essentially follows from part (i) of Theorem 5.2.11

To sum up, we know through Theorem 4.1 that almost all regular superdomains of

Dλ which satisfy a very weak condition β∗ are dictatorial or bi-dictatorial depending on

the satisfaction or failure of a certain separability condition.12 Moreover, most of the

standard extension axioms of the literature are compatible with the leximax and leximin

extensions, leading to domains which contain Dλ. These axioms are compatible with the

“non-resolute outcome” interpretation of a set. However, as Ozyurt and Sanver (2008)

show, similar impossibilities arise under axioms compatible with the “resolute outcome”

interpretation of a set as well. Thus, it is possible to interpret the current picture as

the essential impossibility of escaping the Gibbard-Satterthwaite theorem for set-valued

social choice rules.

9Some of these papers establish existence results under a weak definition of strategy-proofness where

a social choice correspondence F is strategy-proof under κ if and only if given any ρ ∈ ΠN, i ∈ N and

ρ′ ∈ ΠN with ρj = ρ′j for all j ∈ N�{i}, we have F (ρ) Ri F (ρ′) for some Ri ∈ κ(ρi).
10The qualification “almost” is needed because we impose the unanimity requirement over social choice

correspondences which rules out constant ones.
11The qualification “essentially” is needed because Duggan and Schwartz (2000) consider social choice

correspondences that map preference profiles over alternatives into a countable non-empty set while we

assume finiteness.
12We say “almost”, as Theorem 4.1 derives no conclusion for the domains which violate σ∗ but satisfy

σ. Nevertheless, we have not encountered any such domain in the literature.
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APPENDIX A

Theorem 3.1. A unanimous hyperfunction f : [Dλ]N → A is strategy-proof if and only

if f is dictatorial or bi-dictatorial.

Proof. We prove Theorem 3.1 by benefiting from BDS who prove a similar result for

a domain DE of admissible orderings defined through the idea of conditional expected

utility consistency with equal probabilities. The claim that Theorem 3.1 makes on Dλ

is exactly the same as their Theorem 3.3 makes on DE .

It is critical to remark that Lemma 3.5 of BDS identifies four properties of DE .

These are as follows:13

(i) For all P ∈ DE and for all x, y ∈ A, we have {x} P {y} ⇒ {x} P {x, y} P {y}.

(ii) For all P ∈ DE , X ∈ A and x, y ∈ A�X we have X∪{x} P X∪{y} ⇔ {x} P {y}.

(iii) For all x, y ∈ A, there exists P ∈ DE such that arg maxA P = {x} and {x} P {x, y}
P {y} P X for all X ∈ A�{{x}, {x, y}, {y}}.

(iv) For any set X = {b1, b2, · · · , bL} ∈ A with |L| ≥ 3 and Y ∈ A which is distinct

from X, there exists P ∈ DE with arg maxA P = {b1} while {x} P {bL} for all

x ∈ X such that X P {b1, bL} P Y whenever |Y | ≥ L or Y = {a, bL} where

a ∈ A�{b1}.

These are the properties of DE that allow BDS to prove their Theorem 3.3 for the

case |N| = 2. The induction step in which they generalize their result to the case |N| > 2

uses the existence of the following two additional orderings:14

13Properties (i), (ii), (iii) and (iv) below correspond respectively to the conditions (i), (ii), (iv) and

(v) of their Lemma 3.5. Note that condition (iii) of Lemma 3.5 is not about DE .
14One can see BDS to remark that (v) is used to handle “Case 2” in pages 388-389 while (vi) cor-

responds to the two orderings used in page 390. Note that (vi), as we state here, is different than the

orderings required in page 390 of BDS. For, the BDS requirements, as they appear, are not expected

utility consistent. What we state here as (vi) is the “corrected version”, as expressed in the corrigendum

of BDS. We also wish to draw attention to the last two sentences of Section 4 in BDS (p. 393) where

they say: “The only assumptions on preferences that we require are specified completely in Lemma 3.5”

We emphasize that the statement is true for proving their Theorem 3.3 for the 2-person case. On the

other hand, the general proof requires the six orderings we specify.
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(v) For all x, y ∈ A, there exists P ∈ DE such that X P {y} P {x, y} P {x} for all

X ∈ A�{{x}, {x, y}, {y}}.

(vi) For all x, y, z ∈ A, there exists P ∈ DE such that {x} P {x, y} P {y} P {x, z}
P {x, y, z} P {y, z} P {z} P X for all X ∈ A�{{x}, {y}, {z}, {x, y}, {x, z}
{y, z}, {x, y, z}}

As a result, we prove our Theorem 3.1 by checking that Dλ also satisfies these

six properties. In other words, we show that DE can be replaced by Dλ in these six

conditions. In fact, both the leximax and leximin extensions satisfy the conditions

imposed by (i) and (ii). Thus, DE can be replaced by Dλ in (i) and (ii). The existence

of the ordering required by (iii) is ensured by the leximin extension. In other words, in

(iii), DE can be replaced by Dλ− hence Dλ. The leximax extension ensures the existence

of the orderings required by (iv) and (v). So in both (iv) and (v), DE can be replaced

by Dλ+
hence Dλ. Finally, the leximin extension ensures the existence of the ordering

required by (vi). So in (vi), DE can be replaced by Dλ− hence Dλ, which completes our

proof.
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APPENDIX B

Proposition 4.2. Let f : DN → A be a strategy-proof hyperfunction with D ⊃ Dλ

being a (fully regular) domain satisfying conditions β∗ and σ∗. If i, j ∈ N are the

bi-dictators of f over Dλ then i and j are the bi-dictators of f over D.

Proof. Take D and f as in the statement of the proposition. Assume, without loss

of generality that the bi-dictators over Dλ are agents 1 and 2. We will prove the

proposition through two lemmata. Given any R ∈ [D]N, i ∈ N and Ri ∈ D, we write

(Ri, R−i) ∈ [D]N for the profile where there preference of all agents but i are as in R

while Ri is the preference of i.

Lemma B1. For all R ∈ DN with R1, R2 ∈ Dλ we have f(R) = arg maxAR1 ∪
arg maxAR2.

Proof. Take any R ∈ DN with R1, R2 ∈ Dλ . Write k = |{i ∈ N�{1, 2} : Ri ∈ D�Dλ}.
We claim that f(R) = arg maxAR1 ∪ arg maxAR2 for any value of k ∈ {1, · · · , n − 2}.
We prove our claim by induction on k. We present the proof only for k = 1 while

these arguments, mutatis mutandis, establish the inductive step. So take k = 1 and

let, without loss of generality, R3 ∈ D�Dλ. We want to show that f(R) = {a1, a2}
where {a1} = arg maxAR1 and {a2} = arg maxAR2. Suppose for a contradiction that

f(R) = X for some X ∈ A�{{a1, a2}}.

If X 6= {a2}, then agent 3 manipulates at (R′3, R
−3) ∈ DN where R′3 ∈ Dλ with

Y P ′3 {a1} P ′3 {a1, a2} P ′3 {a2} for all Y ∈ A�{{a1}, {a1, a2}, {a2}} by pretending

R3 ∈ D�Dλ , since X P ′3 {a1, a2}. This argument, mutatis mutandis, shows the

manipulability of f when X 6= {a1}. As X 6= {a2} and X 6= {a1} exhaust all possible

cases, this completes the proof of Lemma B1.

Lemma B2. For all R ∈ DN with R1 ∈ Dλ ⇔ R2 ∈ D�Dλ we have f(R) =

arg maxAR1 ∪ arg maxAR2.

Proof. Take any R ∈ DN as in the statement of the lemma. Assume without loss of

generality that R1 ∈ D�Dλ while R2 ∈ Dλ. We want to show that f(R) = {a1, a2}
where {a1} = arg maxAR1 and {a2} = arg maxAR2. Suppose not, i.e. f(R) = X for

some X ∈ A�{{a1, a2}}. We consider three cases that are exhaustive about the value

of X:
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Case 1. |X| = 1

If X = {x} for some x ∈ A�{a2} then agent 1 manipulates f at (R′1, R
−1) ∈ DN where

R′1 ∈ Dλ with arg maxAR
′
1 = {x} by pretending R1, since {x} P ′1 {x, a2}. If X = {a2},

then agent 1 manipulates f at R by pretending some R′1 ∈ Dλ with arg maxAR
′
1 = {a1},

since {a1, a2} P1 {a2}.

Case 2. |X| = 2

If X = {a1, x} for some x ∈ A�{a1, a2} then agent 1 manipulates f at (R′1, R
−1) ∈ DN

where R′1 ∈ Dλ with arg maxAR
′
1 = {x} and {x} P ′1 {a1} P ′1 {a2} by pretending R1,

since X P ′1 {x, a2}. If X = {a2, x} for some x ∈ A�{a1, a2} then agent 1 manipulates

f at R by pretending some R′1 ∈ Dλ with arg maxAR
′
1 = {a1}, as {a1, a2} P1 X by

D satisfying condition σ∗. If X = {x, y} for some x, y ∈ A�{a1, a2} then agent 1

manipulates f at (R′1, R
−1) ∈ DN where R′1 ∈ Dλ− with arg maxAR

′
1 = {a1} and

{a1} P ′1 {x} P ′1 {y} P ′1 {a2} by pretending R1, since {x, y} P ′1 {a1, a2}.

Case 3. |X| > 2

If a1 ∈ X but a2 /∈ X then agent 1 manipulates f at (R′1, R
−1) ∈ DN where R′1 ∈ Dλ

with arg maxAR
′
1 = {a1} and arg minAR

′
1 = {a2} by pretendingR1, sinceX P ′1 {a1, a2}.

If a2 ∈ X but a1 /∈ X, then agent 1 manipulates f at (R′1, R
−1) ∈ DN where R′1 ∈ Dλ+

with arg maxAR
′
1 = {x} for some x ∈ X�{a2} while arg minAR

′
1 = {a2} by pretending

R1, since X P ′1 {x, a2}. If a1, a2 ∈ X then agent 1 manipulates f at(R′1, R
−1) ∈ DN

where R′1 ∈ Dλ+
with arg maxAR

′
1 = {a1} and arg minAR

′
1 = {a2} by pretending R1,

since X P ′1 {a1, a2}. If a1, a2 /∈ X then agent 1 manipulates f at (R′1, R
−1) ∈ DN where

R′1 ∈ Dλ− with arg maxAR
′
1 = {a1} and arg minAR

′
1 = {a2} by pretending R1, since

X P ′1 {a1, a2}, completing the proof of Lemma B2.

The arguments used in the proof of Lemma B2 along with Lemma B1 and B2 suffice

to prove the claim of Proposition 4.2
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APPENDIX C

Theorem 4.1. Take any fully regular domain D ⊇ Dλ satisfying condition β∗ and

consider a unanimous hyperfunction f : [D]N → A.

(i) If D satisfies condition σ∗, then f is strategy-proof if and only if f is dictatorial

or bi-dictatorial.

(ii) If D violates condition σ, then f is strategy-proof if and only if f is dictatorial.

Proof. Take any fully regular domain D ⊇ Dλ satisfying condition β∗ and a unanimous

hyperfunction f : [D]N → A. We first show (i). Let D satisfy condition σ∗. To see

the “if” part, let f be dictatorial or bi-dictatorial. If f is dictatorial then f is trivially

strategy-proof. If f is bi-dictatorial then, by Proposition 4.3, it is strategy-proof. To

see the “only if” part, assume f is strategy-proof over D. So f is strategy-proof over

Dλ as well. Hence by Theorem 3.1, f is dictatorial or bi-dictatorial over Dλ. If f is

dictatorial over Dλ then, by Proposition 4.1, it will be dictatorial over D as well. If f

is bi-dictatorial over Dλ then, by Proposition 4.2, it will be bi-dictatorial over D.

To show (ii), let D violate σ. The “if” part is clear, as f being dictatorial implies its

strategy-proofness. To see the “only if” part, assume f is strategy-proof over D, hence

over Dλ as well. Therefore, by Theorem 3.1, f is either dictatorial or bi-dictatorial

over Dλ. If f is dictatorial over Dλ then, by Proposition 4.1, f is dictatorial over

D. We complete the proof by showing that f cannot be bi-dictatorial over Dλ while

condition σ is violated. As D violate σ there exists a, b, c ∈ A and R∗1 ∈ D�Dλ with

arg maxAR
∗
1 = {a} while {a} P ∗1 {b} P ∗1 {c} such that {b, c} P ∗1 {a, c}. Now, suppose

for a contradiction that f is bi-dictatorial over Dλ. Let, without loss of generality,

agents 1 and 2 be the bi-dictators. Pick some R∗2 ∈ Dλ− with arg maxAR
∗
2 = {c}

and {c} P ∗2 {a} P ∗2 {x} for all x ∈ A�{a, c}. We write (R∗1, R
∗
2) for the preference

profile where agents 1 and 2 have the respective orderings R∗1 and R∗2 while each of the

remaining agents has some ordering in Dλ. From now on, we fix these orderings of the

remaining agents which are inessential for the proof (as long as they belong to Dλ) and

define a preference profile by the orderings of the bi-dictators.

Let f(R∗1, R
∗
2) = X. The following three cases, each of which gives a contradiction,

exhaust the value that X can take, thus complete the proof.
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Case 1. |X| = 1

If X = {x} for some x ∈ A�{c}, then agent 1 manipulates f at any (R1, R
∗
2) where

R1 ∈ Dλ with arg maxAR1 = {x} by pretending R∗1, as {x} P1 {x, c}. If X = {c}, then

agent 1 manipulates f at (R∗1, R
∗
2), by pretending some R1 ∈ Dλ with arg maxAR1 = {a}

since {a, c} P ∗1 {c} as D satisfies condition β∗.

Case 2. |X| = 2

If X = {a, x} for some x ∈ A�{a, c}, then agent 1 manipulates f at any (R1, R
∗
2)

where R1 ∈ Dλ with arg maxAR1 = {x} and {x} P1 {a} P1 {c} by pretending R∗1, as

{a, x} P1 {x, c}. If X = {c, x} for some x ∈ A�{a, c}, then agent 2 manipulates f at

(R∗1, R
∗
2) by pretending some R2 ∈ Dλ with arg maxAR2 = {a}, as f(R∗1, R2) = {a} by

the unanimity of f while {a} P ∗2 {c, x}. If X = {x, y} for some x, y ∈ A�{a, c} then

agent 1 manipulates f at any (R1, R
∗
2) where R1 ∈ Dλ− with arg maxAR1 = {a} while

{a} P1 {x} P1 {y} P1 {c} by pretending R∗1, as {x, y} P1 {a, c}. If X = {a, c} then agent

1 manipulates f at (R∗1, R
∗
2) by pretending some R1 ∈ Dλ with arg maxAR1 = {b}, as

{b, c} P ∗1 {a, c}

Case 3. |X| > 2

If a ∈ X but c /∈ X then agent 1 manipulates f at any (R1, R
∗
2) where R1 ∈ Dλ with

arg maxAR1 = {a} and arg minAR1 = {c} by pretending R∗1. If c ∈ X but a /∈ X

then agent 1 manipulates f at any (R1, R
∗
2) where R1 ∈ Dλ+

with arg maxAR1 = {x}
for some x ∈ X�{c} while arg minAR1 = {c} by pretending R∗1. If a, c /∈ X, then

agent 1 manipulates f at any (R1, R
∗
2) where R1 ∈ Dλ− with arg maxAR1 = {a} while

arg minAR1 = {c} by pretending R∗1. If a, c ∈ X, then agent 1 manipulates f at

any (R1, R
∗
2) where R1 ∈ Dλ+

with arg maxAR1 = {a} while arg minAR1 = {c} by

pretending R∗1.
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